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Talk Outline
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• Why do we want new devices?

• What do we mean by topological textures?
• Topological defects, winding numbers

• Why are they interesting for applications?
• Stability, control, low power, rich 

dynamics/magnonics

• What can we do with them?

• What still needs to be done?



The Challenge:

AI has a huge Energy and Data problem

• Global AI energy use doubles every 3.4 months

• 500 TWh increase by 2030

Chen, Sophia. Nature (2025) Jones, Nicola. Nature (2024)
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AI Energy Use AI Training Data Demand

2028: AI 

consumed all 

accessible data

T
ra

in
in

g
 D

a
ta

s
e

t 

S
iz

e

• We will run out of AI training data by 

2028



The Challenge:

AI has a huge Energy and Data problem
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• Root cause: Hardware
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• Root cause: Hardware

• Biological Brains consume just ~20 
W & learn from extremely few 
examples



The Challenge:

AI has a huge Energy and Data problem
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• Root cause: Hardware

• Biological Brains consume just ~20 
W & learn from extremely few 
examples

• Specialised sub-regions: Cortices



The Challenge:

AI has a huge Energy and Data problem

Can we develop a Brain-Like 
Processor?
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• Root cause: Hardware

• Biological Brains consume just ~20 W 
& learn from extremely few examples

• Specialised sub-regions: Cortices



Magnetism: A Promising Physics-based Solution
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Benefits of magnetism:

• Memory, Non Volatility, & Reconfigurability

• GHz speed, Strong Coupling

Complex Magnetic System: 

Spin Glass

Sherrington-Kirkpatrick

Artificial Neural Networks: Magnetically Inspired

Hopfield Networks

Nobel Prize for Physics: 

2024

Deep Neural Networks



Magnetism: Promising physics-based solution
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Magnetism: Promising physics-based solution

11



So we have synergy – but why ‘topology’?
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What even are Topological Textures? – A brief 

detour... 
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• Topology is perhaps best defined by ‘winding 

numbers’

• How many times does your magnetisation wrap 

around the unit circle as you go around some defect?

• Classic cases: Vortex or vortex domain wall

Pushp, Aakash, et al. "Domain wall trajectory determined by its fractional topological edge 

defects." Nature Physics 9.8 (2013): 505-511.



Topological Textures
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• Integer winding 

numbers must live in 

the ‘bulk’

• Half-integer/fractional

live on the edges 



Topological Textures
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• Everything is ‘topological’ really...

• Flat, finite magnetic systems must have a net 

‘winding number’ = 1 – number of holes

(Poincare-Hopf theorem)

• E.g. a macrospin nanoisland needs +1: 

• But where is the winding?!



Topological Textures
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• Flat, finite magnetic systems must have a net 

‘winding number’ = 1 – number of holes

(Poincare-Hopf theorem)

• E.g. a macrospin nanoisland needs +1: 



Topological Textures
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• Everything is ‘topological’ really...

• Flat, finite magnetic systems must have a net 

‘winding number’ = 1 – number of holes

(Poincare-Hopf theorem)

• E.g. a macrospin nanoisland needs +1: 



Topological Textures
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• Today, we’ll focus on textures with bulk integer winding 

numbers



Topological Textures
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• Energy terms/Stabilisation

Exchange

Dipolar happy

Dipolar sad

DMI



Topological Textures
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• Energy terms/Stabilisation

Crystal Single (often ‘synthetic’)

Vortices typically nanostructure-bound



Topological Textures
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Pros: 

• Stability Topology ‘protects’ these states

• Big exchange cost to unwind

• Writeable/Deletable 

• Grants memory

• Easy to move 

• Lower tendency to get stuck/pin 
• J = 106-108 A/m2 vs 1012 A/m2 for DWs!

• Rich textures 

• Complex GHz dynamics

• Multiple magnon modes



Topological Textures
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• Potentially offer a lot of what’s best about magnetism

Pros: 

• Stability Topology ‘protects’ these states

• Writeable/Deletable Grants memory

• Easy to move Lower tendency to get stuck. 
• J = 106-108 A/m2 vs 1012 A/m2 for DWs!

• Rich textures Complex GHz dynamics

Challenges:

• Materials Can require high quality

material/interface

• New Physics Still learning to control them...

• Hard to scale up



An example: Moving information on a track
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Parkin et al scheme – Elegant yet faced 

challenges due to intrinsic issues with 

domain wall physics:

• High pinning 

• High current density needed (1012 

A/m2)

• Significant heating



An example: Moving information on a track
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• Use Skyrmions instead of Domain Walls?

• Much lower currents J = 106 A/m2

• Able to distort shape and avoid pinning

• Localised defects

• Don’t need to span track width like DWs

• However still have their own challenges to 

solve!

Fert, Albert, Vincent Cros, and Joao Sampaio. "Skyrmions on the track."

Nature Nanotechnology 8.3 (2013): 152-156.

da Câmara Santa Clara Gomes, Tristan, Dédalo Sanz-Hernández, et al & 

Vincent Cros, Julie Grollier, and Nicolas Reyren. "Neuromorphic weighted 

sums with magnetic skyrmions." Nature Electronics (2025)
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Processing Functionality we want: 
• Moving information around a device

• Nonlinear Processing – without this, can’t do complex tasks 

(‘neurons’)

• Programmable ‘weights’ – A means to adapt device function to 

tasks

• Integrate & sum signals – ‘Synapses’

• Long-Term Memory

Nonlinearity/neurons

Weights & synaptic summing



Skyrmions
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• Local schemes 

• Mean-Field/Global schemes



Skyrmion nucleation – Older studies
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Skyrmion Material Stack: Ta(5 nm)/Co20Fe60B20(CoFeB)(1.1 nm)/TaOx(3 

nm)

Jiang, Wanjun, et al. "Blowing magnetic skyrmion bubbles." Science 349.6245 

(2015): 283-286.

• Constrictions allow current density 

J to be enhanced to only locally

nucleate skyrmions

• However, often suffer from some 

stochasticity

• This is 2015 – things have 

improved!



Skyrmion nucleation – Recent work
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• Very nice progress: Fine tuned nucleation, 

controlling pulse current & length. 

• Reliably inject & electrically read-out Skyrmions

(Ta)

Skyrmion Material Stack: Ta(5 nm)/Pt(8 nm)/[Co(1.2 nm)/Al(3 nm)/Pt(3 

nm)]10

da Câmara Santa Clara Gomes, Tristan, Dédalo Sanz-Hernández, et al & 

Vincent Cros, Julie Grollier, and Nicolas Reyren. "Neuromorphic weighted 

sums with magnetic skyrmions." Nature Electronics (2025)



Skyrmion weighting
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• Tuning applied field enables synaptic weights:
• Applied field increases skyrmion formation cost

Skyrmion Material Stack: Ta(5 nm)/Pt(8 nm)/[Co(1.2 nm)/Al(3 nm)/Pt(3 

nm)]10

da Câmara Santa Clara Gomes, Tristan, Dédalo Sanz-Hernández, et al & 

Vincent Cros, Julie Grollier, and Nicolas Reyren. "Neuromorphic weighted 

sums with magnetic skyrmions." Nature Electronics (2025)



Skyrmion synaptic sums
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• The Ta stripline non-perturbatively 

sums over all Skyrmion tracks

• This is a great step – previously could

be challenging to read out states without

disturbing them

• 20 pJ to nucleate a Skyrmion

• Beautiful manipulation, still a way far 

from a device

• Limits: 

• Missing nonlinearity 

• Skyrmion Hall effect limits numbers

Skyrmion Material Stack: Ta(5 nm)/Pt(8 nm)/[Co(1.2 nm)/Al(3 nm)/Pt(3 

nm)]10

da Câmara Santa Clara Gomes, Tristan, Dédalo Sanz-Hernández, et al & 

Vincent Cros, Julie Grollier, and Nicolas Reyren. "Neuromorphic weighted 

sums with magnetic skyrmions." Nature Electronics (2025)



Skyrmion Hall Effect
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N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 2013, 8, 899.

