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Useful reading material

• Introduc

• Squires, Introduction to the Theory of Thermal Neutron Scattering 
advanced text, comprehensive

• Shirane, Shapiro and Tranquada, Neutron scattering with a triple-axis spectrometer
nicely written book which deals with more practical side of TAS

• Lovesey, Theory of Neutron Scattering from Condensed Matter 
advanced text, if you wish to go in depth

• Furrer, Mesot and Strässle, Neutron Scattering in Condensed Matter Physics 
basic introduction to theory and experiment

• Sivia, Elementary Scattering Theory for X-ray and Neutron Users
basics of scattering theory from a slightly different perspective
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Physical properties

• Introduc

Charge Spin Mass 
(MeV/c²)

γ/2π
(kHz/G)

Electron ±e 1/2 0.511 2800

Muon ±e 1/2 105.7 13.6

Proton +e 1/2 938.3 4.26

Neutron 0 1/2 939.6 – 2920

• Neutrons are subatomic particles 
that have a net zero charge

• Possess a magnetic moment and 
so are sensitive to magnetic fields

Energy Classification

0 - 5 meV Cold
5 -100 meV Thermal
100 meV - 1 eV Epithermal
1 eV -100 eV Resonant
100 eV - 100 keV Intermediate
100 keV - 10 MeV Fast
10 MeV - 10 GeV Ultra-fast
>10 GeV Relativistic
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Physical properties

• Introduc

𝑘 =
2𝜋

𝜆
, 𝑝 = ℏ𝑘, 𝐸 =

𝑚𝑣2

2
=

ℏ2𝑘2

2𝑚

𝐸 meV = 0.08617 𝑇 K = 5.227(𝑣 km/s )2= 81.81
1

(𝜆[Å])2
=2.072(𝑘[Å−1])2

𝑇 = 293 K
𝑣 = 2.20 km/s
𝐸 = 25.3 meV

𝜆 = 1.798 Å

𝑘 = 3.49 Å−1

comparable to energy and length scales of static and dynamic 
correlations in condensed matter
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Comparison of different scattering techniques

• Introduc
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Neutrons vs X-rays

• X-ray sources are orders of magnitude 
brighter, high flux neutron source

• X-ray scattering intensity proportional to 
number of electrons - sees heavy elements

• Intensity of (nuclear) neutron scattering
proportional to square of scattering length
(strong force)

• Neutron scattering intensity randomly
varies for elements - can see all elements

• X-rays scatter from electrons, neutrons 
scatter from nucleus

• Neutrons have large penetration depths -
see through materials

• Introduc
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Applications in different fields of science

• Introduc • Different 

• Condensed matter physics
(magnetism, superconductivity, glasses, liquids)

• Materials research
(stress/strain, hydrogen in materials)

• Soft condensed matter 
(polymers, composites)

• Structural chemistry
(catalysis, reactions, parametric studies, molecular spectroscopy)

• Geology
(minerals at high P,T, hydrogen in rocks) 

• Life sciences
(membranes, protein structure, -dynamics, and -complexes)

• Particle physics
(basic properties of the neutron, basic quantum mechanics)
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1994 Nobel Prize in Physics

• Introduc

Brockhouse

Shull

Neutrons interacts with the cores of the atoms, and…
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1994 Nobel Prize in Physics

• Introduc • Magnetis

neutrons have a (small) MAGNETIC moment.

They can be used to study:

• microscopic magnetic structure 
with atomic spatial resolution

• magnetic fluctuations with 
1 GHz to 100 THz (10 femto-second) frequencies

• Neutrons have SPIN. They can probe quantum effects

 Neutron research in solid state and materials science:
currently >1000 experiments / year and similar number of publications 
in Europe alone
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Theory of neutron scattering
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Interference of waves

• Theory 
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Bragg’s law

• Theory 

𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃ℎ𝑘𝑙

Nobel Prize 1915

“for their services in the analysis of crystal
structure by means of X-rays”
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Total and differential cross-sections

• Theory 

𝐤𝑖

𝐤𝑓
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Scattering cross-section

• Theory 

• Flux

• Cross-section

• Differential cross-section

• Partial differential cross-section

• Integral relations
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Neutron scattering process – scattering from a single nucleus

• Theory 

• We go from initial state to final state

• Initial state:

– Of neutron: plane wave 

– Of sample

• Final state

– Of neutron

– Of sample

• Elastic scattering: state of sample does not change

• Final state from single particle is a spherical wave
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Neutron scattering process – scattering from a single nucleus

