Atomic Magnetism

Magnetism of electrons, atoms and ions in solids

Henrik M. Rønnow Laboratory for Quantum Magnetism Ecole Polytechnique Fédérale de Lausanne Switzerland

01.07.2025

- Single electrons: Spin, Angular Momentum, orbits and spin-orbit coupling
- Many electrons the magical power of Pauli
- Non-magnetic magnetism : dia-magnetism and Van Vleck paramagnetism
- Hund's rules and effective moment : a 4f lanthanide success story
- Crystal field effect : the case of 3d transition metals
- ✤ Jahn-Teller effect

Slides by Ivica Zivkovic and previous ESM lectures

SPIN MAGNETIC MOMENT

- Intrinsic property of electrons (and other subatomic particles).
- Demonstrated experimentally by Stern & Gerlach (1922),
- Analogous (but inaccurate!) to a charged particle spinning around its axis.
- Electrons, and fermions, can only have two spin states: $\sigma = \pm 1/2$

Analogously to the orbital magnetic momentum:

 μ_{R}

$$L_{s} = \hbar s$$

$$\langle s^{2} \rangle = s(s+1)$$

$$\langle s_{z} \rangle = \pm 1/2$$

$$m_{s} = -2\mu_{B}s$$
Then, $\langle (m_{s})_{z} \rangle = \pm 1$

ORBITAL ANGULAR MOMENTUM

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

LINEAR MOMENTUM

$$\hat{P}_{x} = -i\hbar \frac{\partial}{\partial x}$$
 e^{ikx} eigenfunction
 $\hbar k$ eigenvalue
ANGULAR MOMENTUM
 $\hat{L}_{z} = -i\hbar \frac{\partial}{\partial \phi}$ $e^{im\phi}$ eigenfunction
 $\pi m\hbar$ eigenvalue
INTEGER : $e^{im(\phi+2\pi)} = e^{im\phi}$

$$\hat{L} = \hat{\Gamma} \times \hat{P} = -i\hbar \Gamma \times \nabla$$

$$\hat{L}_{z} = i\hbar [y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}] = -i\hbar \frac{\partial}{\partial y}$$

$$\hat{L}_{z} |l,m\rangle = m\hbar |l,m\rangle \quad \hat{L}^{2} |l,m\rangle = l(l+1)\hbar^{2} |l,m\rangle$$

$$\langle 0, \phi | l,m\rangle = T_{l}^{m}(0, \phi) \propto P_{l}^{m}(\cos \theta) e^{im\phi}$$

$$\stackrel{SPHERICAL}{HARMONICS} \qquad \stackrel{AssociateD}{LegenDRE} POLYNOMIAL$$

Spin-Orbit Coupling

 $I = Zev/2\pi r$

which produces a magnetic field $\mu_0 I/2r$ at the centre

$$B_{so} = \mu_0 \operatorname{Zev} / 4\pi r^2 \quad [\sim 10 \,\mathrm{T} \text{ for B or C}]$$

$$E = -m.B \qquad E_{so} = -\mu_B B_{so}$$
Since $r \approx a_0 / Z$ and $m_e vr \approx \hbar$

$$E_{so} \approx -\mu_0 \mu_B^2 Z^4 / 4\pi a_0^3$$

The spin – orbit Hamiltonian for a single electron is of the form:

$$\mathcal{H}_{so} = \lambda \hat{l} \cdot \hat{s}_{s}$$

in general $\mathcal{H}_{so} = (1/2m_e^2c^2r)dV/dr$ I.s

The total magnetic moment is thus:

$$m_t = m_o + m_s$$

Which needs not be collinear with the total angular momentum:

$$\boldsymbol{L_t} = \boldsymbol{\hbar}(\boldsymbol{I} + \boldsymbol{s})$$

 \checkmark Every particle has a magnetic moment, and an intrinsic angular momentum;

• Proton:
$$m_{p} = g_{p} \left(\frac{\hbar e}{2 m_{p}} \right) \hbar L$$
, $g_{p} = 2.793$

• Neutron: does not carry electric charge, but it has both an intrinsic angular momentum and a magnetic moment:

$$\boldsymbol{m}_{n} = \boldsymbol{g}_{n} \left(\frac{\hbar e}{2 m_{n}} \right) \hbar \boldsymbol{L}, \quad \boldsymbol{g}_{p} = 1.913$$

 \checkmark These magnetic moments are much smaller than that of the electron, due to the different masses.

Electron in a H-atom

• One electron and a symmetric potential, (e.g. H-atom)

$$i\hbar \frac{\partial \Psi(\mathbf{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\mathbf{r},t) + V(r)\Psi(\mathbf{r},t)$$

with stationary states

$$\Psi(\mathbf{r},t) = \Phi_{n,l,m}(r,\theta,\phi) u_{\sigma} e^{-iE_n t/\hbar}$$

where

 $\Phi_{n,l,m}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$

and principal, $n = 1, 2, \cdots$, angular momentum, $l = 0, 1, \cdots, n-1$ and $m = -l, -l+1, \cdots, l$ and spin, $\sigma = \uparrow, \downarrow$, quantum numbers.

• H-atom:
$$V(r) = -\frac{e^2}{4\pi\varepsilon_0 r}$$
, $E_n = -\frac{13.6}{n^2}$ eV.

$$H_0 = \sum_{i} \left[-\left(\frac{\hbar^2}{2 m_e} \right) \nabla^2 - \frac{Z e^2}{4 \pi \varepsilon_0 r_i} \right] + \sum_{i < j} \frac{e^2}{4 \pi \varepsilon_0 r_{ij}}$$

repulsion between electrons

This Hamiltonian is insoluble.

Approximation: average effective potential with spherical symmetry.