Jiang, Wanjun, et al. "Direct observation of the skyrmion Hall 

effect." Nature Physics 13.2 (2017): 162-169.



Skyrmion Hall Effect
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N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 2013, 8, 899.

Jiang, Wanjun, et al. "Direct observation of the skyrmion Hall 

effect." Nature Physics 13.2 (2017): 162-169.



Recent solution:
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Straight Line Motion!

• Opposing Anti-Ferromagnetic

ordered layers: 

• Cancels Skyrmion Hall Effect

• But! Higher J… 

• 1011 A/m2

• Requires optimisation 

Pham, Van Tuong, et al. "Fast current-induced 

skyrmion motion in synthetic antiferromagnets."

Science 384.6693 (2024): 307-312.



We’ve seen:
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• Precise control - still some distance from full device

• What about approaches using global, not local, 

control and focusing on implementing computation?



Mean-Field Skyrmion computing schemes
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Aqeel, Aisha, et al. "Microwave spectroscopy of the low-temperature 

skyrmion state in Cu 2 OSeO 3." Physical Review Letters 126.1 (2021):

Very gradual evolution of state over 10,000s loops – Long term memory

Slowly Growing Skyrmion state



Mean-Field Skyrmion computing schemes
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• Is it possible to exploit rich topological texture phase diagram for processing?

NonlinearStrong

Memory

Lee, Oscar, et al. "Task-adaptive physical reservoir 

computing." Nature Materials 23.1 (2024): 79-87.



Mean-Field Skyrmion computing schemes
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• But how to compute?

• No control over individual textures

NonlinearStrong

Memory
Lee, Oscar, et al. "Task-adaptive physical reservoir 

computing." Nature Materials 23.1 (2024): 79-87.



Reservoir Computing

• Aim: Map complex problems onto simple linearly solveable ones

• Random weight connections vs. Fully trainable weights

• Low energy vs. Deep Neural Networks as only train small output layer

39

Jack C. Gartside, Imperial College London

Deep Neural Network Reservoir Computing

VS.

1: energy-uk.org, towardsdatascience.com, OpenAI white paper (2019) Topological

Magnetic Texture
Field Magnon 

Spectra



Reservoir Computing
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Jack C. Gartside, Imperial College London

Physical Reservoir

Configured to desired texture

Input Problem: 
Hard, nonlinear

Output Problem

Simple, linear

• Aim: Map complex problems onto simple linearly solveable ones

• Random weight connections vs. Fully trainable weights

• Low energy vs. Deep Neural Networks as only train small output layer



Readout solution: Frequency-domain spectra
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Jack C. Gartside, Imperial College London

• Each 0.02 GHz frequency channel sensitive to slightly different 
texture/mode

• 300 FMR bins = 300 output weights/channels for reservoir
• Measure full spectra in ~0.5-1 second



Readout solution: Frequency-domain spectra
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Jack C. Gartside, Imperial College London

• Each 0.02 GHz frequency channel sensitive to slightly different 
texture/mode

• 300 FMR bins = 300 output weights/channels for reservoir
• Measure full spectra in ~0.5-1 second



Computing Scheme

• Input converted to magnetic field loops

• Apply field loops to system

• Measure FMR response

• Each frequency bin is 1 output for training ~300 
outputs per sample

• Learning offline – Cheap linear regression

• Vanstone, A. et. al. New J Phys, 24(4), 
043017 (2022).

• Gartside, Jack C., Stenning, Kilian D, 
Vanstone, Alex, et al. Nature 
Nanotechnology (2022): 460-469.

• Stenning, Kilian D., Gartside, Jack C. et 
al. arXiv (2022).

43
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Mean-Field Skyrmion computing – Some tasks

45Lee, Oscar, et al. "Task-adaptive physical reservoir computing." Nature Materials 23.1 (2024): 79-87.



Mean-Field Skyrmion computing – Some tasks

46Lee, Oscar, et al. "Task-adaptive physical reservoir computing." Nature Materials 23.1 (2024): 79-87.

Need Skyrmions

for memory!



Many Reservoir schemes – Simulation & 

experiment

47

Msiska, Robin, et al. "Audio classification with skyrmion

reservoirs." Advanced Intelligent Systems 5.6 (2023): 

2200388.

Sun, Yiming, et al. "Experimental demonstration of a skyrmion-

enhanced strain-mediated physical reservoir computing 

system." Nature Communications 14.1 (2023): 3434.

50 fJ per operation

Simulation – shows benefit of

large number of input channels



Nice range of recent reviews

48



We’ve seen:
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• Precise control - still some distance from full device

• Reservoir computing which solves tasks, but lacks 

fine

control. Some reconfigurability but limited

• What about a middle ground?
• Can we have fine control, and actual computation?

• Let’s look at vortex oscillators



Spin-Torque Vortex Oscillators

50
Chopin, C., de Wergifosse, S., Moureaux, A., & Abreu Araujo, F. (2024). Current-controlled periodic double-polarity reversals in a spin-torque vortex oscillator. Scientific 

Reports, 14(1), 24177.

Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., ... & Grollier, J. (2023). Multilayer spintronic neural networks with radiofrequency connections. Nature 

Nanotechnology, 18(11), 1273-1280.

• Good: Low linewidth, low input current (mA), relatively high RF power (uW)

• Nonlinear/threshold input response 

• Less good Poor upper frequency output (typically 100s MHz to low GHz)



51
Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., Bortolotti, P., Querlioz, D., Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer 

spintronic neural networks with radiofrequency connections. Nature Nanotechnology, 18(11), pp.1273-1280.

Spin-Torque Vortex Oscillators



52
Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., Bortolotti, P., Querlioz, D., Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer 

spintronic neural networks with radiofrequency connections. Nature Nanotechnology, 18(11), pp.1273-1280.

Spin-Torque Vortex Oscillators – Neurons and 

Synapses
DC to RF (spin torque) and RF to DC (spin diode effect) allows bidirectional conversion



53

Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., Bortolotti, 

P., Querlioz, D., Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer spintronic neural 

networks with radiofrequency connections. Nature Nanotechnology, 18(11)

Spin-Torque Vortex Oscillators – Synapses
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Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., Bortolotti, 

P., Querlioz, D., Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer spintronic neural 

networks with radiofrequency connections. Nature Nanotechnology, 18(11)

Spin-Torque Vortex Oscillators – Neurons

Nice threshold/ReLU style

nonlinearity:



55Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., Bortolotti, P., Querlioz, D., Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer spintronic neural 

networks with radiofrequency connections. Nature Nanotechnology, 18(11)

Spin-Torque Vortex Oscillators – Neurons & Synapse 

together
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Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., Bortolotti, 

P., Querlioz, D., Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer spintronic neural 

networks with radiofrequency connections. Nature Nanotechnology, 18(11)

Spin-Torque Vortex Oscillators – Challenges
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Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., Bortolotti, 

P., Querlioz, D., Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer spintronic neural 

networks with radiofrequency connections. Nature Nanotechnology, 18(11)

Spin-Torque Vortex Oscillators – Challenges

Only 3 neurons... Far from device scale



We’ve seen:
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• Great scheme!
• Excellent control

• Nonlinearity, Synaptic weights

• Challenge around number of available frequency channels

• Can magnetic textures & magnonics offer solutions?



Magnon Frequency Comb Jack C. Gartside, Imperial College London

• Optical frequency combs create new modes by coupling microwaves to lasing modes

• Many magnetic device schemes demand more frequency channels/parallelization -
magnetic ‘magnon’ frequency combs?