• Theory 

• Initial neutron state (Y is normalisation)

neutron flux

• Final neutron state – spherical wave:

Long distance approximation: area:

– Number of neutrons in d per second: fd
fd/i d = bj

2 kf/ki = bj
2

Density * velocity
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Neutron scattering from two atoms

• Theory 

• Sum of two outgoing neutron waves

• Approximations 

• Definition: scattering vector: 𝐐 = 𝐤𝑖 − 𝐤𝑓

• Differential cross-section
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Coherent and incoherent elastic nuclear scattering

• Theory 

𝑑𝜎
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Coherent scattering Incoherent scattering

Coherent scattering
• Correlations between the same and 

different nuclei – interference, 
structure and also collective 
dynamics

Incoherent scattering
• No information on structure – gives 

flat background

• The scattering length b depends on the nuclear isotope, spin relative to the neutron and 
nuclear eigenstate
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Neutron scattering: an unlikely event

• Theory 

𝜎 = probability that a neutron scatters at an atom
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Neutron scattering: an unlikely event

• Theory 

Surface of France:

1000 × 1000 km2

= 106 km2 = 1012 m2

= 1018 mm2 = 1024 μm2

So 1 barn = chance of 
hitting a 100 × 100 m2 spot 

in France !

Luckily, we have 1023 atoms

𝟑𝟎𝟎 𝛍𝐦
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Scattering lengths

• Theory 

Scattering
length Absorption

Incoherent
scattering

Pfeiffer et al., PRL 96 215505 (2006)

𝑛 = 1 + 𝛿 + 𝑖𝛽
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Absorption cross-section

• Theory 

Neutrons can be absorbed in the nuclei

e.g.:   3He + n → 3H +1H + 765 keV

No scattering, so only total cross-section

Absorption cross-section: 𝑣th = 2.2 km/s

Attenuation:

Scattering
length Absorption

Incoherent
scattering

transparent

highly
absorbing
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Coherent and incoherent scattering

• Theory 

Scattering
length Absorption

Incoherent
scattering
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Total cross-section of a system of particles

• Theory 
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Diffraction

• Theory 

Diffraction from an 
ordered material

Diffraction from a
disordered material

𝑑

𝑑

In
te

n
si

ty

In
te

n
si

tyBragg peaks when
𝜆 = 2𝑑 sin 𝜃

First peak when
𝑄 ≈ 2𝜋/𝑑
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Diffraction

• Theory 

Polycrystal Single crystal
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Magnetic neutron scattering
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Master equation for scatteting – Fermi’s Golden rule
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Magnetic scattering potential
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Spatial and temporal Fourier transform

Fourier transform in

- space/momentum

- time/energy

Neutrons treated as plane waves:

Energy conservation  integral rep.:
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Magnetic neutron scattering cross-section

dipole factor

spin-spin

correlation function
magnetic 

form factor
Fourier transformpre factorcross-section
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Magnetic form factor
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Dipole factor – neutrons see only component perp to Q
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Dynamic, Static and Instantaneous structure factor



35

Magnetic diffraction
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Elastic magnetic cross section
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Defining a magnetic structure
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Defining a magnetic structure
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Magnetic structures and their propagation vectors
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Representation analysis
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First magnetic diffraction
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Example of very complicated magnetic structure
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Magnetic structure determination
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Polarized neutron scattering

• Coherent nuclear scattering is non spin-flip (NSF)
• Magnetization parallel to neutron spin is non-spin-flip (NSF)
• Magnetization perpendicular to neutron spin is spin-flip (SF)
• Can separate incoherent, coherent nuclear and magnetic scattering
• Can determine directions of magnetic moments from one or few Bragg peaks
• Nuclear-magnetic interference can determine magnetization densities
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Magnetic Inelastic Neutron Scattering
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Magnetic neutron scattering cross-section

dipole factor

spin-spin

correlation function
magnetic 

form factor
Fourier transformpre factorcross-section
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Dynamic structure factor

Spin-spin correlation function

Dynamic structure factor

Fluctuation dissipation theorem  gen. susceptibility

intrinsic dynamics  response to perturbation

Theory !
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Generalized susceptibility
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Inelastic magnetic scattering: Lets take the scenic route …

Selected examples 

• Spin-flip, singlet-triplet, 
dispersive triplets

• 1D spin chain 
– spinons vs spin waves

• 2D HAF zone boundary anomaly
– as instability of spin waves ?
– the smoking gun of RVB ?