 \rightarrow The degeneracy of energy levels with equal *n* is lifted:

Energy depends on *I*: $E(2p_{+1}) \neq E(2p_{0}) \neq E(2p_{-1})$

Filling sequence of electronic levels!

L-S coupling scheme: (important for most ions of interest in magnetism) Individual spin and angular momenta add to give resultant quantum numbers:

$$S = \sum s_i, \quad M_s = \sum m_{si}, \quad L = \sum I_i, \quad M_L = \sum m_{Ii}$$

(Alternatively, when LS coupling is very strong, I_i and s_i first couple for each electron to yield j_i : $\mathbf{j} - \mathbf{j}$ coupling scheme)

Many electrons in atoms

- 2 electrons in same spatial state occupy different spin states (S=0), electrons with 'parallel' spins (S=1) tend to avoid each other --- spin correlation. Magnetic properties of matter.
- Many electron wavefunctions as Slater determinants of 1-electron wavefunctions.
- Each electron in effective potential set up by nucleus and other electrons, l degeneracy broken.
- Products of states labelled as 1s2, 2s2, 2p6,...

Filled states cancel S and L to effective (almost) zero magnetic moment

In solids, ions share or swap electrons to create filled shells => eliminating magnetic moments

	n	1	m	m _s	No of states
1s	1	0	0	±1/2	2
2s	2	0	0	±1/2	2
2p	2	1	0,±1	±1/2	6
3 s	3	0	0	±1/2	2
3p	3	1	0,±1	±1/2	6
3d	3	2	0,±1,±2	±1/2	10
4 s	4	0	0	±1/2	2
4p	4	1	0,±1	±1/2	6
4d	4	2	0,±1,±2	±1/2	10
4f	4	3	0,±1,±2,±3	±1/2	14

One-electron hydrogenic states

The three quantum number n, l, m_l denote an orbital.

Orbitals are denoted nx_{ml} , x = s, p, d, f... for <math>l = 0, 1, 2, 3, ...

Each orbital can accommodate at most two electrons* $(m_s = \pm 1/2)$

	n	1	m _l	m _s	No of states
1s	1	0	0	±1/2	2
2s	2	0	0	±1/2	2
2p	2	1	0, ±1	±1/2	6
<u>3s</u>	3	0	0	±1/2	2
3p	3	1	0, ±1	±1/2	6
3d	3	2	0,±1,±2	±1/2	10
4s	4	0	0	±1/2	2
4 p	4	1	0, ±1	±1/2	6
4d	4	2	0,±1,±2	±1/2	10
4 f	4	3	0,±1,±2,±3	±1/2	14

*The Pauli exclusion principle: No two electrons can have the same four quantum numbers. \Rightarrow Two electrons in the same orbital must have opposite spin.

perturbation theory

1. order
$$\Delta E_0 = \langle 0 | \mathcal{H}_{pert} | 0$$

$$\mathcal{H}_{0} | \Psi_{i} \rangle = E_{i} | \Psi_{i} \rangle$$

$$\downarrow E_{0} < E_{1} < E_{2} < E_{3} \cdots$$

$$\downarrow ground state excited states$$

2. order
$$\Delta E_0 = \sum_{i} \frac{\langle 0 | \mathcal{H}_{pert} | i \rangle \langle i | \mathcal{H}_{pert} | 0 \rangle}{E_0 - E_i}$$

$$\Delta E^{dia} = \begin{pmatrix} 0 \left| \frac{e^2}{8m} \sum_{i} (\mathbf{B} \times \mathbf{r}_i)^2 \right| 0 \end{pmatrix} \qquad B \parallel z \Rightarrow \mathbf{B} = \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix} \qquad \mathbf{r}_i = \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix} \qquad (\mathbf{B} \times \mathbf{r}_i) = B \begin{pmatrix} -y_i \\ x_i \\ 0 \end{pmatrix}$$

$$\Delta E^{dia} = \frac{e^2 B^2}{8m} \sum_{i} \langle 0 | x_i^2 + y_i^2 | 0 \rangle = \frac{e^2 B^2}{12m} \sum_{i} \langle 0 | r_i^2 | 0 \rangle \qquad \chi_{dia} = \frac{M}{H} \sim \frac{1}{H} \frac{\partial \Delta E^{dia}}{\partial B} \sim \sum_{i} \langle 0 | r_i^2 | 0 \rangle$$

$$(0 \mid x_i^2 \mid 0) = \langle 0 \mid y_i^2 \mid 0 \rangle = \langle 0 \mid z_i^2 \mid 0 \rangle = \frac{1}{3} \langle 0 \mid r_i^2 \mid 0 \rangle$$

$$\chi_{dia} \sim Z_{out} r^2$$

"Non-magnet magnetism 2" : Van Vleck paramagnetism

2 Maximize L

3 subtract/add

ion	Ν	S	L	J	3
La ³⁺	0	0	0	0	
Ce ³⁺	1	1/2	3	5/2	
Pr ³⁺	2	1	5	4	2
Nd ³⁺	3	3/2	6	9/2	
Pm ³⁺	4	2	6	4	
Sm ³⁺	5	5/2	5	5/2	
Eu ³⁺	6	3	3	0	
Gd ³⁺	7	7/2	0	7/2	
Tb ³⁺	8	3	3	6	
Dy ³⁺	9	5/2	5	15/2	
Ho ³⁺	10	2	6	8	Ň
Er ³⁺	11	3/2	6	15/2	<u>-</u>
Tm ³⁺	12	1	5	6	–
Yb ³⁺	13	1/2	3	7/2	
Lu ³⁺	14	0	0	0	

total (measured) moment

 $\widehat{\boldsymbol{\mu}} = g_J \mu_B \widehat{\boldsymbol{J}} = \mu_B (g_L \widehat{\boldsymbol{L}} + g_S \widehat{\boldsymbol{S}})$

