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• Introduction to quantum transport

• Spin-dependent magnitudes

• Case studies:

1. The Datta-Das transistor

2. Spin-polarized currents without B fields (with TRS)

3. Two-current model for FM electrodes: spin thermoelectrics
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I. THEORETICAL MODEL AND
COMPUTATIONAL METHODS

We calculate the band structure of graphene within the
empirical tight-binding (ETB) approximation. Although
the ⇡ band tight-binding model is known to capture the
low energy physics of graphene, since we are interested
in the SOI e↵ects, we consider here an orthogonal four
orbital 2s, 2px, 2py, 2pz basis set, thus allowing the in-
clusion of the intrinsic SOI terms within the conventional
on-site approach. The matrix Hamiltonian is built fol-
lowing the Slater-Koster (SK) formalism up to nearest-
neighbor hopping. We use the parametrization obtained
by Tomanek-Louie for graphite. The expression of the
one-electron TB Hamiltonian is
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To include the SO e↵ects the atomic-like SO term HSO

has to be added to the H0 Hamiltonian. From the
quadratic v/c expansion of the Dirac equation, we con-
sider a non-relativistic approximation to the relativistic
Dirac equation. Assuming that the most important con-
tribution to the crystal potential for the intra-atomic
spin-orbit coupling is close to the cores, the H0 terms
take the form:
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atom. Considering the spin parts of the wavefunctions,
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where the atomic-like spin-orbit term HSO has been
added to the SK-ETB spin-independent H0 Hamiltonian.
The diagonal terms act as an e↵ective Zeeman field pro-
ducing gaps at the K and K

0 points of the BZ, with
opposite signs. The spin-orbit interaction does not break
the time reversal symmetry but, since we are considered
chiral ribbons, inversion symmetry is lacking and HSO

lifts the spin degeneracy.

The total Hamiltonian H incorporates both, spin con-
servation and spin-flip processes, induced by the crystal
potential discrete symmetries. By exact diagonalization
of the matrix H we obtain the band structure of the
GNRs. In the calculation we consider di↵erent geome-
tries of chiral GNRs, and for each chirality we sistemat-
ically investigate the influence of width and curvature.
It has been probed that curvature enhances the SOI ef-
fects, and one of the most extended methods to fabricate
GNRs is the unzipping of CNTs, therefore we consider
that curvature is an important factor in the study of SOI
e↵ects. The value of the SOI constant for C-based ma-
terials is not well stablished. Although small, its e↵ects
could have important consecuences when considering the
spin degree of freedom.
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To include the SO e↵ects the atomic-like SO term HSO

has to be added to the H0 Hamiltonian. From the
quadratic v/c expansion of the Dirac equation, we con-
sider a non-relativistic approximation to the relativistic
Dirac equation. Assuming that the most important con-
tribution to the crystal potential for the intra-atomic
spin-orbit coupling is close to the cores, the H0 terms
take the form:
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where the spherical symmetry of the atomic potential Vi

has been assumed and ri is the radial coordinate with
origin at the i atom.

I = GV (6)

L stands for the orbital angular momentum of the
electron, and S is the spin operator. The parameter
� is a renormalized atomic SO coupling constant which
depends on the orbital angular momentum L. Notice
that the HSO terms only couple p orbitals in the same
atom. Considering the spin parts of the wavefunctions,
the Hamiltonian matrix has 8Nx8N elements, N being
the number of the C atoms in the unit cell of the GNR
and 8 corresponds to the four orbitals per spin of the sp3

basis set. The total Hamiltonian, H, in the 2 ⇥ 2 block
spinor structure is given by,

H =
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where the atomic-like spin-orbit term HSO has been
added to the SK-ETB spin-independent H0 Hamiltonian.
The diagonal terms act as an e↵ective Zeeman field pro-
ducing gaps at the K and K

0 points of the BZ, with
opposite signs. The spin-orbit interaction does not break
the time reversal symmetry but, since we are considered
chiral ribbons, inversion symmetry is lacking and HSO

lifts the spin degeneracy.

The total Hamiltonian H incorporates both, spin con-
servation and spin-flip processes, induced by the crystal
potential discrete symmetries. By exact diagonalization
of the matrix H we obtain the band structure of the
GNRs. In the calculation we consider di↵erent geome-
tries of chiral GNRs, and for each chirality we sistemat-
ically investigate the influence of width and curvature.
It has been probed that curvature enhances the SOI ef-
fects, and one of the most extended methods to fabricate
GNRs is the unzipping of CNTs, therefore we consider
that curvature is an important factor in the study of SOI
e↵ects. The value of the SOI constant for C-based ma-
terials is not well stablished. Although small, its e↵ects
could have important consecuences when considering the
spin degree of freedom.

Local expression: The application of an electric field 
generates a current density
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To include the SO e↵ects the atomic-like SO term HSO

has to be added to the H0 Hamiltonian. From the
quadratic v/c expansion of the Dirac equation, we con-
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• Ballistic quantum transport (coherent)

• Classical transport (incoherent, diffusive)
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Some characteristic magnitudes (at 4 K)

 2DEG GaAs        Metals                  Graphene                SWNT

92 Quantum transport: general concepts

Table 3.1 Typical magnitudes of the charge density (n), the mean free path ℓ, Fermi wavelength (λF)
and the coherence length (Lφ) at 4 K in various materials.

GaAs-AlGaAs Metals Graphene SWNT MWNT

n 4 × 1011 cm−2 1021 − 1023 cm−3 1011 − 1012 cm−2 1011 cm−2 ,,
ℓ 100 − 104 nm 1 − 10 nm 50 nm to 3 µma 1 µm 10 − 40 nm
λF 40 nm 0.5 nm 2

√
π/n 0.74 nm ,,

Lφ 100 nm 0.5 µm 0.5 µmb 3 µmc 100 nm

a In suspended graphene, mean free paths of about 100 nm were found at 4 K for n ∼ 1011 cm−2 (and
about 75 nm at 300 K) in Du et al. (2008), while Bolotin et al. (2008) estimate ℓ of up to 1.2 µm for
n ∼ 2 × 1011 cm−2. On the other hand, reported values for devices made from graphene sandwiched in
between hBN crystals go up to 3 µm (Mayorov et al., 2011).

b See Tikhonenko et al. (2009).
c See Stojetz et al. (2005).

3.1.2 Coherent versus sequential transport

Coherent or sequential? is probably one of the most crucial questions, since it dictates
the general framework that better suits a particular system under investigation in a par-
ticular experimental condition (Weil & Vinter, 1987, Jonson & Grincwajg, 1987, Luryi,
1989, Foa Torres, Lewenkopf & Pastawski, 2003). Note, however, that the answer most
probably lies in between these two extreme situations (see also Section 3.5).

Let us imagine that we start with the sample (nanotube, graphene ribbon, etc.)
decoupled from the electrodes. As the coupling between them is turned on, there is
an increasing escape rate which determines the intrinsic width (%α) of the levels (εα)
corresponding to the isolated sample. The more isolated is the sample from the elec-
trodes, the longer the lifetime τD of an electron in any of those levels and the smaller
the intrinsic level width %α = h̄/τD. If the lifetime associated with the intrinsic level
width is longer than the coherence time (τφ), then the electrons will spend enough time
inside the sample to suffer phase breaking events leading to a decoherent regime.

In the decoherent limit, one may use a sequential picture for transport, in which the
electronic motion is divided, as in a theater play, into different parts:

1. Tunneling in. The electron is transmitted from the left electrode into the sample;
2. Dwelling. The electron dwells in the sample, eventually interacting with other elec-

trons or with phonons/vibrational degrees of freedom;
3. Tunneling out. The electron tunnels into the right electrode or is reflected back to

the left one.

A sometimes implicit assumption of such a picture is that transport is decoherent.
Therefore, the description can be at a semiclassical level where only the occupation
probabilities (and not the amplitudes) are taken into account into a set of rate equations.
Typically, these rate equations take into account the different possible processes (tun-
neling in and out of the sample, electron–electron and inelastic interactions) through a
Fermi golden rule for the associated transition rates. By solving these equations one gets
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Ballistic transport in one dimension (1D)
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on-site approach. The matrix Hamiltonian is built fol-
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neighbor hopping. We use the parametrization obtained
by Tomanek-Louie for graphite. The expression of the
one-electron TB Hamiltonian is
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To include the SO e↵ects the atomic-like SO term HSO

has to be added to the H0 Hamiltonian. From the
quadratic v/c expansion of the Dirac equation, we con-
sider a non-relativistic approximation to the relativistic
Dirac equation. Assuming that the most important con-
tribution to the crystal potential for the intra-atomic
spin-orbit coupling is close to the cores, the H0 terms
take the form:

HSO =
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h̄

4m2c2
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where the spherical symmetry of the atomic potential Vi

has been assumed and ri is the radial coordinate with
origin at the i atom.

I = GV (19)

L stands for the orbital angular momentum of the
electron, and S is the spin operator. The parameter
� is a renormalized atomic SO coupling constant which
depends on the orbital angular momentum L. Notice
that the HSO terms only couple p orbitals in the same
atom. Considering the spin parts of the wavefunctions,
the Hamiltonian matrix has 8Nx8N elements, N being
the number of the C atoms in the unit cell of the GNR
and 8 corresponds to the four orbitals per spin of the sp3

basis set. The total Hamiltonian, H, in the 2 ⇥ 2 block
spinor structure is given by,

H =
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where the atomic-like spin-orbit term HSO has been
added to the SK-ETB spin-independent H0 Hamiltonian.
The diagonal terms act as an e↵ective Zeeman field pro-
ducing gaps at the K and K

0 points of the BZ, with
opposite signs. The spin-orbit interaction does not break
the time reversal symmetry but, since we are considered
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where the spherical symmetry of the atomic potential Vi

has been assumed and ri is the radial coordinate with
origin at the i atom.

