

Magnetism in multiferroics

Eric Bousquet

ESM School, Liège, Belgium

03/07/2025

Outline

Multiferroics:

- Definition
- Multiferroic types and mechanisms
- J, DMI, SIA in multiferroic type I (cubic perovskites)
- Spin driven multiferroics (type II) (cubic perovskites)

Ferroic orders

Space	Invariant	Change
Invariant	Ferroelastic	Ferroelectric + - + - + - + -
Change	Ferromagnetic	Ferrotoroidic

Multiferroics:

more than one ferroic order in the same material

(name coined by Hans Schmidt in 1993 but 1st works by Smolenskii et al. 50's who called them ferroelectromagnets)

Multiferroics:

more than one ferroic order in the same material

(name coined by Hans Schmidt in 1993 but 1st works by Smolenskii et al. 50's who called them ferroelectromagnets)

... Well, actually hard to find! (FM metals vs insulating FE)

Multiferroics: more than one ferroic order in the same material ...

Lets do a hack!

Multiferroics: Usual definition plus ... Ferroelectricity + whatever magnetic order!

Multiferroics: more than one ferroic order in the same material!

Multiferroics: Usual definition plus ... Ferroelectricity + whatever magnetic order!

But ... still not very common?

Hack further: Extension to multi-antiferroics!

The d^0 -ness problem (N. Spaldin 2000)

FE conditions (BaTiO₃-type):

- Displacive FE transition (soft polar mode)
- Driven by charge transfer through $O-p/Ti-d^0$ hybridization
- ▶ d^0 is key \longrightarrow in contradiction with magnetic systems that need $d^{n\neq 0}$

Solution: The BaTiO₃-type mechanism for FE is actually not the most common:

- ► Lone pair mechanism (Pb²⁺, Bi³⁺, etc)
- Geometric FE: P is not the primary order parameter (improper, triggered, etc)
- Geometric FE: steric effects (as in "polar metals")
- Spin-driven FE: magnetic order induces FE (P is not the primary OP)

Multiferroics: Type I vs Type II classification

Tentative to classify multiferroics (Khomskii 2009)

Type I multiferroics:

- Ferroelectric and magnetic orders appear independently $(T_C^{FE} \neq T_C^{FM}, T_N)$
- Polarization can be large
- Weak coupling between FE and magnetic properties

Type II multiferroics:

- Magnetism causes ferroelectricity ($T_C^{FE} = T_C^{FM}, T_N$)
- Polarization is small
- Strong coupling between polarization and magnetic properties

Multiferroic Type I mechanisms

a Lone-pair mechanism

b Geometric ferroelectricity

Ļρ

c Charge ordering

Multiferroic Type II mechanisms

Multiferroic Type I: Focus on cubic perovskites ABO₃

Octahedra rotation $a^0 a^0 a^-$

FE distortion

Octahedra rotation $a^0 a^0 a^+$

Multiferroic Type I: Focus on cubic perovskites ABO₃

Complex pattern of distortions: how magnetism behaves?

Magnetic interactions in cubic perovskites

Can be decomposed into 3 parts:

$$S_i \Phi_{ij} S_j = J_{ij}S_i S_j + D_{ij}(S_i \times S_j) + S_i A_{ij} S_j$$

Exchange: J

DM: D

► The rest: $A \rightarrow SIA$

Evaluation of *J*, *D* and *A* vs distortions: DFT analysis in AFeO₃ From PRB 86, 094413 (2012), see also PRB 99, 104420 (2019)

Cubic structure: small anisotropy (4th and 6th order)

$$E_{SIA} = K_1(S_x^2 S_y^2 + S_y^2 S_z^2 + S_z^2 S_x^2) + K_2(S_x^2 S_y^2 S_z^2)$$

Octahedra rotation: $a^0 a^0 c^{+/-}$

top view

 $a^0 a^0 c^{+/-}$ structures: 2^{nd} and 4^{th} orders

$$egin{aligned} & \mathcal{E}_{\mathit{SIA}}(heta,\phi) = \mathcal{K}_1 \sin^2(heta) + \mathcal{K}_1' \sin^2(heta) \cos(2\phi) \ & + \mathcal{K}_2 \sin^4(heta) + \mathcal{K}_2'' \sin^4(heta) \cos(4\phi) \end{aligned}$$