 $g_I \hat{J}^2 = (g_L \hat{L} \hat{J} + g_S \hat{S} \hat{J})$

total angular momentum $\vec{J} = \vec{L} + \vec{S} \rightarrow \text{but also operators!}$ $\vec{L} = \vec{J} - \vec{S}$ $\vec{S} = \vec{J} - \vec{L}$ $\vec{S}^2 = (\vec{J} - \vec{L})^2 = \vec{J}^2 - \vec{L}^2 - 2\vec{J}\vec{L}$

$$g_J = g_L \frac{J(J+1) + L(L+1) - S(S+1)}{2J(J+1)} + g_S \frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}$$

for
$$g_L = 1, g_S = 2$$
 $g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$ Landé *g*-factor

thermodynamics through the partition function:

$$Z = \sum_{i} e^{\frac{E_i}{k_B T}} = \sum_{m_J = -J}^{J} e^{\frac{m_J g_J \mu_B B}{k_B T}} \qquad J = L + S$$

$$M = ng_J \mu_B \langle m_J \rangle = ng_J \mu_B \frac{\sum_{m_J=-J}^J m_J e^{m_J x}}{\sum_{m_J=-J}^J e^{m_J x}} \qquad \qquad x = \frac{g_J \mu_B J B_{out}}{k_B T}$$

$$\Delta E = E_{+} - E_{-} = g \mu_{B} B_{out}$$
(the principle of ESR (EPR))

$$M = ng_J \mu_B J B_J(x)$$

$$B_J(x) = \frac{2J+1}{2J} \operatorname{coth}\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \operatorname{coth}\left(\frac{1}{2J}x\right)$$

Brillouin function

paramagnetism

$$M = \underline{ng_J \mu_B J} B_J(x)$$

saturation value

$$B_J(x) = \frac{2J+1}{2J} \operatorname{coth}\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \operatorname{coth}\left(\frac{1}{2J}x\right)$$

 $x = \frac{g_J \mu_B J B_{out}}{k_B T}$

$$B_J(x) = \frac{2J+1}{2J} \coth\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \coth\left(\frac{1}{2J}x\right)$$
$$J \to \infty$$
$$B_{\infty}(x) \to L(x) = \coth x - \frac{1}{x}$$

Langevin function

$$B_{J}(x) = \frac{2J+1}{2J} \operatorname{coth}\left(\frac{2J+1}{2J}x\right) - \frac{1}{2J} \operatorname{coth}\left(\frac{1}{2J}x\right)$$

$$\frac{J \to \infty}{B_{\infty}(x) \to L(x) = \operatorname{coth} x - \frac{1}{x}$$
Langevin function
$$x \ll 1$$

$$B_{J}(x) \approx \frac{J+1}{3J}x \to M = f(T)B$$

$$\chi = \frac{N_{A}\mu_{0}g_{J}^{2}\mu_{B}^{2}J(J+1)}{3k_{B}T} = \frac{C}{T}$$
Curie law

$$\chi = \frac{N_A \mu_0 g_J^2 \mu_B^2 J(J+1)}{3k_B T} = \frac{C}{T} = \frac{N_A \mu_0 \mu_{eff}^2}{3k_B T}$$

$$\mu_{eff}^2 = g_J^2 \mu_B^2 J(J+1)$$

$$\chi = \frac{N_A \mu_0 \mu_{eff}^2}{3k_B T}$$

$4f^n$		S	L	J	g	$m_0 = gJ$	$m_{eff} = g\sqrt{J(J+1)}$	$m_{e\!f\!f}^{exp}$
1	Ce ³⁺	$\frac{1}{2}$	3	5/2	67	2.14	2.54	2.5
2	Pr ³⁺	1	5	4	45	3.20	3.58	3.5
3	Nd ³⁺	32	6	92	8 11	3.27	3.52	3.4
4	Pm ³⁺	2	6	4	35	2.40	2.68	
5	Sm ³⁺	5/2	5	52	27	0.71	0.85	1.7
6	Eu ³⁺	3	3	Ō	0	0	0	3.4
7	Gd ³⁺	$\frac{7}{2}$	0	$\frac{7}{2}$	2	7.0	7.94	8.9
8	Tb ³⁺	3	3	6	3	9.0	9.72	9.8
9	Dy ³⁺	5	5	15	141	10.0	10.65	10.6
10	Ho ³⁺	2	6	8	5	10.0	10.61	10.4
11	Er ³⁺	3	6	15	6	9.0	9.58	9.5
12	Tm ³⁺	ī	5	6	7	7.0	7.56	7.6
13	Yb ³⁺	$\frac{1}{2}$	3	7	87	4.0	4.53	4.5

when $k_B T \sim \Delta$, $\mu > 0$

The 2 main series of magnetic elements

- based on hydrogen
- visualization is not straight-forward
- radial and spherical coordinates
- ✤ complex value

bonding

magnetism

- based on hydrogen
- radial and angular coordinates
- complex value
- visualization is not straight-forward