I = GV (19)

L stands for the orbital angular momentum of the
electron, and S is the spin operator. The parameter
� is a renormalized atomic SO coupling constant which
depends on the orbital angular momentum L. Notice
that the HSO terms only couple p orbitals in the same
atom. Considering the spin parts of the wavefunctions,
the Hamiltonian matrix has 8Nx8N elements, N being
the number of the C atoms in the unit cell of the GNR
and 8 corresponds to the four orbitals per spin of the sp3
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where the atomic-like spin-orbit term HSO has been
added to the SK-ETB spin-independent H0 Hamiltonian.
The diagonal terms act as an e↵ective Zeeman field pro-
ducing gaps at the K and K
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I. THEORETICAL MODEL AND
COMPUTATIONAL METHODS

We calculate the band structure of graphene within the
empirical tight-binding (ETB) approximation. Although
the ⇡ band tight-binding model is known to capture the
low energy physics of graphene, since we are interested
in the SOI e↵ects, we consider here an orthogonal four
orbital 2s, 2px, 2py, 2pz basis set, thus allowing the in-
clusion of the intrinsic SOI terms within the conventional
on-site approach. The matrix Hamiltonian is built fol-
lowing the Slater-Koster (SK) formalism up to nearest-
neighbor hopping. We use the parametrization obtained
by Tomanek-Louie for graphite. The expression of the
one-electron TB Hamiltonian is

H0 =
X

i,↵,s

✏↵ +
X

<ij>,�,s

t
↵,�

ij
c
↵+
i,s

c
�

j,s
+ h.c., (1)

where ✏↵ represents the atomic energy of the orbital ↵,
< ij > stands for all the atomic sites of the unit cell of the
GNR, and c

↵+
i,s

and c
↵

i,s
are the creation and annihilation

operators of one electron at site i, orbital ↵ and spin s,
respectively.

G =
2e2

h
T (2)
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y

G = �
A

L
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j = �E (5)
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F = eE =
dp

dt
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eE =
mvd
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� =
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⌧m
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(9)
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⌧m (12)

kd (13)

kF (14)

j = n|e|vd = n|e|
✓
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◆
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µ2 (16)

µ1 (17)

eV (18)

+k (19)

I =
X

k

e n1D v (20)

v =
1

h̄

@E

@k
(21)

n1D =
1

L

@E

@k
(22)

To include the SO e↵ects the atomic-like SO term HSO

has to be added to the H0 Hamiltonian. From the
quadratic v/c expansion of the Dirac equation, we con-
sider a non-relativistic approximation to the relativistic
Dirac equation. Assuming that the most important con-
tribution to the crystal potential for the intra-atomic
spin-orbit coupling is close to the cores, the H0 terms
take the form:

HSO =
X

i

h̄

4m2c2

1

ri

dVi

dri
L · S = �L · S,

where the spherical symmetry of the atomic potential Vi

has been assumed and ri is the radial coordinate with
origin at the i atom.

I = GV (23)

L stands for the orbital angular momentum of the
electron, and S is the spin operator. The parameter
� is a renormalized atomic SO coupling constant which
depends on the orbital angular momentum L. Notice
that the HSO terms only couple p orbitals in the same
atom. Considering the spin parts of the wavefunctions,
the Hamiltonian matrix has 8Nx8N elements, N being
the number of the C atoms in the unit cell of the GNR

I =
2e2

h
V
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To include the SO e↵ects the atomic-like SO term HSO

has to be added to the H0 Hamiltonian. From the
quadratic v/c expansion of the Dirac equation, we con-
sider a non-relativistic approximation to the relativistic
Dirac equation. Assuming that the most important con-
tribution to the crystal potential for the intra-atomic
spin-orbit coupling is close to the cores, the H0 terms
take the form:

HSO =
X

i

h̄

4m2c2

1

ri

dVi
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L · S = �L · S,

where the spherical symmetry of the atomic potential Vi

has been assumed and ri is the radial coordinate with
origin at the i atom.

I = GV (25)

G independent of L

conductance quantizationDe+

1D(E) =
1

⇡~v
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Quantum point contact (QPC) in a  
bidimensional electron gas (2DEG)

H. van Houten and C. W. J. Beenakker, Phys. Today, p 22, July 1996. 
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FIG. 1 Schematic cross-sectional view of a quantum point
contact, defined in a high-mobility 2D electron gas at the in-
terface of a GaAs–AlGaAs heterojunction. The point contact
is formed when a negative voltage is applied to the gate elec-
trodes on top of the AlGaAs layer. Transport measurements
are made by employing contacts to the 2D electron gas at
either side of the constriction.

erojunction. A point contact of adjustable width can
be created in this system using the split-gate technique
developed in the groups of Michael Pepper (Cambridge)
and Daniel Tsui (Princeton).5 The gate is a negatively
charged electrode on top of the heterojunction, which de-
pletes the electron gas beneath it. (See figure 1.) In 1988,
the Delft-Philips and Cambridge groups reported the dis-
covery of a sequence of steps in the conductance of a con-
striction in a 2D electron gas, as its width W was varied
by means of the voltage on the gate.6,7 (See Physics To-
day, November 1988, page 21.) As shown in figure 2, the
steps are near integer multiples of 2e2/h ≈ 1/13 kΩ (af-
ter correction for a small gate-voltage independent series
resistance).

An elementary explanation of the quantization views
the constriction as an electron wave guide, through which
a small integer number N ≈ 2W/λF of transverse modes
can propagate at the Fermi level. The wide regions at
opposite sides of the constriction are reservoirs of elec-
trons in local equilibrium. A voltage difference V be-
tween the reservoirs induces a current I through the con-
striction, equally distributed among the N modes. This
equipartition rule is not immediately obvious, because
electrons at the Fermi level in each mode have different
group velocities vn. However, the difference in group ve-
locity is canceled by the difference in density of states
ρn = 1/hvn. As a result, each mode carries the same
current In = V e2ρnvn = V e2/h. Summing over all
modes in the wave guide, one obtains the conductance
G = I/V = Ne2/h. The experimental step size is twice
e2/h because spin-up and spin-down modes are degener-
ate.

The electron wave guide has a non-zero resistance even
though there are no impurities, because of the reflections
occurring when a small number of propagating modes in
the wave guide is matched to a larger number of modes in
the reservoirs. A thorough understanding of this mode-
matching problem is now available, thanks to the efforts
of many investigators.8

FIG. 2 Conductance quantization of a quantum point con-
tact in units of 2e2/h. As the gate voltage defining the con-
striction is made less negative, the width of the point contact
increases continuously, but the number of propagating modes
at the Fermi level increases stepwise. The resulting conduc-
tance steps are smeared out when the thermal energy becomes
comparable to the energy separation of the modes. (Adapted
from ref.6.)

The quantized conductance of a point contact provides
firm experimental support for the Landauer formula,

G =
2e2

h

∑

n

tn,

for the conductance of a disordered metal between two
electron reservoirs. The numbers tn between 0 and 1 are
the eigenvalues of the product tt

† of the transmission
matrix t and its Hermitian conjugate. For an “ideal”
quantum point contact N eigenvalues are equal to 1 and
all others are equal to 0. Deviations from exact quan-
tization in a realistic geometry are about 1%. This can
be contrasted with the quantization of the Hall conduc-
tance in strong magnetic fields, where an accuracy bet-
ter than 1 part in 107 is obtained routinely.9 One reason
why a similar accuracy can not be achieved in zero mag-
netic field is the series resistance from the wide regions,
whose magnitude can not be determined precisely. An-
other source of excess resistance is backscattering at the
entrance and exit of the constriction, due to the abrupt
widening of the geometry. A magnetic field suppresses
this backscattering, improving the accuracy of the quan-
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Conductance quantization in a 2DEG

B. van Wees et al., Phys. Rev. Lett. 60, 848 (1988) 
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FIG. 1. Point-contact resistance as a function of gate volt-
age at 0.6 K. Inset: Point-contact layout.

FIG. 2. Point-contact conductance as a function of gate
voltage, obtained from the data of Fig. 1 after subtraction of
the lead resistance. The conductance shows plateaus at multi-
ples of e /xh.

pinched off at Vg =—2.2 V.
We measured the resistance of several point contacts

as a function of gate voltage. The measurements were
performed in zero magnetic field, at 0.6 K. An ac lockin
technique was used, with voltages across the sample kept
below kT/e, to prevent electron heating. In Fig. 1 the
measured resistance of a point contact as a function of
gate voltage is shown. Unexpectedly, plateaus are found
in the resistance. In total, sixteen plateaus are observed
when the gate voltage is varied from —0.6 to —2.2 V.
The measured resistance consists of the resistance of the
point contact, which changes with gate voltage, and a
constant series resistance from the 2DEG leads to the
point contact. As demonstrated in Fig. 2, a plot of the
conductance, calculated from the measured resistance
after subtraction of a lead resistance of 400 0, shows
clear plateaus at integer multiples of e /&A. The above
value for the lead resistance is consistent with an es-
timated value based on the lead geometry and the resis-
tivity of the 2DEG. We do not know how accurate the
quantization is. In this experiment the deviations from
integer multiples of e /zh might be caused by the uncer-
tainty in the resistance of the 2DEG leads. Inserting the
point-contact resistance at V~= —0.6 V (750 0) into
Eq. (1) we find for the width W,„=360nm, in reason-

able agreement with the lithographically defined width
between the gate electrodes.
The average conductance increases almost linearly

with gate voltage. This indicates that the relation be-
tween the width and the gate voltage is also almost
linear. From the maximum width W,„(360 nm) and
the total number of observed steps (16) we estimate the
increase in width between two consecutive steps to be 22
nm.
We propose an explanation of the observed quantiza-

tion of the conductance, based on the assumption of
quantized transverse momentum in the contact constric-
tion. In principle this assumption requires a constriction
much longer than wide, but presumably the quantization
is conserved in the short and narrow constriction of the
experiment. The point-contact conductance G for ballis-
tic transport is given by "

G =e NpW(It/2m)( [ k„~ ).