 $a^0 a^0 c^{+/-}$ structures: 2^{nd} and 4^{th} orders

$$egin{aligned} E_{SIA}(heta,\phi) &= K_1 \sin^2(heta) + K_1' \sin^2(heta) \cos(2\phi) \ &+ K_2 \sin^4(heta) + K_2'' \sin^4(heta) \cos(4\phi) \end{aligned}$$

BiFeO ₃	(μeV)	K_1	K'_1	K ₂	<i>K</i> ₂ ''
$0^{0}0^{0}10^{+}$		264.0	0	3.5	0.7
$0^{0}0^{0}10^{-}$		235.3	0	4.3	0.8

 $K_1 > 0 \Longrightarrow$ easy axis shape

 $a^{-}b^{+}a^{-}$ (*Pnma*) and $a^{-}a^{-}a^{-}$ ($R\bar{3}c$) structures: easy-plane

BiFeO ₃	K_1 (μeV)
Pnma (7 ⁻ 8 ⁺ 7 ⁻)	-402
$Rar{3}c~(9^-9^-9^-)$	-400

 $a^{-}b^{+}a^{-}$ (*Pnma*) structure:

Two different easy planes locally but a global easy axis!

		K_1 (μeV)
9-9-9-	BFO	-400

		$K_1 (\mu eV)$
9-9-9-	BFO	-400
9 ⁻ 9 ⁻ 9 ⁻ +0.5FE	BFO	-281
9-9-9+1.0FE	BFO	-1.3
9 ⁻ 9 ⁻ 9 ⁻ +1.5FE	BFO	139

		K_1 (μ eV)
9-9-9-	BFO	-400
9 ⁻ 9 ⁻ 9 ⁻ +0.5FE	BFO	-281
9 ⁻ 9 ⁻ 9 ⁻ +1.0FE	BFO	-1.3
9 ⁻ 9 ⁻ 9 ⁻ +1.5FE	BFO	139
1.0 FE	BFO	217
1.5 FE	BFO	349

		$K_1 \ (\mu eV)$
9-9-9-	BFO	-400
9 ⁻ 9 ⁻ 9 ⁻ +0.5FE	BFO	-281
9 ⁻ 9 ⁻ 9 ⁻ +1.0FE	BFO	-1.3
9 ⁻ 9 ⁻ 9 ⁻ +1.5FE	BFO	139
1.0 FE	BFO	217
1.5 FE	BFO	349

Competition between FE and OR's SIA!

Effects on J

			J_{ac}	J_b	(meV)
BiFeO ₃	cubic	(0 ⁰ 0 ⁰ 0 ⁰)	7.36	_	
	Pnma	(7-8+7-)	6.52	6.68	
	R3c	(9-9-9-)	5.96	_	
	R3c	(9 ⁻ 9 ⁻ 9 ⁻ + FE)	5.36	_	

J decreases with OR distortions because Fe–O–Fe bond angle $< 180^{\circ}$

Effects on DM

			D_x	D_y	D_z	(µeV)
BiFeO ₃	cubic	$(0^0 0^0 0^0)$	0	0	0	
	Pnma	(7 ⁻ 8 ⁺ 7 ⁻)	454	208	124	
	R3c	(9-9-9-)	170	170	170	
	R3c	(9 ⁻ 9 ⁻ 9 ⁻ FE)	146	146	146	

DMI increases with OR distortions because Fe–O–Fe bond angle goes away from 180°

J, DM and SIA vs OR amplitude in $R\bar{3}c$:

wFM vs AFD amplitude in $R\bar{3}c$:

wFM vs AFD amplitude in $R\bar{3}c$:

wFM = arctan(D/J)

Microscopic model: PRL 109, 037207 (2012)

Coupling with the octahedra rotations ω :

$$D_{wFM} \propto (\omega_i - \omega_j) \cdot (\mathbf{S}_i imes \mathbf{S}_j)$$

Coupling with the polar distortions **u** ("Spin-Current"):

$$D_{SC} \propto (\mathbf{u}_i - \mathbf{e}_{ij}) \cdot (\mathbf{S}_i \times \mathbf{S}_j)$$

Multiferroic perovskites: BiFeO₃

BiFeO₃ (*R*3*c*)

 $Fe^{3+} \longrightarrow 3d^5$

G-type AFM + ferroelectricity

 \mapsto multiferroic at room temperature ($T_{FE} = 1100$ K, $T_N = 640$ K)

+ Spin cycloid!

from Spin-current driven DMI PRB 108, 024403 (2023)

