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Outline

Origin of magnetism and exchange interactions:

▶ A bit of history

▶ Interaction inside an atom

▶ Interaction between 2 atoms

▶ Interaction through ligands
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History of magnetism

1819: Hans Christian Oersted

First experimental evidence of the link between electric current and magnetic field.
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History of magnetism
1820: Jean-Baptiste Biot and Felix Savart

Mathematical expression of the magnetic field generated by an electric current
flowing through a wire.



5

History of magnetism
1895: Pierre Curie

Effect of temperature on paramagnetic susceptibilities (Curie’s law).
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History of magnetism

1907: Pierre-Ernest Weiss

First microscopic model to explain magnetism (molecular field).



7

History of magnetism: Curie-Weiss law
Some paramagnetic crystals do not follow the Curie law

Weiss postulated that the magnetic moments interact:

Weiss molecular field proportional to the magnetisation:

HW = γM

where γ is the molecular field constant and is such that the total field is given by
Htot = H+HW .

By using the relation χ = M/H = C/T we have:

M
H+ γM

=
C
T
7−→ M =

CH
T − γC

7−→ χ =
C

T −θ
,

7→ Curie-Weiss law

When the temperature is equal to the critical TC = θ , the susceptibility diverges,
which corresponds to a transition toward an ordered phase: the ferromagnetic
state!
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History of magnetism

1930: Louis Néel

Extension of Weiss model to antiferromagnetism and ferrimagnetism.
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History of magnetism
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Origin of the Weiss molecular field?
Magnetic moments comes from electrons spinning around nuclei
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Origin of the Weiss molecular field?

Dipole-dipole interaction energy between the atom magnetic moments:

Edd =
µ0

4π

m1 ·m2−3(r ·m1)(r ·m2)

r3 ≡ µ0m ·H

Order of magnitude: 10−25 J ≡ 6.24 10−7 eV ≡ 7 10−3 K

7→ even at a temperature of 1K the thermal fluctuations are 2-3 order of magnitude
larger than the dipole-dipole interaction!

The dipole-dipole energy is way too small to explain the robust magnetisation
observed experimentally at temperature much larger than this interaction!
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History of magnetism
Pauli, Dirac, Heisenberg

Magnetism cannot be explained without quantum mechanics!
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History of magnetism
Magnetism cannot be explained without quantum mechanics!

Magnetic moments comes mostly from electron spin!

Electrons should be treated through a wave function!
See lecture of H. Ronnow
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Two electrons in the same orbital: Heitler-London

2 electrons in the same shell of the same atom?

electrons can be described by the spin orbitals φ(r)χ(s) where φ is the one
electron p-wave function and χ its spin part: χ = α = | ↑⟩ or χ = β = | ↓⟩.
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Two electrons in the same orbital: Heitler-London

H = H1 +H2 +H12

with

H1 =−
h̄2

2m
∇

2
1−

Ze2

4πε0r1
≡ idem for H2 1←→ 2

H12 =
e2

4πε0r12

We assume:
⟨φa(ri)|Hi |φa(ri)⟩= εa ⟨φb(ri)|Hi |φb(ri)⟩= εb

and with
⟨φa(ri)|φb(ri)⟩=

∫
φ
∗
a (ri)φb(ri)d3r = 0 ; ⟨↑ | ↓⟩= 0,

⟨φa(ri)|φa(ri)⟩= ⟨φb(ri)|φb(ri)⟩= 1 ; ⟨↑ | ↑ |⟩= ⟨↓ | ↓ |⟩= 1,
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Heitler-London
In each orbital we can have one spin up and one spin down state, hence, giving 4
possible states in our system: (↑↑, ↑↓, ↓↑, ↓↓).
The corresponding wave functions are (Slater determinantal procedure to get the
antisymmetric wave functions):

▶ (↑↑) state:

ψ1 =
1√
2

∣∣∣∣ φa(r1)α1 φa(r2)α2
φb(r1)α1 φb(r2)α2

∣∣∣∣
= 1√

2
α1α2 [φa(r1)φb(r2)−φa(r2)φb(r1)]

▶ (↓↓) state:

ψ4 =
1√
2

β1β2 [φa(r1)φb(r2)−φa(r2)φb(r1)]
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Heitler-London

▶ (↑↓) state:

ψ2 =
1√
2

∣∣∣∣ φa(r1)α1 φa(r2)α2
φb(r1)β1 φb(r2)β2

∣∣∣∣
= 1√

2
[φa(r1)φb(r2)α1β2−φa(r2)φb(r1)α2β1]

▶ (↓↑) state:

ψ3 =
1√
2
[φa(r1)φb(r2)β1α2−φa(r2)φb(r1)β2α1] .
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Heitler-London

▶ (↑↑) state:

ψ1 =
1√
2

α1α2 [φa(r1)φb(r2)−φa(r2)φb(r1)]

▶ (↓↓) state:

ψ4 =
1√
2

β1β2 [φa(r1)φb(r2)−φa(r2)φb(r1)]

▶ (↑↓) state:

ψ2 =
1√
2
[φa(r1)φb(r2)α1β2−φa(r2)φb(r1)α2β1]

▶ (↓↑) state:

ψ3 =
1√
2
[φa(r1)φb(r2)β1α2−φa(r2)φb(r1)β2α1] .
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Heitler-London

Calculation of E1(↑↑) =⟨ψ1|H|ψ1⟩= · · ·
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Heitler-London

E1(↑↑) = ⟨ψ1|H|ψ1⟩= 1
2 ×α∗1α∗2α1α2

⟨φa(r1)|H1|φa(r1)⟩ (= εa)
+⟨φa(r2)|H2|φa(r2)⟩ (= εa)
+⟨φb(r1)|H1|φb(r1)⟩ (= εb)
+⟨φb(r2)|H2|φb(r2)⟩ (= εb)

+⟨φa(r1)φb(r2)|H12|φa(r1)φb(r2)⟩ (= Kab)
+⟨φa(r2)φb(r1)|H12|φa(r2)φb(r1)⟩ (= Kba = Kab)

−⟨φa(r1)φb(r2)|H12|φb(r1)φa(r2)⟩ (=−Jab)
−⟨φa(r2)φb(r1)|H12|φb(r2)φa(r1)⟩ (=−Jba =−Jab)

= εa + εb +Kab−Jab
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Heitler-London

Calculation of E4(↓↓) =⟨ψ4|H|ψ4⟩= · · ·

E4(↓↓) = ⟨ψ4|H|ψ4⟩= εa + εb +Kab−Jab = E1
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Heitler-London

Calculation of E2(↑↓) = ⟨ψ2|H|ψ2⟩= 1
2×

2εa +2εb

+⟨φa(r1)φb(r2)α1β2|H12|φa(r1)φb(r2)α1β2⟩ (= Kab)
+⟨φa(r2)φb(r1)α2β1|H12|φa(r2)φb(r1)α2β1⟩ (= Kab)

−⟨φa(r2)φb(r1)α2β1|H12|φa(r1)φb(r2)α1β2⟩ (= 0)
−⟨φa(r1)φb(r2)α1β2|H12|φa(r2)φb(r1)α2β1⟩ (= 0)

= εa + εb +Kab
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Heitler-London
The same can be done for ψ3:

E3(↓↑) = E2 = εa + εb +Kab.

