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Moore’s law and Dennard scaling

 In the 1990’s the performance of computers increased by 100x
 In the 2010’s, only by 3x
 Chips performance is limited to mitigate heating
 We need a new technology of chips operating at much lower power
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Chips can get very hot

 Current Iphone 16 A18 chip is based on TSMC 3 nm technology node
 It could operate at much higher performance if it did not heat so much…

 New computing paradigms are needed to achieve low-power operation
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How is energy used in computing workloads ?

 60-70% of the energy is used to move data on chip and between CPU and DRAM chips
 Need for « logic-in-memory » computing
 Bringing in nonvolatility would save an extra ~10% energy and increase performance 

by 20-50%
 Need for nonvolatile memories and nonvolatile logic, but how ?

 Ferromagnetism and/or ferroelectricity
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 Ferroic orders and magnetoelectric coupling

- Intrinsic” magnetoelectric coupling
- Field-effect-driven magnetoelectric coupling
- Strain-driven magnetoelectric coupling

 Magnetoelectric spintronic devices 

- VCMA-MRAM
- Magnetoelectric RAM
- Magnetoelectric Spin orbit (MESO) devices

 Integration challenges

Outline
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Field-effect

Different approaches for E-field control of magnetism

Strain-driven
Intrinsic

magnetoelectric

Use single-phase multiferroic 
material

Combine strong ferroelectric
with carrier-mediated

ferromagnet

Combine piezoelectric or 
ferroelectric/ferroelastic with
magnetostrictive ferromagnet
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Controlling magnetism with electric fields

spin up

spin down

spin up

spin down
EF

Pspin > 0 Pspin < 0

M M

H H

M M

T T

E

Magnetic order Curie temperature Spin polarization

Magnetic anisotropy

M M

H H

M M
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M M

H H

Magnetic momentExchange bias

DOS DOS

MB, Nature Mater 11, 354 (2012) & MB et al, Annu. Rev. Mater. Res. 44, 91 (2014)
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Field-effect
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E-field control of magnetism with intrinsic multiferroics

H. Béa, MB et al, J. Phys.: Condens. Matter 20, 434221 (2008)

Derived from Eerenstein, Mathur and Scott, Nature 442, 759 (2006)
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There are very few (room-temperature) multiferroics
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Ferroelectric properties
 Very high TC ≈ 1100 K
 Very large P=100 µC/cm²

Fisher et al., J. Phys. C, 13, 1931 (1980) 

Béa, MB et al, APL 93, 072091 (2008)

BiFeO3 : a room-temperature multiferroic

P // [111]

Bi

Fe

O Magnetic properties
 G-type antiferromagnetic

+ cycloidal modulation (=62 nm)
 Weak moment with periodic modulation
 TN ≈ 640 K

Sosnowska et al., J. Phys. C, 15, 4835 (1982)

=64 nm

k // [1-10]



Manuel Bibes      ESM 2025 15Industrial applications of multiferroics and magnetoelectrics



-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-150

-100

-50

0

50

100

150

200

250
 

Strain (%)

 

W
 -

 W
L

=
[1

-1
0
] (

k
J
/m

3
)

 k=<1-10>

 k=<110>

 AF L=[001]

D. Sando, MB et al, Nature Mater. 12, 641 (2013)

Influence of epitaxial strain on the magnetic properties of BiFeO3

 Cycloidal state is destabilized by strain-induced (magnetoelastic) anisotropy 
 Weak-FM state at high tensile or compressive state
 New cycloid stabilized at low tensile strain

Mössbauer spectroscopy + theory
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Ferroelectric domain structure

 BFO polarization can be oriented along 8 possible 111 directions
 Cycloid propagation vector is perpendicular to polarization
 Here we work with films with just 2 polarization variants
 Polarization domains typical size is 100-150 nm
 Magnetic imaging on regions 800 x 800 nm²
 Map the spatial variation of the weak moment of Fe

Magnetic imaging of BFO film at room temperature
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 Clear « stripy » contrast of magnetic origin