The brackets denote an average of the longitudinal wave
vector k, over directions on the Fermi circle, N p
=m/eh 2 is the density of states in the two-dimensional
electron gas, and W is the width of the constriction. The
Fermi-circle average is taken over discrete transverse
wave vectors k» = ~ nz/W (n =1,2, . . . ), so that we can
write

T

&Ik. l&= J d'krak, )&(k—kF) g 6' k»—
7C F 8', -) 8' (3)

Carrying out the integration and substituting into Eq. (2), one obtains the result

N,

(4)

where the number of channels (or one-dimensional subbands) N, is the largest integer smaller than kFW/x. For
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tivity of the 2DEG. We do not know how accurate the
quantization is. In this experiment the deviations from
integer multiples of e /zh might be caused by the uncer-
tainty in the resistance of the 2DEG leads. Inserting the
point-contact resistance at V~= —0.6 V (750 0) into
Eq. (1) we find for the width W,„=360nm, in reason-

able agreement with the lithographically defined width
between the gate electrodes.
The average conductance increases almost linearly

with gate voltage. This indicates that the relation be-
tween the width and the gate voltage is also almost
linear. From the maximum width W,„(360 nm) and
the total number of observed steps (16) we estimate the
increase in width between two consecutive steps to be 22
nm.
We propose an explanation of the observed quantiza-

tion of the conductance, based on the assumption of
quantized transverse momentum in the contact constric-
tion. In principle this assumption requires a constriction
much longer than wide, but presumably the quantization
is conserved in the short and narrow constriction of the
experiment. The point-contact conductance G for ballis-
tic transport is given by "

G =e NpW(It/2m)( [ k„~ ).

The brackets denote an average of the longitudinal wave
vector k, over directions on the Fermi circle, N p
=m/eh 2 is the density of states in the two-dimensional
electron gas, and W is the width of the constriction. The
Fermi-circle average is taken over discrete transverse
wave vectors k» = ~ nz/W (n =1,2, . . . ), so that we can
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Contacts with reflection
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I. THEORETICAL MODEL AND
COMPUTATIONAL METHODS

We calculate the band structure of graphene within the
empirical tight-binding (ETB) approximation. Although
the ⇡ band tight-binding model is known to capture the
low energy physics of graphene, since we are interested
in the SOI e↵ects, we consider here an orthogonal four
orbital 2s, 2px, 2py, 2pz basis set, thus allowing the in-
clusion of the intrinsic SOI terms within the conventional
on-site approach. The matrix Hamiltonian is built fol-
lowing the Slater-Koster (SK) formalism up to nearest-
neighbor hopping. We use the parametrization obtained
by Tomanek-Louie for graphite. The expression of the
one-electron TB Hamiltonian is
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eV (18)

+k (19)

I =
X

k

e n1D v (20)

v =
1

h̄

@E

@k
(21)

n1D =
1

L
(22)

X

k

! 2⇥ L

2⇡

Z
dk (23)

I = 2
L

2⇡

Z
dk

e

L

1

h̄

@E

@k
=

2e

h

Z
µ1

µ2

dE =
2e2

h
V (24)

To include the SO e↵ects the atomic-like SO term HSO

has to be added to the H0 Hamiltonian. From the
quadratic v/c expansion of the Dirac equation, we con-
sider a non-relativistic approximation to the relativistic
Dirac equation. Assuming that the most important con-
tribution to the crystal potential for the intra-atomic
spin-orbit coupling is close to the cores, the H0 terms
take the form:

HSO =
X

i

h̄

4m2c2

1

ri

dVi

dri
L · S = �L · S,

where the spherical symmetry of the atomic potential Vi

has been assumed and ri is the radial coordinate with
origin at the i atom.

I = GV (25)

Landauer´s formula
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<latexit sha1_base64="/53A4WJKKIhxR5vnaiJyAF4MFnM=">AAACF3icbVC7TsMwFHXKq4RXeGwsFg0SU5V0KIwVLIxFog+pjSrHdRqrThzZTqFE/RA2VvgJNsTKyD/wEbhtBtpypnPvOffq6PgJo1I5zrdRWFvf2Nwqbps7u3v7B9bhUVPyVGDSwJxx0faRJIzGpKGoYqSdCIIin5GWP7yZ6q0REZLy+F6NE+JFaBDTgGKk9Kpnndi22ewKOggVEoI/QMe07Z5VcsrODHCVuDkpgRz1nvXT7XOcRiRWmCEpO66TKC9DQlHMyMTsppIkCA/RgHQ0jVFEpJfN0k/gecAFVCGBs/mvN0ORlOPI154IqVAua9Plf1onVcGVl9E4SRWJsbZoLUgZVBxOS4B9KghWbKwJwoLqlBCHSCCsdFULn/ojmsg87+M8sKnrcZfLWCXNStmtlqt3lVLtOi+qCE7BGbgALrgENXAL6qABMHgCL+AVvBnPxrvxYXzOrQUjvzkGCzC+fgHic57A</latexit>

V ! 0If 

<latexit sha1_base64="ysLmaFeKqmH3mP3ykD0kyZfbkyw=">AAACDXicbVC7TgJBFJ3FF64v1NJmImuCDdmlQEui0VhiwiuBDZkdLjBh9pGZWSLZ8A12tvoTdsbWb/Af/AgH2ELAU517z7mTM8eLOJPKtr+NzMbm1vZOdtfc2z84PModnzRkGAsKdRryULQ8IoGzAOqKKQ6tSADxPQ5Nb3Q705tjEJKFQU1NInB9MghYn1Gi9KpjWWatcNe9vzQtq5vL20V7DrxOnJTkUYpqN/fT6YU09iFQlBMp244dKTchQjHKYWp2YgkRoSMygLamAfFBusk88xRf9EOB1RDwfP7rTYgv5cT3tMcnaihXtdnyP60dq/61m7AgihUEVFu01o85ViGefR33mACq+EQTQgXTKTEdEkGo0gUtvdQbs0imeZ8WgU1dj7NaxjpplIpOuVh+LOUrN2lRWXSGzlEBOegKVdADqqI6oihCL+gVvRnPxrvxYXwurBkjvTlFSzC+fgEFq5qD</latexit>

T (EF )

, 
transmission takes 
place at the Fermi 
energy,

Landauer, 1957
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<latexit sha1_base64="cbRC4KmPLwvPSP10uvrfQ37eUkk=">AAACEnicbVDLTsJAFJ3iC+uDqks3jdTEFWlZoEuiGxcuMBEwgdpMh1uYMH1kZkogDX/hzq3+hDvj1h/wH/wIB+hCwLM6955zJ2eOnzAqpG1/a4WNza3tneKuvrd/cFgyjo5bIk45gSaJWcwffSyA0QiakkoGjwkHHPoM2v7wZqa3R8AFjaMHOUnADXE/ogElWKqVZ5QsS4enjA69u/FUtyzPKNsVew5znTg5KaMcDc/46fZikoYQScKwEB3HTqSbYS4pYTDVu6mABJMh7kNH0QiHINxsHnxqngcxN+UAzPn815vhUIhJ6CtPiOVArGqz5X9aJ5XBlZvRKEklRERZlBakzJSxOfu/2aMciGQTRTDhVKU0yQBzTKRqaeml3ogmIs87XgTWVT3OahnrpFWtOLVK7b5arl/nRRXRKTpDF8hBl6iOblEDNRFBKXpBr+hNe9betQ/tc2EtaPnNCVqC9vULdmic9Q==</latexit>

eikLx
<latexit sha1_base64="akapofNYh0eqy7T47zdhWHu3u8A=">AAACE3icbVDLTsJAFJ3iC+ur6tJNIzVxRVoW6JLoxiUaeSRQm+lwCxOmj8xMCaThM9y51Z9wZ9z6Af6DH+EAXQh4Vufec+7NyfETRoW07W+tsLG5tb1T3NX39g8Oj4zjk6aIU06gQWIW87aPBTAaQUNSyaCdcMChz6DlD29nemsEXNA4epSTBNwQ9yMaUIKlWnmGYVm6hKeMDr2H8VS3LM8o2WV7DnOdODkpoRx1z/jp9mKShhBJwrAQHcdOpJthLilhMNW7qYAEkyHuQ0fRCIcg3GyefGpeBDE35QDM+fzXm+FQiEnoK0+I5UCsarPlf1onlcG1m9EoSSVERFmUFqTMlLE5K8DsUQ5EsokimHCqUppkgDkmUtW09Kk3oonI844XgXVVj7NaxjppVspOtVy9r5RqN3lRRXSGztElctAVqqE7VEcNRNAIvaBX9KY9a+/ah/a5sBa0/OYULUH7+gVm3J15</latexit>