• One theoretical proposal: Couple chiral magnetism to collinear magnetism

Optical Combs: Metrology, Computing Magnon Comb?

Collinear
Film 

Chiral
Skyrmion

Wang, Zhenyu, et al. "Magnonic 
frequency comb through nonlinear 
magnon-skyrmion
scattering." Physical Review 
Letters 127.3 (2021): 037202.

Feldmann, Johannes, et al. "Parallel 
convolutional processing using an 
integrated photonic tensor core." 
Nature 589.7840 (2021): 52-58.



Magnon Frequency Comb Jack C. Gartside, Imperial College London60

3 magnon scattering

High threshold RF field 
required – 130 mT
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Magnetic Metamaterials with Reconfigurable 

Textures:
‘Multistable’ Nanostructures – Vortex or Macrospin, tunable:

Gartside, Jack C., et al. "Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-

wave fingerprinting." Nature Nanotechnology (2022)



62

‘Multistable’ Nanostructures – 2.5D/3D

16 states 

per island

Dion, T., ... & Gartside, J. C. 

“Ultrastrong magnon-magnon coupling 

and chiral spin-texture control in a 

dipolar 3D multilayered artificial spin-

vortex ice.”

Nature communications, 2024

Magnetic Metamaterials with Reconfigurable 

Textures:

Stack dipolar 

coupled 

layers:



Magnon Frequency Comb Jack C. Gartside, Imperial College London

• We can do it!

• Couple chiral vortex to collinear macrospin

• Observe many new modes

• Evenly spaced (550 MHz) 

• Following main macrospin mode in frequency

Top

Bottom

Macrospin mode

Here no chiral textures



Magnon Frequency Comb Jack C. Gartside, Imperial College London

• We can do it!

• Couple chiral vortex to collinear macrospin

• Observe many new modes

• Evenly spaced (550 MHz) 

• Following main macrospin mode in frequency

Top

Bottom

27.5 mT

550 MHz 
spacing

Macrospin mode New modes

Here chiral & collinear 



Magnon Frequency Comb
Jack C. Gartside, Imperial College London

• What’s happening?

• Vortex gyrotropic core mode is 550 MHz… Core stray-field is coupling to macrospin texture

• Dipolar-coupled magnon frequency comb between vortex core & macrospin

Top

Bottom

6.2 GHz excitation spectra

Core mode

Core mode



Magnon Frequency Comb
Jack C. Gartside, Imperial College London

• Control comb teeth spacing via field/core frequency

396.4 MHz teeth 202.9 MHz teeth

Teeth spacing vs. Vortex core freq.



Magnon Frequency Comb Vortex Core Dynamics
Jack C. Gartside, Imperial College London

67

M Mx My Mz

16 mT



Magnon Frequency Comb
Jack C. Gartside, Imperial College London

1.21 mT

16 mT, Pump: 6.69 GHz
Pump: 6.69 GHz, Pump 2: = 375 MHz

• Low threshold RF powers
• Dipolar free-space inter-texture coupling: 

potentially powerful & efficient



Conclusions – Topological Textures for Processing
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• Topological magnetic textures are rapidly developing with technological 
benefits

• They provide a lot of what is needed for next-gen hardware
• The gap between fine, small-scale control schemes which cannot 

compute, and larger, coarser mean-field schemes must be closed
• We should carefully evaluate the correct computing schemes for the 

physics
• MLPs were invented for CPU/GPUs! Not because they’re the best
• New algorithms/architectures which better suit the physics are key
• Take inspiration from other physics! E.g. photonics

Some papers from our group – Feel free to ask me about anything we didn’t discuss!



New Routes to Nanomagnetic 
Writing: Magneto-Plasmonic 
Inverse Faraday Effect via 
linearly polarized light

Jack C. Gartside1,2
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Imperial College London1

London Centre for Nanotechnology, University College London2

Technology Innovation Institute, United Arab Emirates3

Sorbonne University, CNRS4

University of Liverpool5

University College London6

Jack C. Gartside, Imperial College London



Our team: Neuromorphic Metamaterials Group

71

Photonic metamaterials

• Semiconductor network lasers

• Machine Vision & Image processing 
tasks with Riccardo Sapienza

• Key papers:

Spintronic metamaterials

• Magnetic RF/GHz metamaterials (magnons)

• Future prediction & classification tasks with 
Will Branford & Kilian Stenning

• Key papers:



Motivation

• Explore the need for new nanomagnetic 
writing techniques

• Unexpected result: all-optical switching of 
NiFe nanomagnets

• Examine potential explanation: 
Magneto-plasmonic Inverse Faraday Effect 
from linearly polarised light

• Probe theory via simulation, prediction, & 
optical writing experiments

Optical magnetic writing via plasmon-enhanced 
linear Inverse Faraday Effect

72



Magnetic nanoarray state control:
Magnonics & neuromorphic computation
• Magnetic states of artificial spin ice & related arrays give

programmable magnon dynamics
• These dynamics can be harnessed for neuromorphic computing
• Currently, our ‘input’ is restricted – just global field.

• Unsuitable for more complex states/processing
• Motivation: Develop rapid & local input/magnetic switching.
• Magnonics & Neuromorphic work: Kilian Stenning & Alex Vanstone

Jack C. Gartside, Imperial College London

Different ASI states = Different magnon spectra: Magnon spectra can predict future chaotic time-series:

Magnetic 
prediction

Target/Ground truth

Relevant papers: Nat Nano/Mat/Comms:



Nanomagnetic writing
• We have worked on developing single-magnet input

• Surface probe technique: Cool, but slow
• Consider optical approaches?

Jack C. Gartside, Imperial College London

Before: After:After:

Before: After:

Gartside, Jack C. et al, 
Nature Nanotechnology (2018)Scanning Probe



All-Optical Magnetic Switching: Methods/Approaches
Helicity-dependent switching:
Inverse Faraday effect in GdFeCo
+ heating. fs-ps laser pulse

Helicity-independent switching:
Exploit different ordering 
timescales between Gd and Fe sublattices
in GdFeCo, Gd/Fe magnetisation inverts.
fs-ps laser pulse

Multi-pulse switching in Co/Pt:
Ultrafast demagnetisation combined 
with symmetry breaking (inverse faraday, 
magnetic dichroism) givess gradual switching 
over many pulses (100s-1000s). fs pulses.

Inverse Faraday Effect: 
B field along circularly polarised light direction

Single-pulse switching in Co/Pt:
Multi-layered stack with Cu spacer used to inject 
spin-polarised currents between layers. 50 fs pulse



Optical writing?
• We were inspired by excellent work of Naemi Leo & Paolo Vavassori
• Make plasmonic ‘sandwich’ islands of Au/NiFe/Au
• Laser locally heats islands, reducing Hc. Apply global B field to switch

Coercivity reduction 
of heated islands in red:

• Could we use a similar approach to tackle our 
data input/magnonic reconfigurability? 



Optical writing – Our initial attempt
• Set up a system with Fabry-Perot like cavity in substrate to increase optical absorption

• Similar to anti-reflection coating
• Original concept: Will Branford
• Experimental execution: Kilian Stenning & Holly Holder
• Plasmonics optimisation: Rupert Oulton & Xiaofei Xiao
• Initially try laser illumination in zero B field – CW laser, 2-5 mW, 633 nm
• Linearly-polarised laser

Jack C. Gartside, Imperial College London

Substrate layers: Relevant paper:



Optical writing – Our initial attempt
• An interesting result

• Unexpected: all-optical magnetic switching typically 
needs complex materials, intense pulse lasers, often circular polarisation.

• GdFeCo, fs pulse lasers, kW - MW laser power
• Typically not shown in nanostructures

• We experimentally observed mW switching in NiFe nanostructures

Jack C. Gartside, Imperial College London

Laser pol.
Scan dir.