Magnetic imaging of BFO film at room temperature

Iso-B
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 Clear « stripy » contrast of magnetic origin
 Periodic modulation of weak moment, with period near 70 nm
 Additional zigzag pattern with size compatible with dimension of ferroelectric domains (100-150 nm)

Magnetic imaging of BFO film at room temperature

Iso-B
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Magnetic imaging of single ferroelectric domains

Ferroelectric domains
imaged by PFM

 Electric poling of BFO film : single ferroelectric and magnetic domain

I. Gross, MB et al, Nature 549, 252 (2017)

P1
+

200 nm
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Magnetic imaging of single ferroelectric domains

Ferroelectric domains
imaged by PFM

Magnetic contrast imaged
by NV center microscopy

 Electric poling of BFO film : single ferroelectric and magnetic domain
 Periodic contrast with well-defined propagation direction and period

I. Gross, MB et al, Nature 549, 252 (2017)

P1
+

200 nm
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Magnetic imaging of single ferroelectric domains

Ferroelectric domains
imaged by PFM

Magnetic contrast imaged
by NV center microscopy

 Electric poling of BFO film : single ferroelectric and magnetic domain
 Periodic contrast with well-defined propagation direction and period
 Period is 71 nm, slightly longer than in bulk (64 nm), likely due to epitaxial strain

I. Gross, MB et al, Nature 549, 252 (2017)

P1
+

200 nm

𝜆 = 71 ± 2 𝑛𝑚
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Magnetic imaging of single ferroelectric domains

Ferroelectric domains
imaged by PFM

Magnetic contrast imaged
by NV center microscopy

P1
+

200 nm

𝜆 = 71 ± 2 𝑛𝑚

P4
−

200 nm
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Magnetic imaging of single ferroelectric domains

Ferroelectric domains
imaged by PFM

Magnetic contrast imaged
by NV center microscopy

P1
+

200 nm

𝜆 = 71 ± 2 𝑛𝑚

P4
−

200 nm

𝜆 = 72 ± 2 𝑛𝑚

 Electric-field control of cycloid propagation direction
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Electrical switching of antiferromagnetic domains

PFM
 image FE domains

XMLD-PEEM
 image AFM domains

 Some AFM regions switch upon switching FE polarization

Zhao et al, Nature Mater (2006)
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Magnetoelectric switching of magnetization with BiFeO3

 XMCD-PEEM images at Co edge show electric-field driven magnetization reversal

Heron et al, Nature 516, 370 (2014)

 Use BiFeO3 thin film with just two families of 

ferroelectric domains with 71 deg DWs
 CoFe pad on top of BFO
 BiFeO3 180 degree polarization switching occurs 

in two steps (71° and 109°)
 Weak moment of BFO switches by 180 degrees
 Magnetization of CoFe switches
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Field-effect

Different approaches for E-field control of magnetism

Strain-driven
Intrinsic

magnetoelectric

Use single-phase multiferroic 
material

Combine strong ferroelectric
with carrier-mediated

ferromagnet

Combine piezoelectric or 
ferroelectric/ferroelastic with
magnetostrictive ferromagnet
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Field-effect control of magnetism

+ + + +

- - - -

 Charge accumulation / depletion thanks to a dielectric or ferroelectric (non-volatile)
 If magnetism in channel material is (highly) sensitive to carrier density
 Change of magnetic properties by electric field
 Effect occurs over small distance, typically Thomas Fermi screening length (Å for 

metals, nm for oxides)
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Field-effect control of magnetism in (In, Mn)As

Dilute magnetic semiconductor : ferromagnetism mediated by free carriers

Chiba et al, Nature (2000)
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Hemberger et al., PRB, 66, 094410 (2002)

Mixed-valence manganites
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 Combination of a ferroelectric and a carrier-mediated ferromagnet
 Switching P in ferroelectric PZT produces charge accumulation/depletion in manganite
 Change TC of manganite
 Limited to low-temperature (also with GaMnAs or InMnAs)

M M

T T

Vaz et al, PRL 104, 127202 (2010) & Molegraaf et al, Adv. Mater. 21, 3470 (2009)