bonding

 $p_0 = R_{n,l=1} Y_{l=1,m=0}$

 $p_1 = R_{n,l=1} Y_{l=1,m=1}$

 $p_{-1} = R_{n,l=1}Y_{l=1,m=-1}$ $p_z = p_0$

magnetism

 $p_x = \frac{1}{\sqrt{2}}(-p_1 + p_{-1})$

 $p_{y} = \frac{i}{\sqrt{2}}(p_{1} + p_{-1})$

$$d_0 = R_{n,l=2} Y_{l=2,m=0}$$

$$d_1 = R_{n,l=2} Y_{l=2,m=1}$$

$$d_{-1} = R_{n,l=2} Y_{l=2,m=-1}$$

$$d_2 = R_{n,l=2} Y_{l=2,m=2}$$

$$d_{-2} = R_{n,l=2} Y_{l=2,m=-2}$$

$$d_{3z^{2}-r^{2}} = d_{0}$$

$$d_{x^{2}-y^{2}} = \frac{1}{\sqrt{2}}(d_{2} + d_{-2})$$

$$d_{xy} = \frac{-i}{\sqrt{2}}(d_{2} - d_{-2})$$

$$d_{xz} = \frac{-1}{\sqrt{2}}(d_{1} - d_{-1})$$

$$d_{yz} = \frac{i}{\sqrt{2}}(d_{1} + d_{-1})$$

image source: wikimedia.org

 $3z^2-r^2$ xz yz xy x^2-y^2

- ✤ 6 point charges
- equal distance from the magnetic ion (ideal case)

- ✤ 6 point charges
- equal distance from the magnetic ion (ideal case)
- ✤ ABO₃ (perovskites, new solar-cell materials)

Nature 592, 381 (2021)

- ✤ 6 point charges
- equal distance from the magnetic ion (ideal case)
- ✤ ABO₃ (perovskites, new solar-cell materials)
- high-Tc superconductivity in cuprates

- ✤ 6 point charges
- equal distance from the magnetic ion (ideal case)
- ✤ ABO₃ (perovskites, new solar-cell materials)
- high-Tc superconductivity in cuprates
- colossal magnetoresistance in manganites

J. Phys. Soc. Jpn. 67, 2582 (1998)

✤ 6 point charges

- equal distance from the magnetic ion (ideal case)
- ✤ ABO₃ (perovskites, new solar-cell materials)
- high-Tc superconductivity in cuprates
- colossal magnetoresistance in manganites

$3z^2-r^2$ xz yz xy x^2-y^2

✤ 6 point charges

- equal distance from the magnetic ion (ideal case)
- ✤ ABO₃ (perovskites, new solar-cell materials)
- high-Tc superconductivity in cuprates
- colossal magnetoresistance in manganites

H Hydrogen																	2 He Helium
B Li Lithium	4 Be Beryllium		Alkali Alkalin Transit	e ion	Actinoi Post-tra Metallo	d ansition id	Haloger Noble g Unknow	n jas /n				5 B Boron	6 C Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	10 Neon
I1 Na Sodium	12 Mg Magnesium		Lantha	noid	Nonme	tal						13 Aluminium	14 Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Argon
19 K Potassium	20 Ca Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr ^{Chromium}	25 Mn Manganese	26 Fe	27 Cobalt	28 Ni Nickel	29 Cu _{Copper}	30 Zn Zinc	31 Gallium	32 Ge Germanium	33 As Arsenic	34 Seenium	35 Br Bromine	36 Kr Krypton
B7 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd Cadmium	49 In Indium	50 Sn	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 Cs Cesium	56 Ba Barium	*	72 Hf _{Hafnium}	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 T I Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
B7 Fr Francium	88 Radium	**	104 Rf Rutherfordiun	105 Db Dubnium	106 Sg _{Seaborgium}	107 Bh ^{Bohrium}	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut Ununtrium	114 Fl Flerovium	115 Uup Ununpentium	116 LV Livermorium	117 Uus Ununseptium	118 Uuo Ununoctium
	*	57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymiur	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb _{Terbium}	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb ^{Ytterbium}	71 Lu Lutetium	
	**	89 Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm ^{Curium}	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium	

2

10

Neon

Araon 36

18

He

Ne

Ar

Kr

Xe

Rn

Krypton 54

Xenon 86

Radon

118

 d^{2} $Ti^{2+}/V^{3+}/Cr^{4+}$ S = 1

!!! maximize S !!!

1 H Hydrogen																	2 He
3 Li	⁴Be		Alkali Alkalir	ne	Actinoi Post-tra	d ansition	Haloge Noble g	n gas				₅ В	⁶ C	7 N	⁸ O	9 F	¹⁰ Ne
Lithium 11 Na Sodium	Beryllium 12 Magnesium		Transit	tion Inoid	Metallo Nonme	id tal	Unknow	wn				Boron 13 Aluminium	Carbon 14 Silicon	Nitrogen 15 Phosphorus	Oxygen 16 Sulfur	Fluorine 17 Cl Chlorine	Neon 18 Argon
19 K Potassium	20 Ca Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr ^{Chromium}	25 Mn Manganese	26 Fe	27 Cobalt	28 Nickel	29 Cu Copper	30 Zn ^{Zinc}	31 Gallium	32 Ge Germanium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd Cadmium	49 In Indium	⁵⁰ Sn ™	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 Cs _{Cesium}	56 Ba Barium	*	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 T Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn _{Radon}
87 Fr Francium	88 Ra Radium	**	104 Rf Rutherfordiun	105 Db Dubnium	106 Sg _{Seaborgium}	107 Bh ^{Bohrium}	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut Ununtrium	114 Fl Flerovium	115 Uup ^{Ununpentium}	116 LV Livermorium	117 Uus Ununseptium	118 Uuo ^{Ununoctium}
	*	57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymiur	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb _{Terbium}	66 Dy _{Dysprosium}	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb ^{Ytterbium}	71 Lu Lutetium	
	**	89 Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm ^{Curium}	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium	