teikRx

<latexit sha1_base64="5P/jM8pjoRW9IPEZHR8G0QH5prc=">AAACFHicbVC7TgJBFJ31ietr0dJmI2tiI9mlQEuijYUFJvJIYN3MDheYMPvIzCxCNvyGna3+hJ2xtfcf/AgH2ELAU517z7k3J8ePGRXStr+1tfWNza3t3I6+u7d/cGjkj+oiSjiBGolYxJs+FsBoCDVJJYNmzAEHPoOGP7iZ6o0hcEGj8EGOY3AD3AtplxIs1coz8palc3hML+jAuxtNdMvyjIJdtGcwV4mTkQLKUPWMn3YnIkkAoSQMC9Fy7Fi6KeaSEgYTvZ0IiDEZ4B60FA1xAMJNZ9En5lk34qbsgzmb/3pTHAgxDnzlCbDsi2VtuvxPayWye+WmNIwTCSFRFqV1E2bKyJw2YHYoByLZWBFMOFUpTdLHHBOpelr41BnSWGR5R/PAuqrHWS5jldRLRadcLN+XCpXrrKgcOkGn6Bw56BJV0C2qohoi6Am9oFf0pj1r79qH9jm3rmnZzTFagPb1C8tOnag=</latexit>

re�ikLx

<latexit sha1_base64="lzrckYWYgop7nvJhwH3BuN9DNuU="></latexit>

 C = AeikCx +Be�ikCx

Incidence from the left lead:

Boundary conditions: continuity of the wavefunction and the 
current (derivative) at the interfaces, 4 equations. 

<latexit sha1_base64="Tacs1jtx5ZHJd6tkIlr5q2Q14gk="></latexit>

 L = eikLx + re�ikLx
<latexit sha1_base64="WUdTsr2xQEIVN2ca8cQRp/2cA6c=">AAACMHicbVBLTwIxGOziC9fXqkcvjWDiRbLLAb2YEL14RCOPBJB0ywc0dB9puwSy4Vf4T7x51T+hJ+PV+CMssAcezmk6M22m44acSWXbn0ZqbX1jcyu9be7s7u0fWIdHFRlEgkKZBjwQNZdI4MyHsmKKQy0UQDyXQ9Xt30786gCEZIH/qEYhND3S9VmHUaK01LIuslmzEUrWihvSI5zjhzG+xljBU8z6c+JwjM1stmVl7Jw9BV4lTkIyKEGpZf022gGNPPAV5UTKumOHqhkToRjlMDYbkYSQ0D7pQl1Tn3ggm/H0W2N81gkEVj3A0/N8NiaelCPP1RmPqJ5c9ibif149Up2rZsz8MFLgUx3RXifiWAV4sg5uMwFU8ZEmhAqmW2LaI4JQpTdceKk9YKFM+g5nhU09j7M8xiqp5HNOIVe4z2eKN8lQaXSCTtE5ctAlKqI7VEJlRNEzekVv6N14MT6ML+N7Fk0ZyZ1jtADj5w9FIKjL</latexit>

 R = teikRx

<latexit sha1_base64="NEhu8bVpvLthDa440One0VTjEWU=">AAACCXicbVC7TgJBFL2LL8QXamkzkTWxIrsUaGNCtLHERB4JbMjscBcmzD4yM0sghC+ws9WfsDO2foX/4Ee4C1soeKpz7zl3cua4keBKW9aXkdvY3Nreye8W9vYPDo+KxydNFcaSYYOFIpRtlyoUPMCG5lpgO5JIfVdgyx3dpXprjFLxMHjU0wgdnw4C7nFGdbJqm+bkxjLNQq9YssrWAmSd2BkpQYZ6r/jd7Ycs9jHQTFClOrYVaWdGpeZM4LzQjRVGlI3oADsJDaiPypkt8s7JhRdKoodIFvNv74z6Sk19N/H4VA/VqpYu/9M6sfaunRkPolhjwBJLonmxIDok6bdJn0tkWkwTQpnkSUrChlRSppNy/rzUH/NIZXkny8BpPfZqGeukWSnb1XL1oVKq3WZF5eEMzuESbLiCGtxDHRrAQMAzvMCr8WS8Ge/Gx9KaM7KbU/gD4/MHSAuZpw==</latexit>

x = 0
<latexit sha1_base64="MJxkhTkr58CuJ8b82J5gFx7OC7I=">AAACCXicbVC7TgJBFJ3FF+ILtbSZyJpYkV0KtDEh2lhYYCKPBDZkdrgLE2YfmZklkA1fYGerP2FnbP0K/8GPcBa2EPBU595z7uTMcSPOpLKsbyO3sbm1vZPfLeztHxweFY9PmjKMBYUGDXko2i6RwFkADcUUh3YkgPguh5Y7ukv11hiEZGHwpKYROD4ZBMxjlCi9apvm5ObBNAu9YskqW3PgdWJnpIQy1HvFn24/pLEPgaKcSNmxrUg5CRGKUQ6zQjeWEBE6IgPoaBoQH6STzPPO8IUXCqyGgOfzX29CfCmnvqs9PlFDuaqly/+0Tqy8aydhQRQrCKi2aM2LOVYhTr+N+0wAVXyqCaGC6ZSYDokgVOlyll7qj1kks7yTReC0Hnu1jHXSrJTtarn6WCnVbrOi8ugMnaNLZKMrVEP3qI4aiCKOXtArejOejXfjw/hcWHNGdnOKlmB8/QJ1p5nD</latexit>

x = L

Solve for t (transmission amplitude)

Of course, 
<latexit sha1_base64="vb4qsUTgVzrPVfjQDu5VmAjkEMk=">AAACD3icbVC7TgJBFJ3FF64v1NJmImtiYkJ2KdDGhGhjiYZXAiuZHS4wYfaRmVki2fARdrb6E3bG1k/wH/wIB9hCwFOde8+5kzPHiziTyra/jcza+sbmVnbb3Nnd2z/IHR7VZRgLCjUa8lA0PSKBswBqiikOzUgA8T0ODW94O9UbIxCShUFVjSNwfdIPWI9RovTq0bLMB3yBq9fYMS2rk8vbBXsGvEqclORRikon99PuhjT2IVCUEylbjh0pNyFCMcphYrZjCRGhQ9KHlqYB8UG6ySz1BJ/1QoHVAPBs/utNiC/l2Pe0xydqIJe16fI/rRWr3pWbsCCKFQRUW7TWizlWIZ5+HneZAKr4WBNCBdMpMR0QQajSFS281B2xSKZ5n+aBTV2Ps1zGKqkXC06pULov5ss3aVFZdIJO0Tly0CUqoztUQTVEkUAv6BW9Gc/Gu/FhfM6tGSO9OUYLML5+AWxdmqc=</latexit>

R+ T = 1

<latexit sha1_base64="AHa78nu60/relfjCbwxDqYrGxpg=">AAACDnicbVC7TgJBFL3rE9cXamkzkTWxIrsUaGNCtLHEhFcCK5kdBpgw+3BmlkgW/sHOVn/Cztj6C/6DH+EAWwh4qnPvOXdy5ngRZ1LZ9rextr6xubWd2TF39/YPDrNHxzUZxoLQKgl5KBoelpSzgFYVU5w2IkGx73Fa9wa3U70+pEKyMKioUURdH/cC1mUEK71yLcusXI/V+KFgWlY7m7Pz9gxolTgpyUGKcjv70+qEJPZpoAjHUjYdO1JugoVihNOJ2YoljTAZ4B5tahpgn0o3mYWeoPNuKJDqUzSb/3oT7Es58j3t8bHqy2VtuvxPa8aqe+UmLIhiRQOiLVrrxhypEE3/jjpMUKL4SBNMBNMpEeljgYnSDS281BmySKZ5n+aBTV2Ps1zGKqkV8k4xX7wv5Eo3aVEZOIUzuAAHLqEEd1CGKhB4hBd4hTfj2Xg3PozPuXXNSG9OYAHG1y/MkpuL</latexit>

T = |t|2With the amplitude t the transmission T is just   

Left lead  Right lead Conductor 
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<latexit sha1_base64="lzrckYWYgop7nvJhwH3BuN9DNuU="></latexit>