Data Input: Nanomagnetic writing
• Problems:

• Slow – uses CW lasers
• Focused laser spot – only write 1 bar at a time
• We didn’t understand the underlying physical mechanism…

• This point crucial. Unable to optimise & refine without proper 
understanding

Jack C. Gartside, Imperial College London

Laser pol.
Scan dir.



Data Input: Nanomagnetic writing
• What do we know?

• Not purely thermal
• Written states not random
• Write chains of high-energy states
• ASI ‘monopole’ states

• Ultrafast demagnetisation unlikely
• Laser very weak for this

• Linearly-polarised light
• Not helicity-dependent/spin-orbit
• Not Inverse Faraday Effect

• (conventional one)

• What options are left?

Jack C. Gartside, Imperial College London

Laser pol.
Scan dir.



Next observation: Optical Vortex Writing
• Looking for clues… Try writing wider nanoislands

• This work lead by Holly Holder – paper upcoming

Jack C. Gartside, Imperial College London

• Bar lengths ≈ 545 to 600 nm

• Wide bar widths ≈ 180 to 205 nm

• Thin bar widths ≈ 120 to 135 nm

• Bar thicknesses ≈ 20 nm

1 µm

Sim. mag Sim. MFM Exp. MFM

Macrospin

Single

Vortex

Double

Vortex
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All-optical control of vortex textures

+45°-45°

+ Low power (2-5 mW), CW, visible wavelength
+𝒒𝑴

-𝒒𝑴

Initial field-saturated state

λ = 633 nm, PCW = 5.0 mW
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All-optical control of vortex textures

+  0°

+ 15°

+ 30°

+ 45°

+ 60°

+ 75°

90°

- 75°

- 60°

- 45°

- 30°

- 15°

- 0°

+45°-45°

λ = 633 nm, PCW = 5.0 mW

• Optical writing of double vortex states

• Writing occurs with polarisation on short-axis

• Break symmetry between 0 and 90 degrees.

• Chirality control: Only write a single chirality 

• What’s going on?

+𝒒𝑴

-𝒒𝑴

Laser-written double vortices

+ Low power (2-5 mW), CW, visible wavelength



Explore using ps-scale pulsed lasers & DMD
• Continue to explore parameter space – what about faster laser pulses?

• Try 100-400 ps laser to examine switching timescale

• Combine with Digital Micromirror Device (DMD)

• See if our writing works over large areas, spatially-structured light

• Support of collaborator Riccardo Sapienza crucial here

• Does writing still work? 

Laser parameters:
𝜆 = 532 nm
𝑡𝑝𝑢𝑙𝑠𝑒 = 100-400 ps

E per nanoisland = 3.6 pJ

Each DMD ‘pixel’ ~ 100x100 nm

30 um



5 µm5 µm

AFM MFM

Explore using ps-scale pulsed lasers & DMD



Explore using ps-scale pulsed lasers & DMD

• Before single-shot 400 ps writing pulse:



Explore using ps-scale pulsed lasers & DMD

• Before single-shot 400 ps writing pulse:



Explore using ps-scale pulsed lasers & DMD

• After single-shot 400 ps writing pulse:

5 µm

805 bits addressed with single pulse

Writing works - Fidelity far from 100%, around 65% bars switched



Interesting results... 
But still don’t understand the 
mechanism



Find an interesting theory paper: Mivelle group, Sorbonne 
Paris:

Key findings:

• Plasmonic resonances give rise to

Strong Bz magnetic field from 

linearly-polarised light – 200 mT

• Requires long, thin metallic nanoislands

• Interesting, but confusing for us:

B field in z direction,

our switching in x,y plane

Yang, Xingyu, et al. "An inverse Faraday effect generated by linearly polarized light 
through a plasmonic nano-antenna." Nanophotonics 12.4 (2023): 687-694.



Learn about ‘Precessional’ Magnetic 
Switching:

Main equation governing magnetic dynamics:

Landau-Lifshitz Gilbert equation

Term in red means M will precess around B field

M

• Prior works showed 

100-400 ps timescale:

• They used electrically-

generated B field

• 200-250 mT

• Not optical, Oersted fields



video_length_400_width_120_Msat_800000_Bmax_
600.mp4

video_length_400_width_140_Msat_400000_Bmax_
300.mp4

video_length_400_width_140_Msat_400000_Bmax_
400.mp4

video_length_400_width_140_Msat_400000_Bmax_
500.mp4

video_length_400_width_140_Msat_500000_Bmax_
400.mp4

video_length_400_width_140_Msat_500000_Bmax_
500.mp4

video_length_400_width_140_Msat_600000_Bmax_
400.mp4

video_length_400_width_140_Msat_600000_Bmax_
500.mp4

video_length_400_width_140_Msat_700000_Bmax_
400.mp4

video_length_400_width_140_Msat_700000_Bmax_
500.mp4

video_length_400_width_140_Msat_700000_Bmax_
600.mp4

video_length_400_width_140_Msat_800000_Bmax_
400.mp4

video_length_400_width_140_Msat_800000_Bmax_
500.mp4

video_length_400_width_140_Msat_800000_Bmax_
600.mp4

video_length_400_width_160_Msat_400000_Bmax_
300.mp4

video_length_400_width_160_Msat_400000_Bmax_
400.mp4

Simulate a ‘Mivelle group’ Bz field on our Nanomagnets – MuMax3:



Simulate magneto-plasmonic effects in our 
nanoislands

E field
Geometry 

(500 nm long) B field

• Mivelle-group plasmonic IFE model shows optically induced Bz field 

for our nanoislands

• MuMax3 sims predict both double vortex and macrospin writing

Lumerical simulations of plasmonic IFE field – Xiaofei Xiao:



N.B: Magnetic field amplitudes

• In MuMax, we need ~50 mT to switch. Our IFE sims predict up to 1.1 mT

• Prior experimental studies (Sheldon group) in Au nanoparticles measured 

Plasmon-enhanced IFE fields to be 500-1000x higher in experiment vs. 

simulation.

• Investigation is ongoing by Sheldon/Mivelle groups & others to 

understand experiment/sim mismatch.

40 mT experimentally measured,

while model predicts 0.08 mT

Cheng, Oscar Hsu-Cheng, Dong Hee Son, and Matthew Sheldon. 
"Light-induced magnetism in plasmonic gold nanoparticles."
Nature Photonics 14.6 (2020): 365-368.

Experimental paper Simulation paper

Simulate magneto-plasmonic effects in our 
nanoislands

Nadarajah, Athavan, and Matthew T. Sheldon.
"Optoelectronic phenomena in gold metal nanostructures 
due to the inverse Faraday effect."
Optics Express 25.11 (2017): 12753-12764.



Experiment with plasmon resonances via nanoisland end-shape

E field
Geometry 

(500 nm long) B field

• Want to make experimentally verifiable 

predictions

• Vary nanoisland end geometry & hence plasmon 

resonance to deactivate/minimise B field

• ‘M’ shaped ends substantially reduce Bz

• Fabricate & test experimentally…

EBL & SEM of different end-shapes: Tingjun Zheng:

Lumerical simulations – Xiaofei Xiao:



Simulate magneto-optical effects of our 
nanoislands

• Prepare array with alternating end geometries: ‘Clothes peg’ is M-shaped 

• Before writing – saturated state:



Simulate magneto-optical effects of our 
nanoislands
• No optical magnetic switching observed in M-shaped nanoislands (540 islands)

After writing – optical switching:



• Very promising! M-shaped ends where weak optical Bz 
field is predicted don’t switch

• Experimental evidence of behaviour predicted by optical 
plasmonic Bz field

• Could there be non-optical reasons? 
E.g. different magnetic properties for M-shaped ends?