 d^{3} $V^{2+}/Cr^{3+}/Mn^{4+}$ S = 3/2 --

1 H Hydrogen																	2 He Helium
3 Lithium	4 Be Beryllium		Alkali Alkalir Transit	ie iion	Actinoi Post-tra Metallo	d ansition bid	Haloge Noble g Unknow	n gas vn				5 B Boron	6 C Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	10 Neon
11 Na Sodium	12 Mg Magnesium		Lantha	inoid	Nonme	etal						13 Aluminium	14 Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Argon
19 K Potassium	20 Ca Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	²⁶ Fe	27 Co Cobalt	28 Ni ^{Nickel}	29 Cu Copper	30 Zn Zinc	31 Gallium	32 Ge Germanium	33 Arsenic	34 Se ^{Selenium}	35 Br Bromine	36 Kr Krypton
37 Rb ^{Rubidium}	38 Sr Strontium	39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd Cadmium	49 In Indium	⁵⁰ Sn ™	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 CS ^{Cesium}	56 Ba Barium	*	72 Hf ^{Hafnium}	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 Tl Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	**	104 Rf Rutherfordiun	105 Db Dubnium	106 Sg _{Seaborgium}	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut ^{Ununtrium}	114 Fl Flerovium	115 Uup ^{Ununpentium}	116 LV Livermorium	117 Uus ^{Ununseptium}	118 Uuo Ununoctium
	*	57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymiur	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb _{Terbium}	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb ^{Ytterbium}	71 Lu Lutetium	
	**	89 Ac Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm ^{Curium}	97 Bk ^{Berkelium}	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium	

??? maximize S ???

1 H Hydrogen																	2 He Helium
3 Lithium	4 Be Beryllium		Alkali Alkalir Transit	ne tion	Actinoi Post-tra Metallo	d ansition Þid	Haloge Noble g	n gas wn				5 B Boron	6 C Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	10 Neon
11 Na ^{Sodium}	12 Mg Magnesium		Lantha	anoid	Nonme	etal						13 Aluminium	14 Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Argon
19 K Potassium	20 Calcium	21 Sc Scandium	22 Titanium	23 V Vanadium	24 Cr ^{Chromium}	25 Mn Manganese	26 Fe	27 Cobalt	28 Ni Nickel	29 Cu _{Copper}	30 Zn Zinc	31 Gallium	32 Ge Germanium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 Cs Cesium	56 Ba Barium	*	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 Tl Thallium	82 Pb Lead	83 Bi Bismuth	84 PO Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	**	104 Rf Rutherfordium	105 Db Dubnium	106 Sg ^{Seaborgium}	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut ^{Ununtrium}	114 Fl Flerovium	115 Uup Ununpentium	116 LV Livermorium	117 Uus ^{Ununseptium}	118 Uuo ^{Ununoctium}
	*	57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymiur	60 Nd Neodymium	61 Pm Promethium	62 Sm _{Samarium}	63 Eu	64 Gd Gadolinium	65 Tb Terbium	66 Dy _{Dysprosium}	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb ^{Ytterbium}	71 Lu Lutetium	
	**	89 Ac Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm ^{Curium}	97 Bk ^{Berkelium}	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium	

1 H Hydrogen																	2 He Helium
3 Li Lithium	4 Be Beryllium		Alkali Alkalin Transit	ie ion	Actinoi Post-tra Metallo	d ansition vid	Haloge Noble g Unknow	n gas vn				5 Boron	6 C Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	10 Neon
11 Na ^{Sodium}	12 Mg _{Magnesium}		Lantha	inoid	Nonme	etal						13 Aluminium	14 Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Argon
19 K Potassium	20 Ca Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr ^{Chromium}	25 Mn Manganese	²⁶ Fe	27 Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn _{Zinc}	31 Gallium	32 Germanium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd Cadmium	49 In Indium	⁵⁰ Sn ™	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 CS _{Cesium}	56 Ba Barium	*	72 Hf ^{Hafnium}	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 T I Thallium	82 Pb Lead	83 Bi Bismuth	84 PO Polonium	85 At Astatine	86 Rn _{Radon}
87 Fr Francium	88 Ra Radium	**	104 Rf Rutherfordiun	105 Db Dubnium	106 Sg _{Seaborgium}	107 Bh ^{Bohrium}	108 Hs Hassium	109 Mt Meitnerium	110 DS Darmstadtiurr	111 Rg Roentgenium	112 Cn Copernicium	113 Uut Ununtrium	114 Fl Flerovium	115 Uup ^{Ununpentium}	116 LV Livermorium	117 Uus ^{Ununseptium}	118 Uuo Ununoctium
	*	57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymiur	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium	
	**	89 Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm ^{Curium}	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium	

1 Hydrogen																	2 He Helium
3 Li Lithium	4 Be Beryllium		Alkali Alkalin Transit	e ion	Actinoi Post-tra Metallo	d ansition id	Haloger Noble g Unknov	n Jas vn				5 B Boron	6 C Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	10 Ne Neon
11 Na ^{Sodium}	12 Mg Magnesium		Lantha	noid	Nonme	-tal						13 Aluminium	14 Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Argon
19 K Potassium	20 Ca Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr ^{Chromium}	25 Mn Manganese	²⁶ Fe	27 Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Gallium	32 Ge Germanium	33 As Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd Cadmium	49 In Indium	⁵⁰ Sn ™	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 Cs _{Cesium}	56 Ba Barium	*	72 Hf ^{Hafnium}	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 Tl Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn _{Radon}
87 Fr Francium	88 Ra Radium	**	104 Rf Rutherfordiun	105 Db Dubnium	106 Sg _{Seaborgium}	107 Bh ^{Bohrium}	108 Hs Hassium	109 Mt Meitnerium	110 DS Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut ^{Ununtrium}	114 Fl Flerovium	115 Uup ^{Ununpentium}	116 LV Livermorium	117 Uus ^{Ununseptium}	118 Uuo ^{Ununoctium}
	*	57 La Lanthanum	58 Cerium	59 Pr Praseodymiur	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy _{Dysprosium}	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb ^{Ytterbium}	71 Lu Lutetium	
	**	89 Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm ^{Curium}	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium	

 d^{7} $c_{o^{2^{+}}}$ S = 3/2 $\uparrow \qquad \uparrow$ $\downarrow \qquad \uparrow$ $\downarrow \qquad \downarrow \qquad \downarrow$