Between long range ordered states

… and spin liquids
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paramagnetic spins S=1/2

• Two states |↑, |↓, can be magnetized

• Zeemann-split energy of the levels

• A gap for transitions 

• Local excitation 
 no Q-dependence

1
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0             Q            π

E

H

|↓>

|↑>

gμBH

Spin-flip excitation

CuSO45D2O
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Take two – the spin pair

H = J  Si  Sj

Antiferromagnetic: J > 0

J

E = -3/4J Stot=0

|↑↓ - |↓↑

Singlet ground state: Sz
1 = Sz

2 = 0

E = 1/4J     Stot=1

J

triplets

singlet

E

H
Hc1

|1,0>

|1,1>

|1,-1>
|0,0>



No magnetization or susceptibility up to critical field

|↑↑,  |↓↓, |↑↓ + |↓↑
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Take two – the spin pair

E = 3/4J Stot=1

triplets

singlet

Structure factor along pairs:
S(q) ~ cos(d||·q) + cos(d⊥·q)
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The Heisenberg model

• for extended systems, do we understand it well enough ?

• Seem innocently simple for a spin pair
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Ferromagnets are easy, exact solution:

H=-∑rr’Jrr’Sr·Sr’ = -J ∑<r,r’=r+d> S
z
rS

z
r’+ ½(S+

rS
-
r’+S-

rS
+

r’) 

Ordered ground state, all spin up: H|g> = Eg|g>,  Eg=-zNS2J

Single spin flip not eigenstate: |r> = (2S)-½ S-
r|g>,  S-

r’S
+

r|r> = 2S|r’>

H|r>=(-zNS2J+2zSJ)|r>  - 2SJ∑d |r+d> flipped spin moves to neighbors

Periodic linear combination: |k> = N-½Σre
ikr|r> plane wave

Is eigenstate: H|k> = Eg+Ek|k>,   Ek=SJΣd1-eikd  dispersion = 2SJ (1-cos(kd)) in 1D

Time evolution: |k(t)> = eiHt|k> = eiEkt|k> sliding wave

Dispersion:
relation between time- and space-
modulation period

Same result in classical 
calculation  precession: 

  nearest neighbour 
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Spin waves in a “ferromagnet”

CuSO4  5D2O
=
Cu2(SO4)2  10D2O
=
1 Cu S=1/2 uncoupled
1 Cu S=1/2 chain

dispersion = 2SJ (1-cos(kd)) 

Actually it is an antiferromagnet polarized by 5T field
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Quantum antiferromagnets are tricky

Fluctuations stronger for fewer neighbours

1D: Ground state ‘quantum disordered’ spin liquid of 

S=1/2 spinons. Bethe ansatz ‘solves’ the model

2D: Ground state ordered at T=0 <S> = 60% of 1/2 (although 

not rigorously proven).

3D: Ground state long range ordered, weak quantum-effects
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antiferromagnetic spin chain

Ferro

Ground state (Bethe 1931) – a soup of domain walls

Classical AF

Quantum AF

= 0

<<S2

~ S2
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Spinon excitations

Energy: E(q) = E(k1) +  E(k2)
Momentum: q = k1 +  k2

Spin: S = ½  ½

Continuum of scattering 

Elementary excitations:
– “Spinons”: spin S = ½ domain walls with respect to local AF ‘order’
– Need 2 spinons to form S=1 excitation we can see with neutrons
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The antiferromagnetic spin chain

Mourigal et al. Nat Phys 9, 435 (2013)

H=5T H=0

FM: ordered ground state (in 5T mag. field)
• semiclassical spin-wave excitations

AFM: quantum disordered ground state
• Staggered and singlet correlations
• Spinon excitations

– Algebraic Bethe ansatz for inelastic lineshape

– Beyond Müller-conjecture 

H=5T H=0
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Resonant Inelastic X-ray scattering

New measure of 
magnetic excitations
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RIXS and new correlation functions

J. Schlappa et al., Nature 485, 82 (2012) 

Sr2CuO3 Much higher energy scale
Resonant Inelastic X-ray scattering

Sees both magnetic and orbital excitations
Dispersive ‘orbitons’
Spinon-orbiton separation
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Other applications of neutron scattering technique
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Neutron radiography

• Applicat • Radiogra

Rose inside a lead container
(source: FRMII)