Unflipped Flipped Single Vortex Double Vortex

L500 W165 
T20

400
ps

100
ps

L500 W125 
T20

L500 W100 
T20

L500 W085 
T20

Rounded End – Magnetic sims



Unflipped Flipped Single Vortex Double Vortex

M-shaped End – Magnetic sims

400
ps

100
ps

L500 W165 
T20

L500 W125 
T20

L500 W100 
T20

L500 W085 
T20



M-shaped Ends 
• Experiments at different wavelength. Previously 633 nm, here 532 nm
• Plasmonic effects often sensitive to wavelength
• Some evidence of switching in M-shaped ends:

Before After



M-shaped Ends 
• Simulate plasmonic Bz field at 532 nm vs. 633 nm
• Bz-field suppression for M-shaped islands only occurs at 633 nm
• We need to design geometry for 532 nm Bz field supression

633 nm: 532 nm: 



Applied field Happ: 0.91Hc-start = 18.2 mT

a) Array 1: Initial saturated state b) Laser-write double vortices along row
Apply global field Happ: 0.91Hc-start = 18.2 mT

Locally induce avalanche-like reversal

HSat Happ
Laser pol:

c)

First tests: Optically-written states for array control
Results lead here by Holly Holder 

• Optically-write double vortex states
• Double-vortex coercive field low vs. macrospin 

• (14-16 mT vs 32 mT in MuMax)
• Apply field of 18.2 mT = above double-vortex 

coercivity, below macrospin coercivity
• Trigger avalanche-like reversal chains seeded by 

optically-wriiten vortices



• Sims show final state of switching is highly sensitive to 
nanoisland dimensions & field strength

• DMD struggles to provide perfectly uniform illumination
• Replace with simple objective lens to test

• Challenging to fabricate perfectly identical islands via EBL

• 400 ps is a bit long for precessional switching (M may rotate twice)
• Try shorter 50-150 ps pulses

• Potential for combination of IFE/magneto-optic effect and thermal effects
• Try optimising ratio of heating to magneto-optic effects via plasmonic/fabrication optimisation

Fidelity – Why isn’t it higher?

• We observe regions of laser power/polarisation

parameter sweeps with higher fidelity (still not perfect):

• Much optimisation is required before we can state what 

maximum fidelities are experimentally viable.

Circles show optically-switched bars:



• Explore plasmonically-enhanced Inverse Faraday Effect & precessional
reversal as mechanism for observed magnetic switching

• Continue to optimise nanoisland geometry & illumination to improve fidelity
• Deepen understanding of mechanism & sophistication of modelling
• Experiment with using optically-written states for programming ASI 

dynamics
• Thanks & any questions!

Conclusions



Writing of high-energy double-vortex 
states:

• At 650 x 150 nm islands, double vortex is 2x energy of macrospin state
• We observe frequent macrospin-double vortex writing in 650 x 150 nm 

islands
• Unlikely via purely thermal/demagnetisation effects



Pos Bz, Pos Mx Pos Bz, Neg Mx

Neg Bz, Pos Mx Neg Bz, Neg Mx

Investigate asymmetry between 0 & 90 deg vortex writing



Neg Bz, initial Mx = +1 Pos Bz, Initial Mx = +1

Neg Bz, Initial Mx = -1 Pos Bz, Initial Mx = -1

Investigate asymmetry between 0 & 90 deg vortex writing



Neg Bz, Initial Mx = -1

Pos Bz, Initial Mx = -1

Investigate asymmetry between 0 & 90 deg vortex writing
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+  0°
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+𝒒𝑴

-𝒒𝑴

Laser-written double vortices



• Appears increasingly that we observe first evidence of 
new all-optical magnetic switching mechanism

• “Magneto-Plasmonic Inverse Faraday Effect” driving Precessional
Switching

• Next: 
• Optimise nanoisland geometry & laser pulse to achieve 100%

fidelity
• Demonstrate neuromorphic computing with all-optical input
• Thanks & any questions!

Conclusions
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• Global AI energy use doubles every 3.4 months

• 500 TWh increase by 2030

Chen, Sophia. Nature (2025) Jones, Nicola. Nature (2024)
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AI Energy Use AI Training Data Demand

2028: AI 

consumed all 

accessible data
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• We will run out of AI training data by 

2028

The Challenge:

AI has a huge Energy and Data problem



The Challenge:

AI has a huge Energy and Data problem
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• Root cause: Hardware



The Challenge:

AI has a huge Energy and Data problem
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• Root cause: Hardware

• Biological Brains consume just 
~20 W & learn from extremely few 
examples



The Challenge:

AI has a huge Energy and Data problem

Can we develop a Brain-Like 
Processor?

116

• Root cause: Hardware

• Biological Brains consume just 
~20 W & learn from extremely few 
examples



Neuromorphic Computing: Physics-based AI

• Neuromorphic Computing: Implement AI via Physical Dynamics

• Many physical systems have been explored

• all with benefits & challenges

• Photonics: Highly promising, but unsolved challenges

Photonic Computing:

Excellent Speed & Bandwidth
Large

Footprint: 4.8 mm2 – only 8 

neurons

Zhang et al, Nature Comms (2022)Linear
• Majority of schemes lack nonlinearity

• Usually artificially added in post-processing 

software

But!

Gartside, Jack C., et al. Nature Nanotechnology (2022) 

Lee, Oscar, Gartside, Jack C., et al. Nature Materials (2024)

Stenning, Kilian D., Gartside, Jack C., et al. Nature 

Communications (2024)

Gartside, Jack C., et al. Nature Nanotechnology (2018)

117My Neuromorphic Refs:



A Potential solution:

Explore Random Network Lasers

- Disordered, nonlinear photonic 

dynamics

- Previously unexplored for computing

118



Random Network Laser
Host huge number of nonlinear lasing modes as random 

walks

• Small footprint ~50 µm

• InP material

• 104 ‘Photonic neurons’
• x106 higher neuron density

119

ps timescale

10-10 s

nJ operation

10-8 J

Fast & Efficient

Lasing mode

Mode shapes:



Random Network Lasers: Spatially-controlled input
Jack C. Gartside, Imperial College London

Different lasing spectra in response to different input light patterns

Saxena, D., Arnaudon, A., Cipolato, O., Gaio, M., Quentel, A., Yaliraki, S., ... & Sapienza, R. (2022). Sensitivity and spectral control of network lasers. Nature Communications, 13(1), 6493.



Random Network Laser

Small footprint ~50 µm

104  Lasing Modes = nolinear photonic 

neurons

Far smaller than existing 

photonic schemes

Footprint: 4.8 mm2 – 8 neurons

x2.4 million higher neuron density

ps timescale

10-10 s

nJ operation

10-8 J

Fast & Efficient



Random Network Lasers: Machine vision?

Spatially-distributed overlapping modes: Mode competition Retinal Ganglion Cells: Lateral neuron inhibition

Van Wyk, Michiel, W. Rowland Taylor, and David I. Vaney. "Local edge detectors: a substrate for 

fine spatial vision at low temporal frequencies in rabbit retina." Journal of Neuroscience 26.51 

(2006): 13250-13263.

Can we use these systems for neuromorphic processing? Try simulations

Mode A Mode B Mode C

Is lasing mode competition similar 
enough to retinal lateral inhibition to 
achieve neuromorphic image feature 
detection & machine vision?