1 H Hydrogen																	² He Helium
3 Lithium 11	4 Be Beryllium		Alkali Alkalin Transit Lantha	e ion noid	Actinoi Post-tra Metallo	d ansition bid etal	Haloge Noble g Unknow	n gas vn				5 Boron 13	6 Carbon	7 N Nitrogen 15	8 Oxygen 16	9 F Fluorine 17	10 Ne Neon 18
Na ^{Sodium}	Mg Magnesium											Aluminium	Silicon	P Phosphorus	S Sulfur	Chlorine	Ar Argon
19 K Potassium	20 Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	²⁶ Fe	27 Cobalt	28 Ni Nickel	29 Cu Copper	³⁰ Zn ^{Zinc}	31 Gallium	32 Germanium	33 As Arsenic	34 See Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd Cadmium	49 In Indium	50 Sn	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 CS _{Cesium}	56 Ba Barium	*	72 Hf ^{Hafnium}	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 Tl Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn _{Radon}
87 Fr Francium	88 Ra Radium	**	104 Rf Rutherfordiun	105 Db Dubnium	106 Sg _{Seaborgium}	107 Bh ^{Bohrium}	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut ^{Ununtrium}	114 Fl Flerovium	115 Uup ^{Ununpentium}	116 LV Livermorium	117 Uus ^{Ununseptium}	118 Uuo ^{Ununoctium}
	*	57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymiur	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb ^{Terbium}	66 Dy _{Dysprosium}	67 Ho Holmium	68 Er Erbium	69 Tm ^{Thulium}	70 Yb Ytterbium	71 Lu Lutetium	
	**	89 Ac Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm ^{Curium}	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium	

 d^{8} Ni^{2+} S = 1 $\uparrow \uparrow$ $\downarrow \downarrow \downarrow \downarrow$

1 H Hydrogen																	2 He Helium
3 Lithium	4 Be Beryllium		Alkali Alkalin Transit	ion	Actinoi Post-tra Metallo	d ansition id	Haloge Noble g Unknov	n gas vn				5 B Boron	6 C Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	10 Neon
II Na ^{Sodium}	12 Mg Magnesium		Lantha	inoid	Nonme	etal						13 Aluminium	14 Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Argon
19 K Potassium	20 Calcium	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	²⁶ Fe	27 Cobalt	28 Nickel	29 Cu Copper	30 Zn ^{Zinc}	31 Gallium	32 Germanium	33 As Arsenic	34 Seenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd Cadmium	49 In Indium	⁵⁰ Sn ™	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 Cs ^{Cesium}	56 Ba Barium	*	72 Hf _{Hafnium}	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 TI Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	**	104 Rf Rutherfordiun	105 Db Dubnium	106 Sg _{Seaborgium}	107 Bh ^{Bohrium}	108 Hs Hassium	109 Mt Meitnerium	110 DS Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut ^{Ununtrium}	114 Fl Flerovium	115 Uup ^{Ununpentium}	116 LV Livermorium	117 Uus ^{Ununseptium}	118 Uuo ^{Ununoctium}
	*	57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymiur	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb ^{Ytterbium}	71 Lu Lutetium	
	**	89 Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm ^{Curium}	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium	

 d^{9} Cu^{2+} S = 1/2 # + # +

1 H Hydrogen																	2 He Helium
3 Lithium	4 Be Beryllium	Alkali Actinoid Halogen 5 Be Alkaline Post-transition Noble gas aryllium Transition Metalloid Unknown									5 B Boron	6 C Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	10 Neon	
11 Na ^{Sodium}	12 Mg Magnesium		Lantha	noid	Nonme	tal						13 Aluminium	14 Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Argon
19 K Potassium	20 Ca Calcium	21 Scandium	22 Titanium	23 V Vanadium	24 Cr ^{Chromium}	25 Mn Manganese	²⁶ Fe	27 Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Gallium	32 Ge Germanium	33 Arsenic	34 Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd Cadmium	49 In Indium	Sn Sn	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 CS ^{Cesium}	56 Ba Barium	*	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 TI Thallium	82 Pb Lead	83 Bi Bismuth	84 PO Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	**	104 Rf Rutherfordiun	105 Db Dubnium	106 Sg _{Seaborgium}	107 Bh ^{Bohrium}	108 Hs Hassium	109 Mt Meitnerium	110 DS Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut ^{Ununtrium}	114 Fl Flerovium	115 Uup ^{Ununpentium}	116 LV Livermorium	117 Uus ^{Ununseptium}	118 Uuo ^{Ununoctium}
	*	57 La Lanthanum	58 Cee Cerium	59 Pr Praseodymiur	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy _{Dysprosium}	67 Ho Holmium	68 Er Erbium	69 Tm ^{Thulium}	70 Yb ^{Ytterbium}	71 Lu Lutetium	
	**	89 Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm ^{Curium}	97 Bk Berkelium	98 Cf Californium	99 ES Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium	