LSMO

PZT

deplete electrons
accumulate holes

TC increases

accumulate electrons
deplete holes
TC decreases

Field-effect control of magnetism in manganites
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Field-effect control of magnetism in manganites

Molegraaf  et al, Adv. Mater. 21, 3470 (2009) Leufke et al, PRB 87, 094413 (2013)

 Ferroelectric control of magnetization amplitude in PZT/LSMO at 50 K

PZT/LSMO bilayers
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Weisheit et al, Science (2007) Maruyama et al, Nature Nano (2009)

Field-effect control of anisotropy in 3d ferromagnets

 E-field control of coercive field or magnetic easy axis



Manuel Bibes      ESM 2025 33Industrial applications of multiferroics and magnetoelectrics

Field-effect control of Curie temperature in 3d ferromagnets

 Large field effect in 0.6 nm Co film using ionic liquid gating
 Possible with ferroelectrics (i.e. PZT/ultrathin Co) ?

Increase accumulated charge density : ionic liquids

Chiba and Ono, J. Phys. D 46, 213001  (2013)
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Fe

BTO

Spin up

Spin down

Duan et al., PRL 97, 047201 (2006)

Fechner et al, PRB 78, 212406 (2008)

Ferroelectric control of spin polarization
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Fe

BTO

Spin up

Spin down

Duan et al., PRL 97, 047201 (2006)

Fechner et al, PRB 78, 212406 (2008)

 Change of spin polarization of Fe depending on 

ferrolectric polarization direction
 Probe this effect in Fe/BTO/LSMO tunnel junctions

Ferroelectric control of spin polarization
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Fe

BTO

Spin up

Spin down

Duan et al., PRL 97, 047201 (2006)

Fechner et al, PRB 78, 212406 (2008)

 Change of spin polarization of Fe depending on 

ferrolectric polarization direction
 Probe this effect in Fe/BTO/LSMO tunnel junctions

V. Garcia, MB et al, Science 327, 1106 (2010)

S. Valencia, MB et al, Nature Mater. 10, 753 (2011)
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Ferroelectric control of spin polarization
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Field-effect

Different approaches for E-field control of magnetism

Strain-driven
Intrinsic

magnetoelectric

Use single-phase multiferroic 
material

Combine strong ferroelectric
with carrier-mediated

ferromagnet

Combine piezoelectric or 
ferroelectric/ferroelastic with
magnetostrictive ferromagnet
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Example : experiments on PZT/Ni Weiler et al, New J. Phys 2009

Principle :
E-field applied to PZT : change in PZT dimensions due to converse piezoelectric effect
 Change in dimensions induced in Ni : strain effect
 Due to magnetostriction in Ni, strain modifies the magnetic properties

Strain-induced control of magnetic anisotropy
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Electric-field induced control of magnetization easy axis

Weiler et al, New J. Phys 2009

Strain-induced control of magnetic anisotropy
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Strain-induced control of magnetization

Electric-field control of magnetic domain wall 
motion and local magnetization reversal

BaTiO3

CoFe

Lahtinen et al, Sci. Rep. 2012
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van Driel et al, JAP 85, 1026 (1999)

 phase : fcc ;  phase : disordered bcc

’ phase : Fe/rh ordered bcc

Paramagnetic phase

Ferromagnetic phase

Antiferromagnetic phase

Strain-induced control of magnetic order
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van Driel et al, JAP 85, 1026 (1999) Zakharov et al, Sov. Phys. JETP  19, 1348 (1964)

 phase : fcc ;  phase : disordered bcc

’ phase : Fe/rh ordered bcc

 Near Fe50Rh50, transition from AFM to FM 

at about 370K

 Transition is first order

 Associated large resistivity drop

 Jump of cell volume by ~1% at T*

Paramagnetic phase

Ferromagnetic phase

Antiferromagnetic phase

Strain-induced control of magnetic order



Manuel Bibes      ESM 2025 43Industrial applications of multiferroics and magnetoelectrics