Retinomorphic Machine Vision in a Network Laser, under review
Ng, Dranczewski, Fischer, ... & Gartside (2024)



Simulation: Image feature detection test

Random Network Lasers: Machine vision

We can build ‘feature maps’ for each mode, 
by plotting lasing amplitude at each pixel position in convolutional scan

Raster scan image window
across input image

Measure spectra for each position in scan

Retinomorphic Machine Vision in a Network Laser, under review
Ng, Dranczewski, Fischer, ... & Gartside (2024)



Jack C. Gartside, Imperial College London

Modes act as convolutional kernels: 
Spectrally-multiplexed parallel feature detection 

Random Network Lasers: Machine vision

Different mode wavelengths & spatial profiles detect different features 

Retinomorphic Machine Vision in a Network Laser, under review
Ng, Dranczewski, Fischer, ... & Gartside (2024)



Jack C. Gartside, Imperial College London

Does it work Experimentally?
Yes! 

Random Network Lasers: Machine vision

Experimental spectrally-multiplexed image convolution works: 
Each feature-map shown is the direct 
physical output of a spectral channel

PhD student Jakub Dranczewski key to feature detection

Raster scan image windows onto 
network/ via DMD

Single mode feature maps Composite feature map

Retinomorphic Machine Vision in a Network Laser, under review
Ng, Dranczewski, Fischer, ... & Gartside (2024)



Experimental
Composite 
feature map:

Individual mode feature maps
200 fs laser pulse
43 nJ per pulse
100 kHz pulse rate

Input image:

Heterogenous Nonlinearity



Jack C. Gartside, Imperial College London

Random Network Lasers: Machine vision

Input image Composite mode feature map

Retinomorphic Machine Vision in a Network Laser, under review
Ng, Dranczewski, Fischer, ... & Gartside (2024)



Jack C. Gartside, Imperial College London

Random Network Lasers: Machine vision

Input colour image
Photonic Network 
Feature Detection:

Retinomorphic Machine Vision in a Network Laser, under review
Ng, Dranczewski, Fischer, ... & Gartside (2024)



Jack C. Gartside, Imperial College London

Random Network Lasers: Machine vision

Retinomorphic Machine Vision in a Network Laser, under review
Ng, Dranczewski, Fischer, ... & Gartside (2024)

Freedom of arbitrary kernel sizes:



Jack C. Gartside, Imperial College London

Neuromorphic image classification: 2 layer architecture

1: Raster scan to detect edges 2: Project full edge maps onto network 3: Single logistic regression step on 
output spectra provides classification

98.4% Accuracy

Retinomorphic Machine Vision in a Network Laser, under review
Ng, Dranczewski, Fischer, ... & Gartside (2024)

Fashion-MNIST: 

88.8% Accuracy



Jack C. Gartside, Imperial College LondonRandom Network Lasers: Image classification

• Excellent Few-Shot/
Limited Data performance

• Beat large modern CNNs 
below 5k training examples

• Including ‘EfficientNetV2’
(7.9 million parameters)



Jack C. Gartside, Imperial College LondonRandom Network Lasers: Image classification

• Try hard, data scarce task:

• BreaKHis breast cancer 
diagnosis

• Our network outperforms all 
software benchmarks



Jack C. Gartside, Imperial College LondonRandom Network Lasers: Image classification

• Is it a one-off? Glitch?

• Try even harder task: 7 class skin cancer diagnosis. Heavily imbalanced



Jack C. Gartside, Imperial College LondonRandom Network Lasers: Image classification

• Photonic network outperforms all considered software benchmarks

• 4-6 mins to train, including experiments – vs 16 hrs for EfficientNetV2



Jack C. Gartside, Imperial College LondonRandom Network Lasers: Image classification

• How about spatial processing?

• Perform Segmentation (spatial location) of tumours

• Again, outperform software benchmarks considered



Conclusions
• Evaluated random network lasers as a neuromorphic platform

• Highly nonlinear & compact (100 um)

• Photonic analogue of retinal neuron ‘lateral inhibition’ functionality

• Very strong few-shot learning

• We are now reconfigurably training & programming network weights

• Challenges: 
• Operational speed – currently 100 Hz, 1 kHz relatively easy, DMD limited to 10 kHz

• Pulsed laser unattractive – exploring on-chip light sources, VCSELs

• Which algorithms are best suited to the nonlinear dynamics?

• Thanks & any questions!

Jack C. Gartside, Imperial College London

Spintronic metamaterial/computing:
• Gartside, Jack C., et al. "Reconfigurable 

training and reservoir computing in an artificial 
spin-vortex ice via spin-wave fingerprinting."
Nature Nanotechnology (2022)

• Lee, Oscar, Gartside Jack C. et al. "Task-
adaptive physical reservoir computing." 
Nature Materials (2024)

• Dion, Troy, Gartside Jack C. et al. "Ultrastrong
magnon-magnon coupling and chiral spin-
texture control in a dipolar 3D multilayered 
artificial spin-vortex ice." 
Nature Communications (2024)

• Stenning, Kilian D., Gartside Jack C. et al. 
"Neuromorphic few-shot learning: 
generalization in multilayer physical neural 
networks." Nature Communications(2024).



Few-Shot Learning Performance? Neuromorphic Neuronal 

Heterogeneity

“if a learning machine is sufficiently high-

dimensional, then a large class of objects can 

indeed be easily learned from few examples”

Tyukin, Ivan Y., et al 2021 Demystication of Few Shot & One Shot Learning IEEE



Few-Shot Learning Performance? Neuromorphic Neuronal 

Heterogeneity

Increased heterogeneity:

Much faster few-shot 

learning

High het.



Energy consumption & Software comparison

Photonic network (idealized physics)

Photonic network (44.35 W wall plug)

Photonic network (idealized physics)

Photonic network (44.35 W wall plug)

EfficientNet w/20x augmentation 3406 J

35,866 J

BreakHis 400x Breast Cancer diagnosis

Training Time: 
Photonic network = 4-6 mins (inc. experiment)
ResNet50 = 16 hours Inference Energy



Random Network Lasers: Patterned semiconductor graph (InP)
• Optically pump to generate photons in InP waveguides
• Random walks of light through the network host lasing mode
• Leads to 100s – 10,000s of strongly-coupled lasing modes in um-scale device

Fine control over graph topology, compatible with industrial chip fab

Path of single lasing 
mode



Jack C. Gartside, Imperial College London

Neuromorphic vision for health & medicine:

Diagnose, Classify & Spatially Locate Cancer Tumours

Raw Image
Network 
Prediction

Threshold 
Prediction

Image vs 
Prediction

Medical Expert 
Verdict

Error: Network
vs Med Expert



Jack C. Gartside, Imperial College London

Training photonic dynamics for direct image recognition

Image input

Sp
atial

Wavelength

Hyperspectral outputInP Network

No dynamic training – large spectral variation

Trained photonic dynamics – Clear difference between images
Greatly enhances neuromorphic classification accuracy

Sp
atial

Wavelength

Hyperspectral output
Image input

InP Network with 
local index variations

Optical index increased 
in yellow regions

Top row: No dynamic training.          

Bottom row: 
Trained dynamics via local pumping



Random Network Lasers: Machine vision?
Jack C. Gartside, Imperial College London

Test simple edge images: lasing thresholds & intensities are feature-sensitive

Mode label Mode label Mode labelInput images

Retinomorphic Machine Vision in a Network Laser, under review, Science 

Ng, Dranczewski, Fischer, ... & Gartside (2024)



Jack C. Gartside, Imperial College London

Linear vs Nonlinear Kernels?
Learning kernels via least squares fit – Control test using randomly generated software kernels. R^2 near perfect:



Jack C. Gartside, Imperial College London

Linear vs Nonlinear Kernels?
What about our experimental ‘kernels’? Much lower R^2, can’t captured some nonlinear physical behaviours?



Detect large amount of image features: 40 so far in single simulated network

Random Network Lasers: Machine vision

Neuromorphic Image Convolution and Machine Vision in a Network Laser, in preparation



Network design

• Ordered networks can’t distinguish different vertical or horizontal edges

Jack C. Gartside, Imperial College London



Feature detection cont.
Jack C. Gartside, Imperial College London



Feature detection cont.
Jack C. Gartside, Imperial College London



Frequency comb spatial powermaps
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Frequency comb modes time domain
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• Title: Using topological magnetic textures in devices
• Topological magnetism for application based physics
• What are topological states?