 C = AeikCx +Be�ikCx

<latexit sha1_base64="qD2gJ6o+ga001xoO4aqtWkKKQDY=">AAACE3icbVA7TsNAFFzzDeZnoKSxiJFoiOwUgTKChjIg8pESY603z8kq649211EiK8ego4VL0CFaDsAdOASbxAVJmGrem3lPo/ETRoW07W9tbX1jc2u7sKPv7u0fHBpHxw0Rp5xAncQs5i0fC2A0grqkkkEr4YBDn0HTH9xO9eYQuKBx9CjHCbgh7kU0oARLtfIMw7J0eMou6cB7GE10y/KMol2yZzBXiZOTIspR84yfTjcmaQiRJAwL0XbsRLoZ5pISBhO9kwpIMBngHrQVjXAIws1mySfmeRBzU/bBnM1/vRkOhRiHvvKEWPbFsjZd/qe1UxlcuxmNklRCRJRFaUHKTBmb0wLMLuVAJBsrggmnKqVJ+phjIlVNC5+6Q5qIPO9oHlhX9TjLZaySRrnkVEqV+3KxepMXVUCn6AxdIAddoSq6QzVURwQN0Qt6RW/as/aufWifc+ualt+coAVoX7/xXp0y</latexit>

e�ikRx
<latexit sha1_base64="qPdZ5KWdf87rRkNdO4XnzOGKB1o=">AAACFXicbVC7TgJBFJ3FF66vFUubjazRRrJLgZZEGwsLTOSRwLqZHS4wYfaRmVkC2fAddrb6E3bG1tp/8CMcYAtBT3XuPefenBw/ZlRI2/7ScmvrG5tb+W19Z3dv/8A4LDRElHACdRKxiLd8LIDREOqSSgatmAMOfAZNf3gz05sj4IJG4YOcxOAGuB/SHiVYqpVnFCxLl2fwmF7QoXc3nuqW5RlFu2TPYf4lTkaKKEPNM7473YgkAYSSMCxE27Fj6aaYS0oYTPVOIiDGZIj70FY0xAEIN51nn5qnvYibcgDmfP7tTXEgxCTwlSfAciBWtdnyP62dyN6Vm9IwTiSERFmU1kuYKSNzVoHZpRyIZBNFMOFUpTTJAHNMpCpq6VN3RGOR5R0vAuuqHme1jL+kUS45lVLlvlysXmdF5dExOkHnyEGXqIpuUQ3VEUFj9Ixe0Kv2pL1p79rHwprTspsjtATt8wc1w53b</latexit>

t0e�ikLx

<latexit sha1_base64="zswAQsQaqGJaucRCjrdlLx7FZy4=">AAACFHicbVC7TgJBFJ31ietr0dJmI2u0IrsUaEm0sUQjjwTWzexwgQmzj8zMImTDb9jZ6k/YGVt7/8GPcIAtBDzVufece3Ny/JhRIW37W1tb39jc2s7t6Lt7+weHRv6oLqKEE6iRiEW86WMBjIZQk1QyaMYccOAzaPiDm6neGAIXNAof5DgGN8C9kHYpwVKtPCNvWTo/h8eUDrz70US3LM8o2EV7BnOVOBkpoAxVz/hpdyKSBBBKwrAQLceOpZtiLilhMNHbiYAYkwHuQUvREAcg3HQWfWKedSNuyj6Ys/mvN8WBEOPAV54Ay75Y1qbL/7RWIrtXbkrDOJEQEmVRWjdhpozMaQNmh3Igko0VwYRTldIkfcwxkaqnhU+dIY1Flnc0D6yrepzlMlZJvVR0ysXyXalQuc6KyqETdIoukIMuUQXdoiqqIYKe0At6RW/as/aufWifc+ualt0cowVoX7/KbZ2o</latexit>

r0eikRx

Incidence from the right lead:

A general scattering matrix S from the system can be defined: 

If time-reversal symmetry (TRS) holds, 
<latexit sha1_base64="C6skoDUwQdzKgJGG6KWymuj6Yro=">AAACCXicbVC7TgJBFL2LL8QXammzkTVakV0KtDEh2lhiIkgCGzI7zMKE2Udm7hLJhi+ws9WfsDO2foX/4Ec4wBYCnurce86dnDleLLhC2/42cmvrG5tb+e3Czu7e/kHx8KipokRS1qCRiGTLI4oJHrIGchSsFUtGAk+wR294O9UfR0wqHoUPOI6ZG5B+yH1OCepVy7LwGs8tq1ss2WV7BnOVOBkpQYZ6t/jT6UU0CViIVBCl2o4do5sSiZwKNil0EsViQoekz9qahiRgyk1neSfmmR9JEwfMnM1/vSkJlBoHnvYEBAdqWZsu/9PaCfpXbsrDOEEWUm3Rmp8IEyNz+m2zxyWjKMaaECq5TmnSAZGEoi5n4aXeiMcqy/s0D1zQ9TjLZaySZqXsVMvV+0qpdpMVlYcTOIULcOASanAHdWgABQEv8ApvxrPxbnwYn3NrzshujmEBxtcv3y+aBA==</latexit>

t = t0
<latexit sha1_base64="+FbgWg8ouOdLhSOSkJMxlvq16RM=">AAACDXicbVC7TgJBFJ31ifhCLW0mskYLQnYp0MaEaGOJiTwSdkNmh7swYfaRmVki2fANdrb6E3bG1m/wH/wIB9hCwFOde8+5kzPHizmTyrK+jbX1jc2t7dxOfndv/+CwcHTclFEiKDRoxCPR9ogEzkJoKKY4tGMBJPA4tLzh3VRvjUBIFoWPahyDG5B+yHxGidIrxzTFjbhwSrhkmt1C0SpbM+BVYmekiDLUu4UfpxfRJIBQUU6k7NhWrNyUCMUoh0neSSTEhA5JHzqahiQA6aazzBN87kcCqwHg2fzXm5JAynHgaU9A1EAua9Plf1onUf61m7IwThSEVFu05iccqwhPv457TABVfKwJoYLplJgOiCBU6YIWXuqNWCyzvE/zwHldj71cxippVsp2tVx9qBRrt1lROXSKztAlstEVqqF7VEcNRFGMXtArejOejXfjw/icW9eM7OYELcD4+gXNTZr8</latexit>

r = r0 ,

<latexit sha1_base64="//wUNWBswKZmvFaWIdl4U6w2t/k="></latexit>
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<latexit sha1_base64="noc9lvE6OcE3afIuQCEcvOhcefA=">AAACCHicbVC7TgJBFL2LL1xfqKXNRtbEiuxSoCXRxhKjPBLYkNnhAhNmH5mZJZINP2Bnqz9hZ2z9C//Bj3CALQQ81bn3nDs5c/yYM6kc59vIbWxube/kd829/YPDo8LxSUNGiaBYpxGPRMsnEjkLsa6Y4tiKBZLA59j0R7czvTlGIVkUPqpJjF5ABiHrM0qUXjVt23wwbbtbKDolZw5rnbgZKUKGWrfw0+lFNAkwVJQTKduuEysvJUIxynFqdhKJMaEjMsC2piEJUHrpPO7UuuhHwlJDtObzX29KAiknga89AVFDuarNlv9p7UT1r72UhXGiMKTaorV+wi0VWbNfWz0mkCo+0YRQwXRKiw6JIFTpbpZe6o1ZLLO8T4vApq7HXS1jnTTKJbdSqtyXi9WbrKg8nME5XIILV1CFO6hBHSiM4AVe4c14Nt6ND+NzYc0Z2c0pLMH4+gVDy5kV</latexit>

S

S  is unitary,  
<latexit sha1_base64="3MTzr5QTC40qZPNXBa20cha8dEg=">AAACGHicbVC7TgJBFJ3FF64v1FjZTAQTK7JLgTYmRBtLDPJIAMnscHeZMPvIzCyRbPgRO1v9CTtja+c/+BEOsIWApzr3nnNvTo4TcSaVZX0bmbX1jc2t7La5s7u3f5A7PGrIMBYU6jTkoWg5RAJnAdQVUxxakQDiOxyazvB2qjdHICQLgwc1jqDrEy9gLqNE6VUvd1IomLXHTp94Hghcw9fYNguFXi5vFa0Z8CqxU5JHKaq93E+nH9LYh0BRTqRs21akugkRilEOE7MTS4gIHRIP2poGxAfZTWbxJ/jcDQVWA8Cz+a83Ib6UY9/RHp+ogVzWpsv/tHas3KtuwoIoVhBQbdGaG3OsQjxtAfeZAKr4WBNCBdMpMR0QQajSXS186o9YJNO8T/PApq7HXi5jlTRKRbtcLN+X8pWbtKgsOkVn6ALZ6BJV0B2qojqiKEEv6BW9Gc/Gu/FhfM6tGSO9OUYLML5+AeTsnhc=</latexit>

S†S = 1
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32 Scattering!

1

r12 t12

t22

t32

NL NR
r22

r32

!Fig. 1.16. Structure of two-terminal scattering matrix. We show reflection and transmission amplitudes of
the electron wave coming from the left in the second transport channel, n’ = 2.

The NL × NL reflection matrix r̂ describes the reflection of the waves coming from the
left. Thus, rnn′ is the amplitude of the following process: the electron coming from the left
in the transverse channel n′ is reflected to the channel n. Consequently, |rnn′ |2 is the prob-
ability of this process. The NR × NR reflection matrix r̂ ′ describes reflection of particles
coming from the right. Finally, the NR × NL transmission matrix t̂ is responsible for the
transmission through the scattering region (see Fig. 1.16).

Control question 1.8. Explain the block structure of the scattering matrix in the fol-
lowing cases: (i) electrons in all transport channels are reflected from the nanostructure
with no transmission remaining in the same channel; (ii) electrons in all transport chan-
nels are reflected from the nanostructure with no transmission, but do not remain in the
same channel; (iii) electrons in all channels are transmitted without any reflection and
do not have to remain in the same channel.

An important condition on the scattering matrix is imposed by symmetry with respect
to time reversal. If this symmetry holds, the scattering matrix is symmetric, ŝ = ŝT. So,
the reflection matrices are symmetric, and t̂ ′ = t̂T. The applied magnetic field B changes
sign upon time reversal. In this case, the time-reversal symmetry relates the elements of
the scattering matrix at opposite values of magnetic field, rnn′(B) = rn′n(−B), r ′mm′ (B) =
r ′m′m(−B), tmn(B) = t ′nm(−B).

Any scattering matrix satisfies the unitarity condition, ŝ†ŝ = 1̂. The diagonal element of
ŝ†ŝ is given by

(
ŝ†ŝ
)

nn
=
∑

n′
|rnn′ |2 +

∑

m

|tmn|2 = 1, (1.35)

since it represents the total probability of an electron in channel n being either reflected or
transmitted to any channel.