van Driel et al, JAP 85, 1026 (1999) Zakharov et al, Sov. Phys. JETP  19, 1348 (1964)

 phase : fcc ;  phase : disordered bcc

’ phase : Fe/rh ordered bcc

 Near Fe50Rh50, transition from AFM to FM 

at about 370K

 Transition is first order

 Associated large resistivity drop

 Jump of cell volume by ~1% at T*

Paramagnetic phase

Ferromagnetic phase

Antiferromagnetic phase

Strain-induced control of magnetic order

 Magnetic state of FeRh is sensitive to pressure
 Grow on ferroelectric/ferroelastic BaTiO3 substrate to achieve E-field control
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Strain-induced control of magnetic order

 Max magnetization change 

~600 emu/cm3

 ME coupling =1.6.10-5 s/m
 Larger than in any single phase 

material by 5 orders
 Larger than in any artificial

multiferroic by factor >10

Cherifi, MB et al, Nature Mater. 13, 345 (2014)

BaTiO3

FeRh

Au
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Mixed ferro/ 
antiferromagnetic state

Strain-induced control of magnetic order

Direct imaging of magnetic state using XCMD-PEEM

T=385 K

BaTiO3

FeRh

Au
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Mixed ferro/ 
antiferromagnetic state

Antiferromagnetic state

Strain-induced control of magnetic order

Direct imaging of magnetic state using XCMD-PEEM

T=385 K
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Ferromagnetic state Mixed ferro/ 
antiferromagnetic state

Antiferromagnetic state

Strain-induced control of magnetic order

Direct imaging of magnetic state using XCMD-PEEM

 Switch ferromagnetism OFF and ON by electric field, just above room temperature

Phillips, MB et al, Sci. Rep. 5, 10026 (2014)

T=385 K
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Field-effect

Different approaches for E-field control of magnetism

Strain-driven
Intrinsic

magnetoelectric

Use single-phase multiferroic 
material

Combine strong ferroelectric
with carrier-mediated

ferromagnet

Combine piezoelectric or 
ferroelectric/ferroelastic with
magnetostrictive ferromagnet

 Simple approach, just one 

material
 Beautiful physics, potential

for new science
 BFO only RT multiferroic
 Can be leaky, hard to switch

 Broader choice of materials
 Well-suited for perpendicular

transport
 Few ferromagnetic oxides with

high TC ; need simple metals
 Effect occurs over very small

thickness (few nm max)
 Needs very large fields

 Broader choice of materials
 Effect occurs over whole FM 

film
 Fatigue + low endurance
 Hard to miniaturize
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 Ferroic orders and magnetoelectric coupling

- Intrinsic” magnetoelectric coupling
- Field-effect-driven magnetoelectric coupling
- Strain-driven magnetoelectric coupling

 Magnetoelectric spintronic devices :

- VCMA-MRAM
- Magnetoelectric RAM
- Magnetoelectric Spin orbit (MESO) devices

 Integration challenges

Outline
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Technology readiness level



Manuel Bibes      ESM 2025 58Industrial applications of multiferroics and magnetoelectrics

 Voltage control: Ultra low power at GHz speed

 Precessional switching, sub-ns dynamics

CoFe

MgO

CoFe

Voltage controlled device 
(instead of current controlled)

 Non deterministic: requires external field

 RA >100Ω.μm² required

 Read time penalty at large resistances

Y. Shiota, Nat. Mater., vol. 11, no. 1, pp. 39 (2012), C. Grezes, Appl. Phys. Lett., vol. 108, pp. 012403 (2016)

Voltage-controlled magnetic anisotropy (VMCA)
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VCMA-MRAM

K. Garello, Spintec

 Replace external field by hard magnetic layer onto of MTJ ( generates stray field)
 Depending on pulse duration, switch from P to AP or AP to P
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Y.C. Yu, IEEE Symposium of  VLSI Technology (2020)

VCMA-MRAM

 Lower switching current density compared to STT MRAM
 Current challenges : improve bit error rate and device to device variations
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Prerequisites : 1. observe robust exchange coupling at room-temperature
2. no leakage through FE layer 
3. observe GMR on the trilayer
4. control exchange coupling by E-field (via the magnetoelectric coupling)