• Tbh everything is, but when its spoken about what people typically mean 
is some state with bulk-localised topological defects with whole integer 
winding number/topological charge

• Often, but not always, have some degree of chirality – vortices, skyrmions

• Why are they interesting?
• The biggest special thing about magnetism to me, is the ability to naturally switch between

multiple states
• Most other systems do not have this baked-in to their physics in anywhere near as elegant

and easy to control and manipulate as magnetism
• These topological states can be quite well protected, due to high exchange energy costs to 

‘unwind’ them. This can lead to higher coercive field than collinear textures, and as we can
see later, to physical memory

• They are composed of multiple discrete parts, which gives rise to complex dynamics and 
resonances – often with more distinct modes than a collinear texture

• These distinct modes are cool in their own right, but even cooler they can be coaxed
into interacting with each other to enable some very nice new nonlinear physics

• What are we going to look at specifically?
• We will look at a few things:

• Magnetic vortices in nanoislands
• Skyrmions in thin films

• We will look at these properties
• How they can give rise to physical memory
• How they can give rise to nonlinear magnonics
• How this can be used for neuromorphic computing (performing AI using complex physical dynamics
• How to write and control them

• SAF skyrmions, speed, fixing the skyrmion hall



• What do I have ready made?

• Some bits about ASI
• Some bits about magnon combing

• Need Troy’s slides
• Some bits about vortex bistability

• Need older talks which look into vortex formation in the nature nano paper
• Good stuff about vortex writing
• Some stuff about computing, could do with a better set of stuff showing how it doesn’t work 

without vortices
• Some better stuff needed for the Nature Materials paper



Nice reviews
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Chopin, C., de Wergifosse, S., Moureaux, A., & Abreu Araujo, F. (2024). Current-controlled periodic 

double-polarity reversals in a spin-torque vortex oscillator. Scientific Reports, 14(1), 24177.

Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., ... & Grollier, J. (2023). Multilayer 

spintronic neural networks with radiofrequency connections. Nature Nanotechnology, 18(11), 1273-1280.

Good: Low linewidth, low input current (mA), relatively high RF power (uW), 

Less good Poor upper frequency output (typically 100s MHz to low GHz)
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Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., Bortolotti, P., Querlioz, D., 

Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer spintronic neural networks with radiofrequency 

connections. Nature Nanotechnology, 18(11), pp.1273-1280.

Here, really start to harness the intricacies of the magnetic texture for device-like processing
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Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-Hernández, D., Trastoy, J., Bortolotti, P., Querlioz, D., 

Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer spintronic neural networks with radiofrequency 

connections. Nature Nanotechnology, 18(11), pp.1273-1280.

DC to RF (spin torque) and RF to DC (spin diode effect) allows bidirectional conversion
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Classic works:

Romera, M., Talatchian, P., Tsunegi, S., Abreu Araujo, F., Cros, V., Bortolotti, P., ... & Grollier, J. (2018). 

Vowel recognition with four coupled spin-torque nano-oscillators. Nature, 563(7730), 230-234.

Torrejon, J., Riou, M., Araujo, F. A., Tsunegi, S., Khalsa, G., Querlioz, D., ... & Grollier, J. (2017). 

Neuromorphic computing with nanoscale spintronic oscillators. Nature, 547(7664), 428-431.
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Classic works:

Romera, M., Talatchian, P., Tsunegi, S., Abreu Araujo, F., Cros, V., Bortolotti, P., ... & Grollier, J. (2018). 

Vowel recognition with four coupled spin-torque nano-oscillators. Nature, 563(7730), 230-234.

Torrejon, J., Riou, M., Araujo, F. A., Tsunegi, S., Khalsa, G., Querlioz, D., ... & Grollier, J. (2017). 

Neuromorphic computing with nanoscale spintronic oscillators. Nature, 547(7664), 428-431.

Task becomes linearly separable 

due to nonlinear physical dynamics
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Something near the end – what’s hard? Interconnects/Scaling

Maybe we should redesign?!
Ross, A., Leroux, N., De Riz, A., Marković, D., Sanz-

Hernández, D., Trastoy, J., Bortolotti, P., Querlioz, D., 

Martins, L., Benetti, L. and Claro, M.S., 2023. Multilayer 

spintronic neural networks with radiofrequency 

connections. Nature Nanotechnology, 18(11), pp.1273-

1280.



Data Input:
• Engineer material complexity to 

allow simple global-field input
• Bistable Magnetic textures
• Future vision: All-optical/electrical input

• 2 patents (2022,2024)

Jack C. Gartside, Imperial College London

Gartside, Jack C. et al,  Nature Nanotechnology (2022)

Vortex vs. Macrospin energy: 
Find bistable point

Macrospins

Vortices MFM: Macrospin state MFM: Vortex state

FMR: Macrospin state FMR: Vortex stateSimulation collaborators: Troy Dion, Kyushu (Japan)
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Data input & readout solved
• Data Input: Solved, Engineer physical complexity to allow simple global-field input
• Data Readout: Solved, use GHz magnon spectra
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Reservoir Computing

• Aim: Map complex problems onto simple linearly solveable ones

• Random weight connections vs. Fully trainable weights

• Low energy vs. Deep Neural Networks as only train small output layer

173

Jack C. Gartside, Imperial College London

Deep Neural Network Reservoir Computing

VS.

1: energy-uk.org, towardsdatascience.com, OpenAI white paper (2019) Magnetic ArrayField Magnon 

Spectra



Reservoir Computing
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Jack C. Gartside, Imperial College London

Physical Reservoir

Input Problem: 
Hard, nonlinear

Output Problem

Simple, linear

• Aim: Map complex problems onto simple linearly solveable ones

• Random weight connections vs. Fully trainable weights

• Low energy vs. Deep Neural Networks as only train small output layer



Reservoir Computing
Jack C. Gartside, Imperial College London

Input dataset Convert to field Measure FMR Linear Regression Computation Output

Experimental methodology: 2 Patents filed (2022, 2024)

• Gartside, Jack C. et al,  
Nature Nanotechnology
(2022)

• Lee, O. Gartside, Jack C., 
Kurebayashi, H. et al,  
Nature Materials (2023)

Scheme developed in collaboration with neuromorphic theorists: 
F. Caravelli group – Los Alamos National Lab (USA)



Reservoir Computing
Jack C. Gartside, Imperial College London

Input dataset Convert to field Measure FMR Linear Regression Computation Output

Experimental methodology: 2 Patents filed (2022, 2024)

• Gartside, Jack C. et al,  
Nature Nanotechnology
(2022)

• Lee, O. Gartside, Jack C., 
Kurebayashi, H. et al,  
Nature Materials (2023)

Field Input

FMR Output



Reservoir Computing
Jack C. Gartside, Imperial College London

Input dataset Convert to field Measure FMR Linear Regression Computation Output

Experimental methodology: 2 Patents filed (2022, 2024)

Solve challenging task: Future prediction (t+10) of chaotic time-series
Blood hormone level prediction

Time (t)

• Gartside, Jack C. et al,  
Nature Nanotechnology
(2022)

• Lee, O. Gartside, Jack C., 
Kurebayashi, H. et al,  
Nature Materials (2023)

Health-sensing tasks



Interconnecting Physical Systems

Jack C. Gartside, Imperial College LondonJack C. Gartside, Imperial College London
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Reservoir Computing
• Periodic performance:

• Single system can’t handle multiple timescales
• t+8 particularly poor

• Problem: Single physical systems restricted by fixed dynamics 

Jack C. Gartside, Imperial College London

Time (t)

t+
8

Time (t)

t+
1
2

Future prediction step (t+n)