 d^{10} Cu^{1+}/Zn^{2+} S = 0 d^{10} d^{10}

1 Hydrogen 3 Lithium 11 Na	4 Be Beryllium 12 Mg		Alkali Alkalin Transit Lantha	ie ion inoid	Actinoi Post-tra Metallo Nonme	d ansition vid etal	Haloge Noble g	n Jas vn				5 B Boron 13 Al	6 C Carbon 14 Si	7 N Nitrogen 15 P	8 O Oxygen 16 S	9 F Fluorine 17 Cl	² He Helium ¹⁰ Ne Neon ¹⁸ Ar
Sodium 19 K Potassium 37 Rb	Magnesium 20 Calcium 38 Sr	21 Sc Scandium 39 Y	22 Ti Titanium 40 Zr	23 V Vanadium 41 Nb	24 Cr Chromium 42 MO	25 Mn Manganese 43 TC	²⁶ Fe Iron 44 Ru	27 Co ^{Cobalt} 45 Rh	28 Ni Nickel 46 Pd	29 Cu Copper 47 Ag	30 Zn ^{Zinc} 48 Cd	Aluminium 31 Gallium 49 In	Silicon 32 Germanium 50 Sn	Phosphorus 33 Arsenic 51 Sb	Sulfur 34 Selenium 52 Te	Chlorine 35 Bromine 53	Argon 36 Krypton 54 Xe
Rubidium 55 Cesium 87	Strontium 56 Barium 88	Yttrium *	Zirconium 72 Hf Hafnium 104	Niobium 73 Tantalum 105	Molybdenum 74 W Tungsten 106	Technetium 75 Re Rhenium 107	Ruthenium 76 Osmium 108	Rhodium 77 Iridium 109	Palladium 78 Pt Platinum 110	79 Gold	Cadmium 80 Hg Mercury 112	Indium 81 Thallium 113	Tin 82 Pb Lead 114	Antimony 83 Bismuth 115	Tellurium 84 Polonium 116	Iodine 85 Astatine 117	Xenon 86 Rn Radon 118
Fr Francium	Ra Radium	** ₅7 La	Rf Rutherfordiun	Dubnium 59 Pr	Sg _{Seaborgium} 60 Nd	Bh Bohrium 61 Pm	Hs Hassium 62 Sm	Mt Meitnerium 63 Eu	Ds Darmstadtium 64 Gd	Rg Roentgenium 65 Tb	Copernicium	Uut Ununtrium 67 Ho	FI Flerovium 68 Er	Uup Ununpentium	Lv Livermorium	Uus Ununseptium 71 LU	Uuo Ununoctium
	**	Lanthanum 89 Actinium	Cerium 90 Th Thorium	Praseodymiur 91 Pa Protactinium	Neodymium 92 U Uranium	Promethium 93 Np Neptunium	Samarium 94 Pu Plutonium	Europium 95 Americium	Gadolinium 96 Curium	Terbium 97 Berkelium	98 Cf Californium	Holmium 99 ES Einsteinium	Erbium 100 Fermium	Thulium 101 Mendelevium	Ytterbium 102 Nobelium	Lutetium 103 Lr Lawrencium	

octahedral environment

CRYSTAL FIELD EFFECTS

d ⁰	d¹	d²	ď	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹	d ¹⁰
Sc ³⁺ /Ti ⁴⁺ /V ⁵⁺	Sc ²⁺ /Ti ³⁺ /V ⁴⁺ /Cr ⁵⁺	Ti ²⁺ /V ³⁺ /Cr ⁴⁺	V ²⁺ /Cr ³⁺ /Mn ⁴⁺	Cr ²⁺ /Mn ³⁺	Mn ²⁺ /Fe ³⁺	Fe ²⁺ /Co ³⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Cu ¹⁺ /Zn ²⁺
S = 0	S = 1/2	S = 1	S = 3/2	S = 2	S = 5/2	S = 2	S = 3/2	S = 1	S = 1/2	S = 0
				+ -	+ +	+ +	+ +	+ +	# +	# #
	+	+ + -	+ + +	+ + +	+ + +	# + +	# # +	# # #	# # #	# # #

high spin/low spin

d ⁰	d1	d²	d ³	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹	d ¹⁰
Sc ³⁺ /Ti ⁴⁺ /V ⁵⁺	Sc ²⁺ /Ti ³⁺ /V ⁴⁺ /Cr ⁵⁺	Ti ²⁺ /V ³⁺ /Cr ⁴⁺	V ²⁺ /Cr ³⁺ /Mn ⁴⁺	Cr ²⁺ /Mn ³⁺	Mn ²⁺ /Fe ³⁺	Fe ²⁺ /Co ³⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Cu ¹⁺ /Zn ²⁺
S = 0	S = 1/2	S = 1	S = 3/2	S = 2	S = 5/2	S = 2	S = 3/2	S = 1	S = 1/2	S = 0
				+ -	++	++	+ +	+ +	# +	# #
	† – –	+ + -	+ + +	+ + +	+ + +	# + +	# # +	# # #	# # #	# # #
				S = 1	S = 1/2	S = 0	S = 1/2			
high	spin								low	spin
S =	: 2						+ -		S	= 1
- <u>:</u> •	ţ			# + +	# # +	# # #	# # #		t	<u> </u>
+ 1				l l	intermed	liate spin				↑ +
	Δ_{o}								Δ_{o} J_{H}	,
+++ ↓	Ļ								Ļ	↓ +++

L = 0

L = 2

L = 3

L = 2

L = 3

$$\chi = \frac{N_A \mu_0 g_J^2 \mu_B^2 J(J+1)}{3k_B T} = \frac{C}{T} = \frac{N_A \mu_0 \mu_{eff}^2}{3k_B T}$$