MB & A.Barthélémy, Nature Materials 7, 425 (2008)

R

V

Electrode

V-

Rp

FE-AFMP

Electrode

V+

Rap

FE-AFMP

Magnetoeletric random access memory (MERAM)
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Metric STT-MRAM SOT-MRAM VCMA-MRAM MERAM

Write Energy (fJ) 500 250 50 5

Write Speed (ns) 10 3 3 5

Read Energy (fJ) 50 50 50 50

Endurance 
(cycles, log10)

15 15 14 14

Demonstrated Demonstrated Demonstrated Projected

Magnetoeletric random access memory (MERAM)

 STT-MRAM are commercial products
 Next in development are SOT-MRAM, and VCMA-MRAM
 MERAM would yield a 100x gain in write energy vs STT-MRAM and 10x vs VCMA-MRAM
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Heron et al, Nature 516, 370 (2014)

Towards MERAM based on BiFeO3

 Here CoFe single layer is replaced by CoFe/Cu/CoFe trilayer (GMR spin valve)
 Trilayer resistance is switched by electric field, suggesting magnetization in bottom 

CoFe layer switched by 180 degrees
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Magneto-electric spin-orbit transistor (MESO)

 New type of non-volatile spin-based transistor proposed by Intel
 Operates through magnetoelectric coupling (input) and spin-orbit coupling (output)
 Memory and logic embedded
 Scalable, concatenable, implementable as majority gate
 Low power (30 times less than CMOS for same size)
 100 mV operating voltage (ME needs to switch with <100 mV ; SOC must generate >100 mV)

Spin-orbit material

S. Manipatruni et al, Nature 565, 35 (2019)
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Magneto-electric spin-orbit transistor (MESO)

102 103 104 105 106
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CMOS HP 

CMOS LV 

vdWFET  

gnrTFET 

ITFET   

ThinTFET

GaNTFET 

TMDTFET 

GpnJ    
FEFET   

NCFET   

PiezoFET

MITFET  

ASL     

CSL     

STT/DW  

SMG     

SWD     NML     

MESO    

CMOS Ref

Electronic

Spintronic

Ferroelectric

Orbitronic

Straintronic

 MESO slightly slower than advanced CMOS but lower energy and non-volatile

From I.A. Young, Intel
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Decrease by a factor 100-1000

Memory and logic
in a single 

component
x2 - x3 Non-volatility

x1.3 - x1.5

Ferroelectricity
& low-voltage 

operation
 10 – 100 

Energy
consumption

Magneto-electric spin-orbit transistor (MESO)

MESOCMOS + 
Von Neumann 
architecture

 Optimized MESO architectures have potential to 
yield huge gains in energy consumption and 
performance

 As a reminder, between two consecutive technology 
nodes, today gain is 20-25%, and new fab costs ~$40B 
(a number that is only going to increase)
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Memory and logic
in a single 

component
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Ferroelectricity
& low-voltage 

operation
 10 – 100 

Energy
consumption

Magneto-electric spin-orbit transistor (MESO)

MESOCMOS + 
Von Neumann 
architecture

 Optimized MESO architectures have potential to 
yield huge gains in energy consumption and 
performance

 As a reminder, between two consecutive technology 
nodes, today gain is 20-25%, and new fab costs ~$40B 
(a number that is only going to increase)

 With latest nodes, for $1B spent only 0.4% 
improvement in performance
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MESO development status

 MESO stack based on BFO grown by PLD and sputtering; substrate is DyScO3

 Readout by inverse SHE in Pt (will lead small output signal because of low SHE 

angle and low R of Pt)
D.C. Vaz, MB et al, Nature Comm. 15, 1902 (2024)
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MESO development status

 BFO switches at about 1 V
 Co magnetization switching by E field but not very clean

D.C. Vaz, MB et al, Nature Comm. 15, 1902 (2024)
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MESO development status

 Baseline resistance (with B field applied) shows switching  just small field effect 

from BFO on Co (no magnetization switching here)
 Low leakage

D.C. Vaz, MB et al, Nature Comm. 15, 1902 (2024)
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MESO development status

 Nondeterministic switching behavior of output signal
 Questions potential of BFO-based MESO…

D.C. Vaz, MB et al, Nature Comm. 15, 1902 (2024)
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TRL 1
Basic principles observed — ME switching and SOC interconversion shown on ideal single crystals 

(e.g., BiFeO₃ on GdScO₃, STO). Physics of multiferroic control and spin current generation confirmed.