Exercise 1.3. The above unitarity condition is best expressed using reflection–
transmission block structure, Eq. (1.34), and provides several important details of
the scattering approach. To see this: (i) write down the condition ŝ†ŝ = 1̂ explicitly
in block notation and show that it gives rise to three independent conditions on the
matrices r̂ , r̂ ′, t̂ , and t̂ ′; (ii) do the same with the condition ŝ ŝ† = 1̂ and show that it
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 out
L (NL)

 out
R (NR)

!
=

✓
sLL (NL⇥NL) sLR (NL⇥NR)

sRL (NR⇥NL) sRR (NR⇥NR)

◆ 
 in
L (NL)

 in
R (NR)

!

Matrix of transmission amplitudes t  
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Tr
⇥
t†t

⇤
=

NLX

i

NRX

j

|tij |2

Nazarov & Blanter



Conductance as transmission
Multichannel electrodes

EF

Multichannel Landauer formula

L R
Conductor

Left electrode:  
m modes

Right electrode:  
n modes

EF

<latexit sha1_base64="DBfw93K7HGJfyO2mfO94fAgc900="></latexit>

G(EF ) =
mX

i=1

Gi(EF ) =
mX

i=1

nX

j=1

Gij(EF )
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Multiterminal setups
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Gpq =
2e2

h
T pq(EF )
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Iq =
X

q

Gpq[Vp � Vq]

At each terminal q the current Iq  is measured 

And it can be related to the potential differences between contacts:
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Experimental multiterminal setups
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How to calculate the conductance?
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The scattering matrix can be obtained by Green’s function methods.
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(E �H)� = 0For the eigenvalue problem 

its Green’s function (GF) G is defined as
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G
± = lim

⌘!0+

1

E ± i⌘ �H
The eigenenergies are the poles of G:
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[E + i⌘ �H(r)]GR(r, r0, E) = �(r� r0)
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hr|r0i = �(r� r0)
In the coordinate representation, {
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Green’s functions for the scattering matrix
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2.5. FUNCIONES DE GREEN

R T

medio A medio B

S

!

P! !G

!G

!G

!G

!P’

P

I

Figura 2.3: Propagación de una excitación que parte del punto P ′
µ a un punto Pµ del

medio µ (medio A) y a otro punto Pµ del medio µ (medio B). S indica la intercara
y I la propagación sobre el dominio de la intercara. R y T indican la reflexión y la
transmisión, respectivamente, en la intercara. Gµ (Gµ) es el progagador del medio µ
(µ).

medios, esto es, PµGµIRIGµP ′
µ, siendo I la proyección sobre el dominio de la intercara.

Aśı, si el punto inicial y el punto final están en el mismo medio µ, podemos escribir la
función de Green del sistema compuesto, Gs como la suma de los dos caminos, esto es

PµGsP ′
µ = PµGµP ′

µ + PµGµIRIGµP ′
µ (2.72)

donde R es un objeto definido solo en el dominio de la intercara I, este toma el
efecto de la perturbación (la intercara) en todos los órdenes, como la matriz T en la
ecuación 2.71.

Si el punto inicial está en el medio µ y el punto final en el otro medio µ tenemos el
efecto de la transmisión:

PµGsP ′
µ = PµGµIT IGµP ′

µ (2.73)

donde T se define como R, pero esta tiene en cuenta la transmisión a través de la
intercara (o impureza en el caso 1D).

Comparando la ecuación 2.71 con 2.72 y 2.73, vemos que R y T son comparables
a la matriz T proveniente de la teoŕıa de scattering. Por consiguiente, R y T incluyen
el efecto de la intercara a todos los órdenes.

Se denota la proyección de la función de Green del sistema, Gs, en la intercara por

gs = IGsI (2.74)

Evaluando las ecuaciones 2.72, 2.73 en el dominio de la intercara se obtiene

gs = gµ + gµRgµ

gs = gµT gµ
(2.75)

37

medium    
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µ̄medium 

L R
Conductor

Approach used by tranSIESTA

in out
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Z
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Lippmann-Schwinger equation: 



20

Scattering matrix from wavefunctions
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Open source program in Python for quantum transport

https://kwant-project.org/
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FIG. 1. Sketch of the device that consists of a small graphene
flake placed on top of a very long armchair GNR of the same width.
The top flake is rotated with respect to the bottom GNR. The two
regions of the long GNR away from the top flake are regarded as
ideal leads, labeled L (left) and R (right).

and its effect on the transport properties of such QPCs. We
analyze the interplay of vacancy-related localized states with
edge states, which have been shown to be affected by the
inhomogeneous coupling arising from the twist angle. In
pristine samples, conductance is quantized for moderately
large twist angle (larger than ! 10◦), but quantized plateaus
are hardly noticeable on approaching the magic angle (!
1.1◦). As it is well known, the occurrence of moiré patterns
breaks the electron-hole symmetry. However, we find that the
electron-hole symmetry is partially restored on increasing the
concentration of vacancies. We also explore the consequences
of the spatial distribution of vacancies over the QPC, verifying
that they have a larger impact when they are mainly located at
the central part for systems with armchair edges.

The paper is organized as follows. In Sec. II we present
the system and model Hamiltonian used for obtaining elec-
tronic transport properties. In Sec. III we present our results
in two steps. First, in Sec. III A we investigate pristine QPCs
and investigate the dependence of the conductance on the
twist angle. Second, in Sec. III B we study the effect of a
random distribution of single vacancies on the conductance.
Section IV concludes with a brief summary of the results.

II. SYSTEM AND MODEL HAMILTONIAN

The system under consideration consists of a very long
armchair GNR, on top of which a ultrasmall graphene flake of
the same width is placed. The top flake is rotated with respect
to the bottom GNR and it can be viewed as a graphene quan-
tum dot. At 0◦ rotation angle the flake has an armchair edge
aligned with that of the bottom GNR, presenting two zigzag
edges at the leads-conductor coupling areas. For nonzero ro-
tation angle, we preserve the armchair edges in the current
direction, and chiral edges [31], with mixed zigzag-armchair
character, arise in the direction perpendicular to the current.
The two regions of the bottom GNR away from the top flake
are regarded as ideal leads, denoted left (L) and right (R)
in Fig. 1. Therefore, electrons coming from the left lead are
scattered off from the middle region that is coupled to the top
flake and then they are reflected or transmitted to the right
lead. In this way a QPC is created.

The tight-binding Hamiltonian reads as H1 + H2 + Hinter,
where H! describes the electron dynamics in the lower (! = 1)
and upper (! = 2) graphene monolayers (the ribbon and the
flake, respectively). Since our focus are the low-energy trans-
port properties of the twisted QPC, we use a nearest-neighbor
approximation for the intralayer Hamiltonian and include a
larger-range interlayer hoppings for the interlayer coupling.

This approach has been successfully employed in twisted bi-
layer systems [11,32,33] and also in Bernal graphene bilayers
[22,34]. The intralayer nearest-neighbor hopping describes
the linear dispersion near the Fermi point and the interlayer
hoppings provide a low-energy modification of this dispersion
with an exponentially decaying coupling within the Slater-
Koster approach [22,33]. Hence

H! = −
∑

〈i, j〉
γ0 c†

!i c! j + H.c., (1a)

Hinter = −
∑

i, j

γ1 e−β(ri j−d ) c†
1i c2 j + H.c., (1b)

where H.c. stands for Hermitian conjugate and the summation
in 〈i, j〉 runs over nearest-neighbor C atoms. The origin of
energy is set at the energy of the C orbital. Here c†

!i and
c!i are the creation and annihilation fermion operators at
site i of the monolayer !. The parameters γ0 = 3.16 eV and
γ1 = 0.39 eV, are the intra and interlayer nearest-neighbor
hoppings, respectively; ri j = |ri − r j | is the distance between
atoms with positions ri and r j , each one located on a different
layer; d = 3.35 Å is the interlayer distance and β = 3 Å−1

[10]. The summation in (1b) runs over all atom pairs i and
j of different layers and it is restricted to ri j < 6a0, with
a0 = 1.42 Å being the C–C distance. This parametrization has
been proved to provide excellent agreement with ab initio cal-
culations of the bands near the Fermi energy of TBG systems
[23,24,33,35].

Electron states of the QPC are characterized by the local
density of states (LDOS), defined as

ρ(ri, E ) =
∑

ν

|ψν (ri )|2δ(E − Eν ), (2a)

where the summation runs over all eigenstates of the QPC
with energy Eν and ψν (ri ) denotes the amplitude at posi-
tion ri of the corresponding eigenstate. The wave function
is assumed to be normalized hereafter. Similarly, the density
of states (DOS) is calculated from the LDOS as ρ(E ) =∑N

i=1 ρ(ri, E ), where N is the number of atomic positions in
the QPC.

The spatial extent of an arbitrary eigenstate ν can also be
estimated from the participation ratio (PR)

PRν =
(

N∑

i=1

|ψν (ri )|4
)−1

. (2b)

Recall that PRν ∼ 1 when the eigenstate is localized at a
single atom and PRν ∼ N when the eigenstate is extended
over the entire QPC. Finally, electron transport properties
at low temperature were calculated within the framework of
the Landauer-Büttiker formalism [36]. In this formalism, the
conductance is calculated in the linear regime (i.e., at low
bias) as

G(E ) = e2

h
τ (E ), (2c)

where τ (E ) is the transmission coefficient at energy E . Elec-
trons scatter off the QPC and conductance is found to be
dependent on the number of modes which can travel along the
device. Calculation of the three magnitudes (2) was performed
with the help of the Kwant toolkit [37].