L = 2

L = 3

L = 3

L = 2

 $\mu_{eff}^2 = g_J^2 \mu_B^2 J (J+1)$

CRYSTAL FIELD EFFECTS

L = 0

orbital quenching

L = 0

d ⁰	d¹	d²	d ³	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹	d ¹⁰
Sc ³⁺ /Ti ⁴⁺ /V ⁵⁺	Sc ²⁺ /Ti ³⁺ /V ⁴⁺ /Cr ⁵⁺	Ti ²⁺ /V ³⁺ /Cr ⁴⁺	V ²⁺ /Cr ³⁺ /Mn ⁴⁺	Cr ²⁺ /Mn ³⁺	Mn ²⁺ /Fe ³⁺	Fe ²⁺ /Co ³⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Cu ¹⁺ /Zn ²⁺
S = 0	S = 1/2	S = 1	S = 3/2	S = 2	S = 5/2	S = 2	S = 3/2	S = 1	S = 1/2	S = 0
				+ -	+ +	+ +	+ +	+ +	# +	₩ ₩
	† – –	+ + -	+ + +	<u>+ + +</u>	+ + +	# + +	# # +	# # #	# # #	# # #
L = 0	L = 2	L = 3	L = 3	L = 2	L = 0	L = 2	L = 3	L = 3	L = 2	L = 0

orbital quenching

d ⁰	d¹	d²	d ³	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹	d ¹⁰
Sc ³⁺ /Ti ⁴⁺ /V ⁵⁺	Sc ²⁺ /Ti ³⁺ /V ⁴⁺ /Cr ⁵⁺	Ti ²⁺ /V ³⁺ /Cr ⁴⁺	V ²⁺ /Cr ³⁺ /Mn ⁴⁺	Cr ²⁺ /Mn ³⁺	Mn ²⁺ /Fe ³⁺	Fe ²⁺ /Co ³⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Cu ¹⁺ /Zn ²⁺
S = 0	S = 1/2	S = 1	S = 3/2	S = 2	S = 5/2	S = 2	S = 3/2	S = 1	S = 1/2	S = 0
				+ −	+ +	+ +	+ +	+ +	# +	
	† – –	+ + -	+ + +	+ + +	+ + +	# + +	# # +	# # #	# # #	# # #
L = 0	L = 2	L = 3	L = 3	L = 2	L = 0	L = 2	L = 3	L = 3	L = 2	L = 0

orbital quenching

d ⁰	d1	d²	d ³	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹	d ¹⁰
Sc ³⁺ /Ti ⁴⁺ /V ⁵⁺	Sc ²⁺ /Ti ³⁺ /V ⁴⁺ /Cr ⁵⁺	Ti ²⁺ /V ³⁺ /Cr ⁴⁺	V ²⁺ /Cr ³⁺ /Mn ⁴⁺	Cr ²⁺ /Mn ³⁺	Mn ²⁺ /Fe ³⁺	Fe ²⁺ /Co ³⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Cu ¹⁺ /Zn ²⁺
S = 0	S = 1/2	S = 1	S = 3/2	S = 2	S = 5/2	S = 2	S = 3/2	S = 1	S = 1/2	S = 0
				+ -	+ +	+ +	+ +	+ +	# +	# #
	† – –	+ + -	+ + +	+ + +	+ + +	# + +	# # +	# # #	# # #	# # #
L = 0	L = 2	L = 3	L = 3	L = 2	L = 0	L = 2	L = 3	L = 3	L = 2	L = 0

✤ L is 'quenched'

point charges break the rotational symmetry

 $V_{CF}^{oct}(r) \sim x^4 + y^4 + z^4 - \frac{3}{5}r^4 \qquad \hat{L} = -i\hat{r} \times \nabla \xrightarrow{\text{imaginary}} V_{CF}^{oct}(r) \sim x^4 + y^4 + z^4 - \frac{3}{5}r^4 \qquad \hat{L} = -i\hat{r} \times \nabla \xrightarrow{\text{imaginary}} V_{CF}^{oct}(r) = 0$ Hermitian, so $\langle 0|\hat{L}|0\rangle \in \mathbb{R}$ only if $\langle 0|\hat{L}|0\rangle = 0$

d ⁰	d1	d²	d ³	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹	d ¹⁰
Sc ³⁺ /Ti ⁴⁺ /V ⁵⁺	Sc ²⁺ /Ti ³⁺ /V ⁴⁺ /Cr ⁵⁺	Ti ²⁺ /V ³⁺ /Cr ⁴⁺	V ²⁺ /Cr ³⁺ /Mn ⁴⁺	Cr ²⁺ /Mn ³⁺	Mn ²⁺ /Fe ³⁺	Fe ²⁺ /Co ³⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Cu ¹⁺ /Zn ²⁺
S = 0	S = 1/2	S = 1	S = 3/2	S = 2	S = 5/2	S = 2	S = 3/2	S = 1	S = 1/2	S = 0
				<u>+</u> –	+ +	+ +	+ +	+ +	# +	# #
	+	+ + -	+ + +	<u>+ + +</u>	+ + +	# + +	# # +	# # #	# # #	# # #
L = 0	L = 2	L = 3	L = 3	L = 2	L = 0	L = 2	L = 3	L = 3	L = 2	L = 0

- ✤ in practice: incomplete quenching
 - t_{2g} subset (*n*=1,2,6,7), 'effective' *L* = 1
 - spin-orbit coupling
- reflected in g > 2 and often anisotropic

other environments

$$\mathcal{H}_0 > \mathcal{H}_{SO} > \mathcal{H}_{CF} > \mathcal{H}_Z$$

$$\mathcal{H}_0 > \mathcal{H}_{SO} > \mathcal{H}_{CF} > \mathcal{H}_Z$$

r

other environments

- Single electrons: Spin, Angular Momentum, orbits and spin-orbit coupling
- Many electrons the magical power of Pauli
- Non-magnetic magnetism : dia-magnetism and Van Vleck paramagnetism
- Hund's rules and effective moment : a 4f lanthanide success story
- Crystal field effect : the case of 3d transition metals
- ✤ Jahn-Teller effect

Slides by Ivica Zivkovic and previous ESM lectures