Er
ro

r

Low error = 
good computation
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Physical Neural Network Architecture
Jack C. Gartside, Imperial College London

• Solution:
• Interconnect Multiple arrays with distinct dynamics

Conventional ASI:
No vortices, only macrospins

Short-term memory

Vortex ASVI:
Vortices & macrospins

Long-term memory

Pinwheel ASVI:
Engineered structural disorder

Strong nonlinearity

Stenning, Kilian D., Gartside, Jack C., et al. "Neuromorphic Few-Shot 
Learning: Generalization in Multilayer Physical Neural Networks.“ arxiv (2023)

Low e-beam dose

High e-beam dose
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Physical Neural Network Architecture
Jack C. Gartside, Imperial College London

R1

R2

R3

R1

R2

R3

Data
Input

Computational
Output

• Build a small 2x3 layer physical neural network - Each ‘neuron’ is a different nanoarray
• Interconnect 1st-layer output (GHz amplitude) to 2nd-layer input (magnetic field) 
• Collaborators at University of Sheffield Dr Luca Manneschi & Prof Eleni Vasilaki

co-designed interconnected network architecture

Stenning, Kilian D., Gartside, Jack C., et al. "Neuromorphic Few-Shot Learning: Generalization in Multilayer Physical Neural Networks.“ arxiv (2023)

Interconnected arrays
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Jack C. Gartside, Imperial College London

• Physical Neural Net architecture solves problems – fix periodic performance

Black curve: 
Best single array
Dark Purple curve:
Physical neural network

Physical Neural Network Architecture

Future prediction step (t+n)

Er
ro

r 
(M

SE
)

Time (t) Time (t)

Stenning, Kilian D., Gartside, Jack C., et al. "Neuromorphic Few-Shot Learning: Generalization in Multilayer Physical Neural Networks.“ arxiv 2023

Best single nanoarray - poor
Interconnected 

Physical neural network - good

Low error = 
good computation

0.2

0.1

0

0 5 10 15
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Analogue tunability of magnon modes & microstate



Gartside, Stenning, Vanstone et al, 
Nature Nanotechnology (2022)
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Artificial Spin-Vortex Ice: Beyond a single magnetic texture

• Adding chiral states increases

• Complexity

• Memory

• Neuromorphic Computing performance

• How far can we take this Microstate Engineering?

No vortices: (normal ASI) 
Bad future prediction

Vortices & macrospins: 
Excellent prediction
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Microstate Control: Neuromorphic Performance

Vortices & macrospins: 
Excellent prediction

Oscar Lee, Tianyi Wei, Kilian D. 
Stenning, Jack C. Gartside, et al

Nature Materials (2023)

Gartside, Stenning, Vanstone et al, 
Nature Nanotechnology (2022)

Skyrmion phase: Prediction

Conical phase: Transformation

Show the functional
benefits of expanded 
microstate range via two 
recent experimental 
demonstrations, 
Nature Nanotechnology 
(2022) 
& Nature Materials (2023) 
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Jack C. Gartside, Imperial College London

MFM: Saturated -200 mT
initial state, Blue Spectra

MFM: 30x Field-loops state,
Red spectra

Vortex vs. Macrospin energy: 
Pick bistable point

Macrospins

Vortices

Another Solution: Fabricate islands on a textural tipping point

FMR: Macrospin state FMR: Vortex state



Conclusions
• Developed new bistable artificial spin system ‘ASVI’

• Engineering extra microstate & dynamic richness enhances functionality

• Trilayer ASVI is extremely rich & reconfigurable 

• New phenomena: Ultrastrong Magnon-Magnon Coupling & Magnon Frequency Combing

• 2 year Post-Doc position available! Email me :)

• Thanks & any questions!

Jack C. Gartside, Imperial College London

Upcoming Work:

All-Optical Writing of Vortices
Trilayer ASVI for Neuromorphic 

Computing

Photonic Neuromorphic Computing



Conclusions
Jack C. Gartside, Imperial College London
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Analogue tunability of magnon modes & microstate
Local waveguiding

capabilities



Wide bar macrospin

Thin bar
macrospin Magnetisation Simulated 

MFM
Experimental

MFM

Normal saturated ASI spectra:
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Artificial Spin-Vortex Ice: Beyond a single magnetic texture

Gartside, Jack C., et al. "Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice."
Nature Communications (2021)

Jack C. Gartside, Imperial College London

SEM



Wide bar macrospin
GONE!

Thin bar
macrospin Magnetisation Simulated 

MFM
Experimental

MFM

Normal saturated ASI spectra:
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Artificial Spin-Vortex Ice: Beyond a single magnetic texture

Gartside, Jack C., et al. "Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice."
Nature Communications (2021)

Jack C. Gartside, Imperial College London

SEM



MFM: Saturated -200 mT
initial state, Blue Spectra

MFM: 30x Field-loops state,
Red spectra 193

Jack C. Gartside, Imperial College London

Blue = Initial -200 mT saturated 
Red = After 30x 18 mT training loops

Vortex/Macrospin Demag 
& Exchange Energy
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Top Frames (1-3): Tip-writing vortices

Vortex Writing via MFM Tip

195

Before After first tip-write Second tip-write



Top Frames (1-3): Tip-writing vortices

Bottom Frames (4-6): 
Field looping of vortex line states at 13 mT (Hc = 16-17 mT) 

Vortex Writing via MFM Tip

196



Extremely Reconfigurable! 😈
Micromagnetic simulation of spatial/frequency FMR response: T. Dion

30 loops trained
New modes strong & clearly observed

Simulated sweep of trained/vortex 
state shows new X modes

197



Quick Introduction

198

Neuromorphic Metamaterials Group

Imperial College London

Interests: Metamaterials
Simple materials, 

doing interesting things via patterning

PhotonicMagnetic



Quick Introduction
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Neuromorphic Metamaterials Group

Imperial College London

Interests:

Magnetic Metamaterials – Huge number of states

Increasing Energy

Huge number of states!

2N

N = 103-8



Quick Introduction
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Neuromorphic Metamaterials Group

Imperial College London

Interests:

My work: How to access these states? Nanomagnetic writing

MFM tip

Picosecond laser

Magnetic Metamaterials – Huge number of states

Gartside, Jack C., et al. Nature nanotechnology (2018)

In preparation



Quick Introduction
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Neuromorphic Metamaterials Group

Imperial College London

Interests:

Magnetic Metamaterials – Huge number of states

‘Multistable’ Nanostructures

Gartside, Jack C., et al. "Reconfigurable training and reservoir computing in an artificial spin-vortex 

ice via spin-wave fingerprinting." Nature Nanotechnology (2022)



Quick Introduction
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Neuromorphic Metamaterials Group

Imperial College London

Interests:

Magnetic Metamaterials – Huge number of states

‘Multistable’ Nanostructures – emergent textural domain growth



Quick Introduction
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Neuromorphic Metamaterials Group

Imperial College London

Interests:

Magnetic Metamaterials – Huge number of states
‘Multistable’ Nanostructures – 2.5D/3D

16 states 

per 

island
Dion, T., ... & Gartside, J. C. 

“Ultrastrong magnon-magnon coupling 

and chiral spin-texture control in a 

dipolar 3D multilayered artificial spin-

vortex ice.”

Nature communications, 2024
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Neuromorphic Metamaterials Group

Imperial College London

Interests:

Magnetic Metamaterials 

The states can program magnon responses, which can 

be

used for processing, neuromorphic computing:



Quick Introduction
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Neuromorphic Metamaterials Group

Imperial College London

Interests:

Photonic Metamaterials: Mimick retinal neuron 

dynamics Indium Phosphide network Detect image features Biomedical diagnosis – 93.4% accuracy