045415-2
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Spin-dependent conductances
Multichannel electrodes

The leads and/or the conductor have spin-split states

Ref: Rashba, Sov. Phys. Solid State (1960) 

HR = αR (
σ ×

k ) · ẑ = αR (σ xky − σ ykx )Rashba Hamiltonian: 

The Rashba Effect 

Emmanuel I. Rashba (1927- )

Momentum-dependent splitting of the spin bands in 
2D systems (surfaces, interfaces, heterostructures) 

Zeeman splitting B Rashba splitting ESpin degenerate 
kx ky

E

figure from S. Satpathy talk@correlated oxides 2014

Spin-orbit (Rashba)
Broken inversion sym.
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HZ = � ~µe · ~B

No spin 
dependence
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k ) · ẑ = αR (σ xky − σ ykx )Rashba Hamiltonian: 

The Rashba Effect 

Emmanuel I. Rashba (1927- )

Momentum-dependent splitting of the spin bands in 
2D systems (surfaces, interfaces, heterostructures) 

Zeeman splitting B Rashba splitting ESpin degenerate 
kx ky

E

Ref: Rashba, Sov. Phys. Solid State (1960) 

HR = αR (
σ ×

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kx ky

E
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General spin-orbit Hamiltonian:

Spin-orbit Hamiltonian
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HSO =
e~

4m2c2
(rV ⇥ ~p) · ~�

In an atom, V is due to the nucleus, and it is spherically 
symmetric; this is the origin of the intrinsic spin-orbit term. 

Near a surface, or with an applied electric field, 
V is not spherically symmetric:  

Inversion symmetry is broken 
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HSO / (� ⇥ p) ·E
Initially conceived for a 2DEG at a surface (E.I. Rashba, 1960)

Spin-orbit interaction induced by an electric field

figures from Suhagara & Nitta, Proc. IEEE (2010);  Galitski & Spielman, Nature (2013)

The problem of synthesizing Majorana fermions stands out as per-
haps the most active and exciting area of research combining both
profound fundamental physics and a potential for applications.
Indeed, Kitaev noticed that a Majorana fermion, being a linear com-
bination of a particle and a hole, should not couple much to external
sources of noise and as such should be protected from its debilitating
effects and decoherence31. Furthermore, when many such Majorana
entities are put together, they can form a non-Abelian network capable
of encoding and processing topological quantum information and may
be ideal for quantum computing applications32. Spin-orbit-coupled
superconductors in a magnetic field can host Majorana fermions33,
and creating such topological fermionic superfluids in spin–orbit-
coupled quantum gases appears to be within experimental reach, and
perhaps cold atoms may become the first experimental platform to
create and manipulate non-Abelian quantum matter.

Synthetic SOC in cold atomic gases
As we have seen, SOC links a particle’s spin to its momentum, and in
conventional systems it is a relativistic effect originating from electrons
moving through a material’s intrinsic electric field. This physical mecha-
nism for creating SOC—requiring electric fields at the level of trillions of
volts per metre for significant SOC—is extremely inaccessible in the
laboratory. Such fields exist inside atoms and materials, but not in
laboratories. Instead, we engineer SOC in systems of ultracold atoms,
using two-photon Raman transitions—each driven by a pair of laser
beams with wavelength l—that change the internal atomic ‘spin’.

Physically, this Raman process corresponds to the absorption of a
single photon from one laser beam and its stimulated re-emission
into the second. Each of these photons carries a tiny momentum with
magnitude pR 5 h/l called the photon recoil momentum (h is Planck’s

constant). Conservation of momentum implies that the atom must
acquire the difference of these two momenta (equal to 2pR for
counter-propagating laser beams). In most materials, the photon recoil
is negligibly small; indeed, in conventional condensed matter systems,
the ‘optical transitions’ are described as having no momentum change.
Ultracold atoms, however, are at such low temperatures that the
momentum of even a single optical photon is quite large. Thus, as first
put forward by Higbie and Stamper-Kurn34, Raman transitions can
provide the required velocity-dependent link between the spin and
momentum: because the Raman lasers resonantly couple the spin states
together when an atom is moving, its Doppler shift effectively tunes
the lasers away from resonance, altering the coupling in a velocity-
dependent way. Remarkably, nearly all SOC phenomena present in
solids can potentially be engineered with cold atoms (and some already
have), but in contrast to solids where SOC is an intrinsic material
property, synthetic SOC in cold atoms can be controlled at will.
Furthermore, unlike the common electron, laser-dressed atoms with
their pseudo-spins are not constrained by fundamental symmetries; this
leads to a remarkably broad array of ‘synthetically engineered’ physical
phenomena not encountered anywhere else in physics.

Figure 2 depicts the currently implemented technique for creating SOC
in ultracold atoms12,35–38. The first step, shown in Fig. 2a, is to select from
the many available internal atomic states a pair of states, which we will
associate with the pseudo-spin states :j i and ;j i that together comprise
the atomic ‘spin’. Two counterpropagating laser beams, which here
define the x axis, couple this selected pair of atomic states to the atoms’
motion along ex. Reminiscent of the case for Rashba SOC shown in
Fig. 1d, this coupling alters the atom’s energy–momentum dispersion,
although here only motion along the x direction is affected (Fig. 2c).
In the standard language, both Rashba and Dresselhaus SOC are
present, and have equal magnitude, giving the effective Zeeman shift
–m?B < 2sykx. In solids, this symmetric combination of the Rashba and
Dresselhaus coupling is called the ‘‘persistent spin-helix symmetry
point’’, where it on the one hand allows spin control via SOC, but on
the other minimizes the undesirable effect of spin memory loss30.

Given that the effect of SOCs on a single particle is equivalent to
that of a momentum-dependent Zeeman magnetic field, the particle’s
dispersion relation (for example, the familiar kinetic energy mv2/2 5 p2/
2m for a free particle) is split into two sub-bands corresponding to two
spin-split components, now behaving differently (measured in Fig. 2c).
For the linear SOC on which we focus, the band splitting simply shifts
the minimum of the dispersion relation by an amount depending on the
particle’s internal state and the laser coupling strength. This effect,
depicted in Fig. 2b, was first measured indirectly in ref. 12, where a
BEC was prepared in a mixture of :j i and ;j i in each of the two minima
of the dispersion, and the momentum of the two spins was measured
as a function of laser intensity. More recently, the full dispersion curve
was measured spectroscopically38, clearly revealing the spin–orbit-
coupled structure as a function of momentum (Fig. 2c).

A panoply of SOCs can be created, with additional lasers linking
together additional internal states. Figure 3 shows a realistic example
in which three internal atomic states can be coupled, producing a
tunable combination of Rashba and Dresselhaus SOC39. In these cases,
one of the three initial atomic states is shifted by a large energy, leaving
behind two pseudo-spins comprising a two-level system6. A further
extension can generate an exotic three-dimensional analogue either
to the Rashba SOC, which we call Weyl SOC, that cannot exist in
materials10, or to types of SOC with more than the usual two spin states9.

Many-body physics
An example of a unique quantum phenomenon made possible in ultra-
cold atomic systems is that of spin–orbit-coupled BECs. The main
ingredient of these exotic many-body states are laser-dressed bosons
with states :j i and ;j i that create a synthetic spin-half system.
Because the Pauli spin-statistics theorem prohibits the existence of
bosons with real spin-half, this is already a weird and interesting
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Figure 1 | Physical origin of SOC in conventional systems. a, Structural
inversion-symmetry breaking. In materials, SOC requires a broken spatial
symmetry. For example, the growth profile of two-dimensional GaAs electron
(or hole) systems can create an intrinsic electric field, thereby breaking
inversion symmetry. b, Model system in laboratory frame. The effective model
system consists of an electron confined in the ex–ey plane (in this example
moving along ex) in the presence of an electric field along ez. c, Model system in
electron’s frame. In the rest frame of the electron, the Lorentz-transformed
electric field generates a magnetic field along ey (yielding a Zeeman shift) that
depends linearly on the electron’s velocity. d, Dispersion of resulting Rashba
SOC. For such systems the SOC is linear, and the usual free-particle mv2/2 5 p2/
2m dispersion relation is altered in a spin-dependent way. In this case, pure
Rashba SOC shifts the free-particle dispersion relations for each spin state away
from zero (red and blue curves). The crossing point of these curves can be split
by an applied magnetic field (smoothly shaded curve).
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Inversion symmetry preserved ⇒⇒⇒⇒
spin degeneracy and no Rashba SO

Broken inversion symmetry ⇒⇒⇒⇒
spin-splitting and Rashba SO

behavior under 
time reversal

conclusion

behavior under 
spatial inversionCan be tuned by an external field!