Only two off-diag terms are non-zero:

⟨ψ2|H12|ψ3⟩= ⟨ψ3|H12|ψ2⟩=−Jab
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Heitler-London
Hence, the total matrix gives:

εa + εb +


Kab−Jab 0 0 0

0 Kab −Jab 0
0 −Jab Kab 0
0 0 0 Kab−Jab


Its diagonalization gives two states:

▶ triplet (degeneracy 3): Et = εa + εb +Kab−Jab

▶ singlet (degeneracy 1): Es = εa + εb +Kab +Jab
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Heitler-London
So-called Coulomb integral:

Kab =
e2

4πε0

∫
d3r1

∫
d3r2
|φa(r1)|2|φb(r2)|2

|r12|

and Exchange integral:

Jab =
e2

4πε0

∫
d3r1

∫
d3r2

φ ∗a (r1)φb(r1)φ
∗
b (r2)φa(r2)

|r12|

where Kab ≥ 0 and Jab ≥ 0



26

Towards the Heisenberg Hamiltonian
On the spin basis |S,Sz⟩:

|ψ1⟩= |1,1⟩ ; |ψ4⟩= |1,−1⟩

1√
2
(|ψ2⟩+ |ψ3⟩) = |1,0⟩ ; 1√

2
(|ψ2⟩− |ψ3⟩) = |0,0⟩

▶ triplet states (symmetric): {|1,1⟩, |1,0⟩; |1,−1⟩}
▶ singlet state (antisymmetric): {|0,0⟩}

we have S2 = (S1 +S2)
2 = S2

1 +S2
2 +2S1S2

▶ = 2 triplet
▶ = 0 singlet
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Towards the Heisenberg Hamiltonian
Heisenberg trick:

▶ triplet: (S1 +S2)
2−1 = 1

▶ singlet: (S1 +S2)
2−1 =−1

The total Hamiltonian can be rewritten as follows:
Es+Et

2 − Es−Et
2

(
2S1S2 +

1
2

)
= constant−2JabS1S2

which looks like an “exchange” Hamiltonian 7−→ Heisenberg Hamiltonian!

Good even for more than 2 electrons:

H =−∑
ij

JijSiSj .

Remark: “no magnetic” (i.e. magnetostatic) interactions at play!
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Summary

Electron interactions inside an atom can be reduced into a simple spin-spin
Hamiltonian:

H =−∑
ij

JijSiSj .

The ground state of the electrons inside the same atom is ferromagnetic (1st
Hund’s rule, minimising the Coulomb energy together with Pauli’s exclusion
principle)

7−→ It does not explain why there are antiferromagnets in nature!

7−→What is happening between magnetic atoms inside crystals/molecles?
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Theories of Bonding
Three main models:

▶ The molecular orbital theory invented by Hund and Mulliken in 1928-1932.
▶ The valence bond theory (also called Heitler-London theory or

Heitler-London-Slater-Pauling theory), generalised by Linus C. Pauling and
John C. Slater in 1931.

▶ The crystal field theory, first proposed by J. Becquerel in 1929 and exact
theory by H. Bethe in 1929, and with significant contributions from J. H. Van
Vleck in the 1930s.
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Heitler-London - Valence bond theory of H2

Between two atoms: Hydrogen molecule and 1s orbitals



31

Heitler-London - Valence bond theory of H2

Between two atoms: Hydrogen molecule and 1s orbitals

H(r−R)φ1s(r−R) = ε1sφ1s(r−R)

with R the position of the proton and r the position of the electron. With two
hydrogen atoms we have:

Htot = H(r1−Ra)+H(r2−Rb)

− e2

|r1−Rb|
− e2

|r2−Ra|
e-p interactions

+
e2

|r1− r2|
e-e interaction

+
e2

|Ra−Rb|
p-p interaction
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Heitler-London - Valence bond theory of H2

Between two atoms: Hydrogen molecule and 1s orbitals

6 possible states:

Notations: φ1s(r−Ra) = φa(r); φ2s(r−Rb) = φb(r) and the overlap between the two
1s orbitals: ∫

φ
∗
a (r)φb(r)dr = Oab ̸= 0
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Heitler-London - Valence bond theory of H2
Wave functions for the four neutral configurations 1, 2, 3 and 4:

ψ1(↑↑,Sz = 1) =
1√

2(1−O2
ab)

∣∣∣∣ φa(r1)α(s1) φa(r2)α(s2)
φb(r1)α(s1) φb(r2)α(s2)

∣∣∣∣
=

1√
2(1−O2

ab)
α1α2 [φa(r1)φb(r2)−φa(r2)φb(r1)]

ψ4(↓↓,Sz =−1) =
1√

2(1−O2
ab)

β1β2 [φa(r1)φb(r2)−φa(r2)φb(r1)]

ψ2 =
1√

2(1+O2
ab)

[φa(r1)φb(r2)β1α2−φa(r2)φb(r1)α1β2]

ψ3 =
1√

2(1+O2
ab)

[φa(r1)φb(r2)α1β2−φa(r2)φb(r1)β1α2]
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Heitler-London - Valence bond theory of H2

One can also obtain a triplet and a singlet state:

Et = 2ε +
Cab− Iab

1−O2
ab

Es = 2ε +
Cab + Iab

1+O2
ab

The splitting between t and s states is given by:

∆Est = εt − εs = 2
O2

abCab− Iab

1−O4
ab
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Heitler-London - Valence bond theory of H2

With “new” Coulomb Cab and Exchange Iab integrals:

Cab = e2
∫

dr1

∫
dr2
|φa(r1)|2|φb(r2)|2

r12

−e2
∫

dr1
|φa(r1)|2

|r1−Rb|
−e2

∫
dr2
|φb(r2)|2

|r2−Ra|
.

Iab = e2
∫

dr1

∫
dr2

φ ∗a (r1)φb(r1)φ
∗
b (r2)φa(r2)

r12

−e2Oab

∫
dr1

φ ∗a (r1)φb(r1)

|r1−Rb|
−e2Oab

∫
dr2

φ ∗b (r2)φa(r2)

|r2−Ra|
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Heitler-London - Valence bond theory of H2

the Hamiltonian can be expressed as a Heisenberg spin exchange form:

H = constant+J12S1S2

with J12 =∆Est .

The sign of J12 will thus drive the ground state to be ferro or anti-ferro

Regarding the sign of J12 we have different cases:

▶ Oab = 0: J12(=−Iab)< 0 as seen before on a single atom

▶ For Oab ̸= 0: J12 changes sign when O2
abCab = Iab:

* J12 < 0 for O2
abCab < Iab

* J12 > for O2
abCab > Iab.

This means that if the overlap integral Oab is sufficiently large (J12 > 0), the
exchange coupling is antiferro and the ground state energy is given by the singlet
state.
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Heitler-London - Valence bond theory of H2

Taking into account the ionized states 5 and 6

Both electrons are on one of the two atoms:

|ψa⟩=
1√
2

∣∣∣∣ φa(r1)α1 φa(r2)α2
φa(r1)β1 φa(r2)β2

∣∣∣∣
=

1√
2
[α1β2−β1α2]φa(r1)φa(r2)

|ψb⟩=
1√
2
[α1β2−β1α2]φb(r1)φb(r2)
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Heitler-London - Valence bond theory of H2

Putting two electrons on the same site will cost the Coulomb repulsion (on-site
interaction):

U = ⟨ψa|
e2

r12
|ψa⟩= e2

∫
dr1

∫
dr2
|φa(r1)|2|φa(r2)|2

r12

which is also called the Hubbard U term.