Multiferroic type II perovskites

From exchange striction

Rare Earth perovskites: *R*FeO₃

R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu

G-type AFM + weak FM of the TM cation

Interaction between R f electron spins and TM d electron spins

Spin reorientation and compensation point of the wFM

Rare Earth perovskites: *R*FeO₃

Multiferroicity due to the presence of both *R* and Fe magnetic atoms (exchange-striction):

Rare Earth perovskites: *R*FeO₃

Strong magnetoelectric coupling (GdFeO₃):

Rare Earth perovskites: *R*MnO₃

Rich magnetic phase diagram:

Rare Earth perovskites: RMnO₃

Spiral orders induces ferroelectricity (spin-current & exchange-striction):

Rare Earth perovskites: *R*MnO₃

*Tb*MnO₃: (spin-current model)

Conclusion

- Multiferroics, in the extended definition, can exhibit numerous possibilities
- Magnetoelectric multiferroics

Going beyond:

- Strain and interface engineering of new multiferroics
- Skyrmions (both magnetic and electric)
- Composites (mixing FE and FM materials)
- 2D materials
- Type III Multiferroics?

Main review references (oldest to most recent)

- Multiferroic and magnetoelectric materials, W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, 759 (2006).
- Multiferroics: a magnetic twist for ferroelectricity, Sang-Wook Cheong and Maxim Mostovoy, Nature Materials 6, 13 (2007).
- Microscopic mechanisms for improper ferroelectricity in multiferroic perovskites: a theoretical review, S. Picozzi, et al., J. Phys.: Condens. Matter 20 434208 (2008).
- Classifying Multiferroics: Mechanisms and Effects, Daniel Khomskii, Physics 2, 20 (2009).
- Multiferroics with Spiral Spin Orders, Yoshinori Tokura and Shinichiro Seki, Adv. Mater. 22, 1554 (2010).
- Multiferroicity: the coupling between magnetic and polarization orders, K.F. Wang, J.-M. Liu, and Z.F. Ren, Advances in Physics 58, 321 (2009).
- Magnetoelectric and multiferroic media, A. P. Pyatakov and A. Z. Zvezdin, Phys. Uspekhi 55, 557 (2012)

Main review references

- Room-temperature multiferroic magnetoelectrics, James F Scott, NPG Asia Materials 5, e72 (2013).
- Multiferroics of spin origin, Yoshinori Tokura, Shinichiro Seki and Naoto Nagaosa, Rep. Prog. Phys. 77 076501 (2014).
- Novel magneto-electric multiferroics from first-principles calculations, Julien Varignon, Nicholas C. Bristowe, Éric Bousquet, Philippe Ghosez, C. R. Physique 16, 153 (2015)
- The evolution of multiferroics, Manfred Fiebig, Thomas Lottermoser, Dennis Meier and Morgan Trassin, Nature Reviews Materials 1, 1 (2016).
- Non-collinear magnetism in multiferroic perovskites, Eric Bousquet and Andrés Cano, J. Phys. Condens. Matter 28, 123001 (2016)
- Advances in magnetoelectric multiferroics, N.A. Spaldin & R. Ramesh, Nature Mater 18, 203 (2019)
- Single-phase multiferroics: new materials, phenomena, and physics, Chengliang Lu, Menghao Wu, Lin Lin, Jun-Ming Liu, National Science Review 6, 653 (2019).

Main review references

- Multiferroics beyond electric-field control of magnetism, Nicola A. Spaldin, Proc. R. Soc. A 476, 20190542 (2019).
- Electric field control of magnetism: multiferroics and magnetoelectrics, Ramesh, R. & Martin, L.W, Riv. Nuovo Cim. 44, 251 (2021)
- Multiferroics, fundamentals and applications, A. Cano, D. Meier & M. Tassin (Eds.), De Gruyer (2021).
- Magnetoelectrics and Multiferroics, Jia-Mian Hu and Long-Qing Chen, in Handbook of Magnetism and Magnetic Material, M. Coey, S. Parkin (eds.),Springer Nature Switzerland AG (2021).
- Two-dimensional multiferroics, Yunye Gao, Mingyuan Gao and Yuerui Lu, Nanoscale, 13, 19324 (2021).
- Electrical control of magnetism by electric field and current-induced torques, Albert Fert, Ramamoorthy Ramesh, Vincent Garcia, Fèlix Casanova, and Manuel Bibes, Rev. Mod. Phys. 96, 015005 (2024).