Rashba spin-orbit interaction



probability for an electron in lead L with 
spin σ reaches electrode R with spin σ´

GLR
��0 :

Spin-dependent conductances
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If TRS is broken, L ⇒ R is different from R ⇒ L
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Charge current Ic:
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IRc = IR" + IR#

Spin current Is:
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IRs = IR" � IR#

Charge and spin currents
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In a spin-dependent transport problem, we have to distinguish 
between charge and spin currents
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Case studies

1. FM leads, SO spin-dependent scatttering in the conductor: 
Datta-Das transistor 

2. Unpolarized leads, SO spin-dependent scatttering in the 
conductor: all-electrical production of spin-polarized current   

3. Ferromagnetic (FM) leads, NO spin-dependent scattering: 
spin thermoelectrics

Notice that spin is well-defined in the leads - 
no SOC in the electrodes 
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1) FM leads, SO spin-dependent scattering 
in the conductor: Datta-Das transistor

y

x

z

1D conductor, current along x, E field along z
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Rashba spin-orbit coupling
<latexit sha1_base64="0kXcizRfE4+lfwBv25IeoF2Nf40="></latexit>

HR = ↵(ky�x � kx�y)

S. Datta and B. Das,  Appl. Phys. Lett.  56, 665 (1990)
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The change of spin 
orientation along L is 

Tuning  Rashba SOC via Vgate allows for current control

fig. from wikipedia

y

x

Ez

x

z

vx v=0

By

Lab frame Electron frame



2929

1) FM leads, SO spin-dependent scattering in 
the conductor: Datta-Das transistor

Vgate

A spin-polarized 
current is injected 
from the left lead 
(source).  

A Vgate tunes the 
Rashba SOC in the 

conductor (channel).

Depending on 
Vgate, we can 
have high or low 
current at the 
drain. 

The spin in the conductor 
precesses.

S. Datta and B. Das,  Appl. Phys. Lett.  56, 665 (1990)
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lead L

I↓
RL R

Conductor

I↑
L

I↓
L

Unpolarized 
 input current

Spin-polarized 
 output current

2) Unpolarized leads, Rashba SOC in the conductor: 
all electrical production of spin-polarized currents

I↑
R

IR" / GLR
"" +GLR

#"

Ps = GLR
"" +GLR

#" �GLR
## �GLR

"#

Recall that                                           , so we can define the  

spin  polarization of the current as
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Since spins with opposite directions precess in antiphase, there 
is no possible spin polarization for only one conduction channel 

in the out lead.

Symmetry of Spin Transport in Two-Terminal Waveguides with a Spin-Orbital 
Interaction and Magnetic Field Modulations, S. F. Zhai and H. Q. Xu,  

Phys. Rev. Lett. 94, 246601 (2005).

But there is a way around if the lead has two or more 
conducting channels…

…symmetry permitting. 

2) Unpolarized leads, Rashba SOC in the conductor: 
all electrical production of spin-polarized currents



Goal: 

without magnetic fields or impurities - 
 preserving time-reversal symmetry

E field

I↓
I↑

32

Obtain spin-polarized transport in planar 
systems without magnetic fields



Symmetries of planar systems 
in an external electric field
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II. GEOMETRY AND DEFINITIONS

We consider planar two-terminal devices as the one
shown in Fig. 1. The current flows between left (L) and
right (R) contacts along the longitudinal el-direction.
The spin-orbit coupling occurs in the central part of the
device that is perturbed by a Rashba-like SOI generated
by an electric field applied perpendicular to the ribbon;
i.e., in the ep-direction. The unitary vector et defines the
transverse direction of the ribbon, i.e., across its width.
The conductance GLR

��0(E) indicates the probability that
an electron in the left electrode with energy E and spin
pointing in the �-direction reaches the right electrode
with spin pointing in the �

0-direction.

W

RL Conductor,(C)

�

el

et

ep

FIG. 1. (Color online) Schematic drawing of the device geom-
etry. Left (L) and right (R) contacts are pristine nanoribbons
without SO interaction. The conductor (C), shaded in red, is
the central part of the device with Rashba SOI, length `, and
width W .

III. SYMMETRY CONSIDERATIONS

In planar quasi-one-dimensional devices as those con-
sidered here, one can expect the following spatial sym-
metries:
(i) C2 rotation around ep. Under C2, the spatial, mo-
mentum and spin components change as (el, et, ep !
�el, �et, ep), (pl, pt, pp ! �pl, �pt, pp), and (�l, �t, �p !
��l, ��t, �p). Therefore, the conductance of the device is
invariant under these operations. This amounts to inter-
change the left and right electrodes, and invert the spin
direction along the el or et directions, i.e., G

LR
��0 = G

RL
�̄�̄0 ,

where �̄ indicates a spin projection opposite to �, and
�

0=±�. For the spin direction perpendicular to the de-
vice, we get G

LR
��0 = G

RL
��0 .

(ii) Longitudinal mirror symmetry Ml. For Ml,
the spatial and momentum components transform as
(el, et, ep ! el, �et, ep) and (pl, pt, pp ! pl, �pt, pp), re-
spectively. For the spin components, recalling that the
spin transforms as an axial vector, we have (�l, �t, �p !
��l, �t, ��p). Thus, this symmetry does not change the
roles of the electrodes, but changes the sign of the spin
projection when the spin direction is either el or ep, lead-
ing to the relation G

LR
��0 = G

LR
�̄�̄0 . Notice that this sym-

metry does not give any relationship for the conductance

when the spin direction is along et.
(iii) Transversal mirror symmetry Mt. Under Mt,
the spatial and momentum components transform as
(el, et, ep ! �el, et, ep), (pl, pt, pp ! �pl, pt, pp), whereas
the spin changes as (�l, �t, �p ! �l, ��t, ��p). There-
fore, the relation G

LR
��0 = G

RL
�̄�̄0 is obtained when the spin

is pointing in the et or ep directions. Otherwise, for the
spin pointing in the longitudinal direction el, we obtain
the relation G

LR
��0 = G

RL
��0 .

TABLE I. Symmetries and the corresponding conductance
relations derived from them. First column: symmetries; sec-
ond column: spin projection directions; third column: spin-
resolved conductance relations. In this Table �0=±�.

⇥ el, et, ep GLR
��0 = GRL

�̄0�̄

U el, et, ep GLR
��0(E) = GRL

�0�(�E)

Ml el, ep GLR
��0 = GLR

�̄�̄0

Mt

el GLR
��0 = GRL

��0

et, ep GLR
��0 = GRL

�̄�̄0

C2

el, et GLR
��0 = GRL

�̄�̄0

ep GLR
��0 = GRL

��0

Besides spatial symmetries, in the absence of magnetic
field time reversal symmetry (⇥) holds, implying G

LR
��0 =

G
RL
�̄0�̄. Finally, in presence of electron-hole symmetry (U),

the conductance as a function of the energy E satisfies
G

LR
��0(E) = G

RL
�0�(�E). All these relations are gathered

in Table I. These symmetry rules allow us to predict
the possibility of obtaining spin-polarized currents in any
planar devices. For an incident unpolarized current from
the left electrode, the spin polarization of the current in
the right electrode in the s-direction (s = l, t, p) is defined
as

Ps = G
LR
ss + G

LR
s̄s � G

LR
s̄s̄ � G

LR
ss̄ . (1)

Therefore, from symmetry considerations we obtain that
in systems with Ml symmetry the spin polarization of the
current in the el and ep spin-directions are zero, whereas
in all the other cases a spin polarized current can be
obtained, albeit with di↵erent intensities and for various
reasons.

IV. SPIN-POLARIZED CURRENT IN
GRAPHENE NANORIBBONS

We consider the simplest possible geometry: a
graphene nanoribbon where the central region has a finite
Rashba SOI. The length of the conductor ` is given by
3accN for an armchair (AC) GNR and by

p
3accN for a

C2 rotation

(el, et, ep) ! (�el,�et, ep)

(�l,�t,�p) ! (��l,��t,�p)

GLR
�,�0 = GRL

�̄,�̄0 (l,t)

GLR
�,�0 = GRL

�,�0 (p)

34

Symmetries of planar systems 
in an external electric field

LR→RL



time-reversal 

t ! �t
GLR

�,�0 = GRL
�̄0,�̄

r ! r
p ! �p

� ! ��

In graphene, electron-hole (charge conjugation)

GLR
�,�0(E) = GRL

�0,�(�E)
E ! �E

q ! �q
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Symmetries of planar systems 
in an external electric field
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right (R) contacts along the longitudinal el-direction.
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device that is perturbed by a Rashba-like SOI generated
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FIG. 1. (Color online) Schematic drawing of the device geom-
etry. Left (L) and right (R) contacts are pristine nanoribbons
without SO interaction. The conductor (C), shaded in red, is
the central part of the device with Rashba SOI, length `, and
width W .
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spectively. For the spin components, recalling that the
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the conductance as a function of the energy E satisfies
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�0�(�E). All these relations are gathered

in Table I. These symmetry rules allow us to predict
the possibility of obtaining spin-polarized currents in any
planar devices. For an incident unpolarized current from
the left electrode, the spin polarization of the current in
the right electrode in the s-direction (s = l, t, p) is defined
as

Ps = G
LR
ss + G

LR
s̄s � G

LR
s̄s̄ � G

LR
ss̄ . (1)

Therefore, from symmetry considerations we obtain that
in systems with Ml symmetry the spin polarization of the
current in the el and ep spin-directions are zero, whereas
in all the other cases a spin polarized current can be
obtained, albeit with di↵erent intensities and for various
reasons.

IV. SPIN-POLARIZED CURRENT IN
GRAPHENE NANORIBBONS

We consider the simplest possible geometry: a
graphene nanoribbon where the central region has a finite
Rashba SOI. The length of the conductor ` is given by
3accN for an armchair (AC) GNR and by

p
3accN for a

C2 rotation
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Symmetries of planar systems 
in an external electric field
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Summary 

• We have reviewed the fundamentals of quantum transport 
and its extension to spin-dependent problems 

•We have studied two cases in which SOC plays a 
fundamental role in transport: 

• Symmetry reasoning allows us to analyze the the 
existence of spin-polarized currents - symmetry as a 
guiding principle 

1.  Datta-Das transistor 

2. All-electrical production of spin-polarized currents (Rashba)
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