… Superman would do better 
with neutron vision…

X-rays and neutrons yield 
complementary information
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Phase contrast

• Applicat

• H hydrogen negative, D deutrium
positive – phase contrast

• Alter H and D ratio to see different
individual parts of materials

• Examine different parts of biological
samples

• Examine material on surfaces of 
water (cleaning products)

D2O↔ H2O
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Neutron tomography

• Applicat

Strobl, PRL 101, 123902 (2008)
Manke, Nature 1, 125 (2010)

• Neutrons undergo magnetic refraction
when transversing non-uniform magnetic
fields

• Phase-sensitive detection using Talbot-Lau
neutron imaging

• Allows for a 3D imaging of magnetic domains
in FeSi

http://www.ati.ac.at/index.php?eID=tx_cms_showpic&file=uploads/pics/interferometers.jpg&width=800m&height=600m&bodyTag=%3cbody%20style=%22margin:0;%20background:
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Biological applications

• Applicat

Particle form factor:

(spheres)

Small q: Guinier

Large q: Porod

SANS and soft-condensed matter growing field of NS

Contrast variation H2O/D2O

2
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Flux vortices

• Applicat • Flux 

• Measured SANS on single crystal
• Symmetry of reflections implies hexagonal 

vortex lattice at low fields, wavevector Q of 
observed reflections implies spacing of vortices

• Scattering at small angles, small Q, large 
structure

• At higher fields get (nearly) square lattice
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Chemistry and dynamics in batteries

• Applicat

• Perform time- and spatially-
resolved neutron diffraction 
experiments 

• Clear contrast between charge 
and discharge cycles

• Observe changes in structure 
and chemistry in in-situ
measurements in 2.5 min bins 
over 1.5 hours of charging

Discharging

Charging
Failed region 
of battery

Wang et al, Scientific Report 2, 747 (2012)
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Neutron facilities and instrumentation
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Generating neutrons for solid state physics: fission vs spallation

• Instrum

Spallation
• Accelerated proton fired into heavy element nuclei

• Excess energy makes nuclei unstable, neutrons 
released

Fission
• Neutron absorption causes unstable nuclei
• Nuclei decays and releases neutrons 
• Nuclear reactor: a continuous neutron source  
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Evolution of neutron scattering

• Instrum

• 1st generation facilities: 

– re-use research reactors

• 2nd generation facilities:

– Dedicated to neutron scattering:

– ILL, France, FRMII Germany, SINQ Switzerland
ISIS, UK etc.

• 3rd generation facilities:

– SNS, US 1.4b$, commission 2006

– J-Parc, Japan 150b¥, commission 2008

– ESS, Sweden 1.8b€, start 2015, commission 2020

– (China Spallation source, start 2011, commission 2018)

• 2nd to 3rd generation gains of 10-1000 times!

– Faster experiments, smaller samples, better data

– Time resolved physics

– New fields of science

Ion source AcceleratorTarget 

Instruments

SNS

J-Parc

ESS
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Triple-axis spectrometer

• Instrum

Advantages

• Precise control of (Q, E)
• Can focus on a particular (Q, E) point
• Can use polarisation analysis
• Can obtain constant-E or constant-Q scans
• Ability to tune using focusing and collimation to 

trade between flux and resolution

Disadvantages

• Scan requires movement of various arms of 
spectrometer – lose time on moving

• Requires understanding of the instrument and how 
it works

• Cannot get an overview of (Q, E)-space

𝐤𝑓
𝐤𝑖

𝐐
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Neutron scattering measurement

• Introduc

kf

ki

TASP,  SINQ, Paul Scherrer Institut
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Time-of-flight spectrometer

Advantages

• Capture a large volume of (Q, E)-space in one time
• Can obtain intensity in absolute units which can be 

compared to theory
• Relatively new technique which may improve 

further

Disadvantages

• Cannot perform constant-E or constant-Q scans
• Less flexible
• Optimum need a large number of detectors –

Helium-3 expensive and in short supply
• Sample environment can block large portions of 

the detectors
• Requires pulsed beam

Instrumentation
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Creating a monochromatic beam: choppers

• Instrum

D
is

ta
n

ce
 o

f 
tr

av
el

Time of flightPulse 1 Pulse 2

Unused time window Unused time window

Moderator

Chopper

Sample

Detector

Frame unit

𝐸1𝐸2𝐸3 𝐸5
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Sample environment

• Instrum

High magnetic fields Low/high temperatures Applied pressure