TRL 2
Concept formulated — Conceptual device structure includes: multiferroic layer, SOC channel, 

interconnect stack. Early models assume ideal lattice matching, ignoring integration stress.

TRL 3

Proof of concept on ideal substrates — Lab-scale MESO devices built on small oxide substrates (5–

10 mm²). Key figures of merit (voltage, retention, interconversion efficiency) measured under ideal 

strain conditions.

TRL 4

Validation on small chips, but no CMOS flow — Small arrays fabricated on single-crystal substrates; 

first attempts to transfer to Si using buffer layers, direct wafer bonding, or seed layers, but mismatch, 

defects, or leakage remain major issues.

TRL 5

Relevant environment: heterointegration on Si — Demonstration that BiFeO₃ (or substitute ME layer) 

can be grown or transferred onto 300 mm Si wafers with acceptable quality: minimal misfit 

dislocations, good ferroelectric and magnetic order, compatible thermal budget for BEOL. Still likely 

limited to test coupons or bonded wafers.

TRL 6

Prototype logic circuits on 300 mm wafers — Small-scale MESO logic gates fabricated in 300 mm pilot 

lines. Validate patterning, etching, alignment with standard CMOS modules. Early test of CMOS–

MESO hybrid chips to benchmark interconnect, power, noise margins.

TRL 7

Functional sub-blocks in operational environment — Functional logic sub-blocks (e.g., in-memory 

logic, ALUs) integrated in test SoCs using standard EDA flows and back-end design. Reliability under 

thermal cycling and standard packaging tested.

TRL 8

Pilot-line qualification for real applications — Volume-fabricated wafers with reliable MESO layers at 

acceptable defectivity, yield, and uniformity. Full process flow qualified for stress, contamination, 

thermal budgets. Test in real system workloads.

TRL 9

Commercial product deployment — MESO devices mass-manufactured in foundries with stable 

process windows, qualified supply chain for oxide targets, and standard test/repair flows. Proven 

benefit over advanced CMOS nodes at product scale.

MESO development status





?
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TRL Category VCMA MRAM MERAM MESO

1. Fundamental Physics & 
Materials

TRL 6 — VCMA effect at 
CoFeB/MgO interfaces is well 
understood and 
reproducible.

TRL 3–4 — Magnetoelectric 
coupling shown in 
multiferroics (BiFeO₃, Cr₂O₃) 
at lab scale; robust switching 
at RT demonstrated in small 
samples.

TRL 3–4 — ME switching + 
SOC interconversion 
demonstrated in lab; 
materials well studied but 
mostly on ideal substrates 
(e.g., single crystals).

2. Device-Level Prototype

TRL 5–6 — Single cells & 
small arrays (kb–Mb scale) 
with VCMA-assisted 
switching fabricated; clear 
write energy benefit.

TRL 3 — Single cells 
demonstrated; readout via 
GMR verified.

TRL 3 — Single MESO 
switches built; early lab 
demos of logic-level 
operation under ideal 
conditions.

3. Integration & Process 
Compatibility

TRL 5–6 — Fully compatible 
with STT-MRAM process 
flows; no exotic layers; 
standard BEOL thermal 
budgets.

TRL 2–3 — Robust 
multiferroic integration on 
300 mm Si remains unsolved; 
buffer layers, wafer bonding, 
or stress control still in lab 
R&D.

TRL 2–3 — No robust CMOS-
compatible flow yet; same 
oxide–Si integration 
bottlenecks; buffer layers or 
wafer bonding needed.