In this ionized configuration we have that U > Cab > Iab.
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Heitler-London - Valence bond theory of H2

Remaining term to take care of the connection between the empty and occupied
atoms:

−tab =−e2
∫

dr
φ ∗a φb

|r−Rb|
which corresponds to the amplitude for the single-electron hopping between the
two atoms (tight-binding hopping integral) or the probability for an electron to jump
from an atom to the other one.
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Heitler-London - Valence bond theory of H2

Schematic view of energy level splitting of the Hydrogen molecule:

The AFM order (singlet) is the ground state!
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Interaction through non magnetic atoms

Electrons interacting through ligand atoms (O, F, N, etc)
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Superexchange

Direct- versus SUPEREXCHANGE
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Superexchange

Direct- versus super-exchange:

[J. Stöhr and H. C. Siegmann (Springer, 2006)]
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Superexchange
Hubbard model between magnetic d orbitals and ligand p orbitals:

H =∑
σ

[
εd ∑

i
niσ + εpnpσ − tpd ∑

i

(
c†

iσ cpσ +c†
pσ ciσ

)]
+Ud ∑

i
ni↑ni↓

(Up is neglected),

which gives the following effective superexchange coupling between the two
magnetic cations:

J =
4t4

pd(
Ud +∆pd

)2

(
1

Ud
+

1
Ud +∆pd

)
,

with ∆pd = εd − εp
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Superexchange
180◦ bond case:
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Superexchange
180◦ bond case:
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Superexchange
180◦ bond case:
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Superexchange
180◦ bond case:

Which of the FM/AFM states will be lower in energy?
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Superexchange
180◦ bond case:
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Superexchange
90◦ bond case:
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Superexchange
90◦ bond case:
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Superexchange
90◦ bond case:
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Superexchange
90◦ bond case:
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Superexchange
90◦ bond case:
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Superexchange: Goodenough-Kanamori rules
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Double Exchange
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Double Exchange

[J. Stöhr and H. C. Siegmann (Springer, 2006)]
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Application: Magnetite Fe3O4

Both octahedral and tetrahedral CF

Both Fe3+ (5µB) and Fe2+ (4µB) oxidization states

Both superexchange and double exchange mechanisms
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Going beyond: Heisenberg model with spin directions
Taking into account spin directions (including spin-orbit coupling SOC):

H =−2∑
i ,j

Tij(r,r′)Si(r)Sj(r′)

The tensor T can be decomposed into three parts as follows:

H =−2
[
JS ·S′+D · (S×S′)+S ·Φ ·S

]

- The trace of the symmetric part (Tsym = 1
2(Tij +Tji)) is a scalar and corresponds

to the isotropic exchange interaction J.

- D is the antisymmetrical part of the T tensor (Tantisym = 1
2(Tij −Tji)), corresponds

to the Dzyaloshinski-Moriya vector.

- The rest (Φ), i.e. the traceless part of Tsym, is a tensor of rank 2 and contains the
energy interaction between the spin and the crystal field, i.e. the single ion
anisotropy, as well as the symmetric anisotropic (pseudo dipole interaction)
exchange.
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Heisenberg Model

Isotropic exchange:
H =−2JS ·S′

▶ The isotropic exchange term J is the strongest one

▶ It is usually of the order of several meV in oxides

▶ Involves a dot product between the spins→ tendency to align the spins
parallel to each other

▶ SOC is not needed to account for this isotropic exchange interactions

Examples will be given in the TB2J tutorial (He Xu)
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Heisenberg Model: DMI

Antisymmetric exchange or Dzyaloshinski-Moriya interaction (DMI):

D · (S×S′)

▶ Exists through the SOC

▶ Usually one order of magnitude smaller than the isotropic exchange
interaction J

▶ Minimizes the energy for 90◦ alignment of the spins

▶ In competition with the isotropic exchange interaction

▶ Accounts for most of the non-collinear magnetic ground state with spin
canting (weak FM, weak AFM, . . . )
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Heisenberg Model: DMI
The orientation of D is constrained by symmetry (Moriya)

▶ When a center of inversion is located at C: D = 0
▶ When a mirror plane m perpendicular to AB

passes through C: D ∥m
▶ When there is a mirror plane m including A and

B: D⊥m
▶ When a two-fold rotation axis C2 perpendicular

to AB passes through C: D⊥ C2

▶ When there is an n-fold axis (n ≥ 2) along AB:
D ∥ AB

The orientation of D can be obtained as follows:

Dij ∝ ri × rj

i.e. perpendicular to the triangle formed by the atoms A and B and the ligand
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Heisenberg Model: DMI

Classical weak-FM: αFe2O3, NiF2, ACO3 (A=Mn, Fe, Co, Ni)

CoCO3 familly: intra-layer FM and
inter-layer AFM superexchange

Easy-axis along x and w-FM cant-
ing along y

Typical “kink” in the AFM magnetic
susceptibility

PRB 98, 104424 (2018) JETP 39, 27 (1960)

https://doi.org/10.1103/PhysRevB.98.104424
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Heisenberg Model: DMI
AF2 (rutile): wFM in A=Ni, Co but not for A=Fe, Mn

The only difference is in the easy-axis direction!

FeF2, MnF2 NiF2, CoF2 Sci. Rep. 9, 3200 (2019)

For extended examples see “Consequences of the Dzyaloshinskii-Moriya interaction”, Surf. Sci.
Reports 78, 100605 (2023)

https://doi.org/10.1038/s41598-019-39083-8
https://doi.org/10.1016/j.surfrep.2023.100605
https://doi.org/10.1016/j.surfrep.2023.100605
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Heisenberg Model: DMI
Good source of weak-FM and weak-AFM in Pnma/Pbnm perovskites:

PRB 86, 094413 (2012)

See lecture on Multiferroics

https://doi.org/10.1103/PhysRevB.86.094413
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Heisenberg Model

Single ion anisotropy (SIA):

Free energy expansion w.r.t. atom magnetic moment orientation:

Fa(θ ,φ) = K1 sin
2

θ +K ′1 sin
2

θ cos2φ +K2 sin
4

θ +K ′2 sin
4

θ cos4φ

θ = polar angle [0,π]

φ = is the azimuthal angle [0, 2π]

Depending on the sign of K1 we have two situations:

▶ K1 > 0: easy axis SIA
▶ K1 < 0: easy plane SIA
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Heisenberg Model

Single ion anisotropy (SIA)

K1 > 0 K1 < 0 K1 < 0 and K ′1 ̸= 0

Model not valid for cubic cases, needs higher order:
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Heisenberg Model

Single ion anisotropy (SIA) - the cubic case

Fa(si) = K2(s2
xs2

y +s2
ys2

z +s2
xs2

z)+K3(s2
xs2

ys2
z)

K2 > 0 K2 < 0 K2 > 0 and K3 ̸= 0
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Heisenberg Model

SIA: SOC origin, common order of magnitude 1 to 100 µeV.

Compound MCA (K1 in µeV)

Fe (bcc) 1.4

Co (fcc) 1.6

Ni (fcc) 2.7

MnBi 89

α-Fe2O3 120

MnF2 15

See lecture on Multiferroics for more examples in perovskites
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Diverse misleading discussions
● Heisenberg model valid for localised magnetic moments (insulators), see

itinerant magnetism models (metals) otherwise

● The magnetic moment direction in crystals (SIA, MCA) is given by the SOC

● The isotropic J favours parallel spin alignment vs DMI favours perpendicular
alignment

● The isotropic superexchange is in most cases much larger than the SOC
origin terms (DMI, anisotropic J, SIA)

● Bond directional effects (Kitaev, honeycomb lattices, 2D)

● Shape anisotropy: needs to put back the dipole-dipole magnetostatic
interaction

● Orbital magnetization for unquenched L

● Crystal-field theory, molecular orbitals theory
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Conclusion

● Magnetic interactions can be understood only through quantum mecahnics

● Exchange interactions come from Coulomb interaction treated in QM, i.e. with
spins and Pauli exclusion principles

● Reduction to Heisenberg model good for localized magnetic moments

● SOC necessary to explain anisotropies

● For some first-principles practice, numbers, etc: See tutorial of He Xu
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