4. System-Level 
Demonstration & Application 
Readiness

TRL 5–6 — Pilot-line arrays 
built; EDA tools and PDK 
flows adapted from mature 
STT-MRAM; production 
scaling feasible.

TRL 1–2 — No large test 
chips; no proven yield, 
reliability, or lifetime data; 
purely academic for now.

TRL 1–2 — No system-level 
blocks or co-integrated logic 
circuits demonstrated on real 
wafers; only conceptual 
architectures and 
simulations.

Comparison of development status
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 Ferroic orders and magnetoelectric coupling

- Intrinsic” magnetoelectric coupling
- Field-effect-driven magnetoelectric coupling
- Strain-driven magnetoelectric coupling

 Magnetoelectric spintronic devices :

- VCMA-MRAM
- Magnetoelectric RAM
- Magnetoelectric Spin orbit (MESO) devices

 Integration challenges

Outline
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Integration challenges

Global Foundries 

FEOL

MEOL

BEOL
(17 metal

level stack)

FEOL/MEOL/BEOL : Front/middle/back end of line
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Integration challenges

 To integrate a material in the BEOL, its growth conditions must be 

compatible with CMOS, i.e. not damage the CMOS circuits underneath

 Plus, with perovskite oxides, need a perovskite template (top of BEOL 

part is amorphous SiOx, Cu, etc)

 One solution : grow epitaxial perovskite stack onto epitaxial Si wafer, and 

then transfer onto CMOS wafer

 But then, perovskite stack must be grown onto 200 or 300 mm Si wafer

 There are now tools to grow oxide on Si 300 wafers by

- Sputtering
- MBE
- PLD



Manuel Bibes      ESM 2025 77Industrial applications of multiferroics and magnetoelectrics

Epitaxy of perovskites on Si

 Epitaxy of SrTiO3 on Si(001) by MBE
 45 deg rotation of STO unit cell with respect 

to Si (then lattice mismatch is just 1.7%)
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Industrial tools for oxide epitaxy on 300 mm Si

Solmates B.V / Lam Research (PLD)

RIBER Rosie pilot line (MBE)

Evatec (sputtering)
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 Demonstration of high-quality epitaxial 

BaTiO3 on 300 mm Si wafer by PsiQuantum @ 
Global Foundries for a fully integrated quantum 
photonic platform
 Technique: molecular beam epitaxy, 

compatible with foundry processes
 BTO quality evidence by giant, record-high 

electo-optical Pockels coefficient (with better 
than 1% uniformity)

Nature (2025) ; ArXiv:2404.17570v1

Growth of high quality epitaxial BaTiO3 on 300 mm Si
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Conclusions

 Still a long way to go for multiferroics or magnetoelectrics to be used in industrial 

applications for information and communication technology

 Perhaps most promising are VCMA-MRAM, with very low write energyu

 Issues to be solved:

- We need more room temperature multiferroics, with strong ME coupling
- For MESO, need SOC systems with larger spin-charge conversion efficiency
- Integration into CMOS (may benefit from progress for integrated optics with BTO on Si 300 

mm)

 Multiferroics and magnetoelectrics can perhaps bring solutions for other information 

processing paradigms, like magnonics

ESM York 2024

ESM Liège 2025
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ESM York 2024 ESM Liège 2025
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Icharge (IN)

Copper

FM

ME

Icharge (OUT)

Voltage Controlled Magnetization Magnetization to Voltage

< 100 mV

< 10 µA

Magnet 20 x 32 nm

Δ (stability) 45 kT

Interconnect 12 X 45 nm

Ric, Cic 4.5 Ω, 4 aF

Energy per bit (600 kT) 2.5 aJ

aJ switching.

Multiferroic – e.g. BiFe03 Inverse Spin Orbit – e.g. Ag/Bi, Bi2Se3

Ferroelectric spin-orbit device : FESO
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Ferroelectric spin-orbit device : FESO

Input Output

Magnetoelectric switching of FM magnetization
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Magnetoelectric switching in BFO


