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Outline

Part 1: Symmetries (ground rules)

= Symmetries in quantum mechanics, a recap

= Spatial symmetries: relation between symmetries and energy bands

Part 2: Modern Applications

= Gapped topological phases: non-spatial symmetries

= Topological semi-metals protected by symmetry



Part 1: Introduction | Symmetry transformations in QM

Invariance of the laws of nature: lessons from classical physics

The fundamental laws of nature preserve their form under space-time transformations such as rotations, temporal shifts, etc.

S/

boost + rotation

A2r d*r’ Galileo Galilei

—_— a F -
m—— F m— (1564-1642)

All inertial frames are equivalent: free space is homogenous and isotropic



Part 1: Introduction | Symmetry transformations in QM

Harmomces Mundi (The Harmony of the World 1619) Johannes Kepler

Symmetry operations form a group (such as the SO(3) rotation group):

|dentity (1) is the trivial symmetry

g, and g, are symmetries (i.e. elements of the group), then g,g, is also a symmetry

g_1 exists (and is also a symmetry)

In general, 8,2, # 8,8



Part 1: Introduction | Symmetry transformations in QM

Symmetry transformations in QM

Assume that a given symmetry group G is specified (e.g., 3D rotation)
transforming the system § into S, as in a reference frame change.

S: observables A, B, ... and states |y), | @), ...

will be described by > |<¢‘A|§b>‘2 — ‘<¢/|A,‘¢,>‘2

S observables A’, B, ... and states |y, | @), ...

If S & S'is a symmetry,
no observable effect can be produced




Part 1: Introduction | Symmetry transformations in QM

Symmetry transformations in QM

Postulating a unitary linear operator U is one way to guarantee the invariance of the quantum laws under symmetry operations

Y) = [¥') = Uly)
(o) ° = [{¢'[¥)]° = (U|UY)|7
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Symmetry transformations in QM

Postulating a unitary linear operator U is one way to guarantee the invariance of the quantum laws under symmetry operations

) = [¢) = Uly)
(o) 7 = [(¢'[WN)]? = [({Us|UW)|* = [(p|UUY))? — Ut =U!



Part 1: Introduction | Symmetry transformations in QM

Symmetry transformations in QM

Postulating a unitary linear operator U is one way to guarantee the invariance of the quantum laws under symmetry operations

) — @) = Uly)
(p|)]? = (&' [ = [({Ug|Uy))? = [(|UTUY)|? — Ut =U"!
Likewise, A A =UAU 1

(¢ | A1) * = (QlUTUAU U ) [* = [(d]Aleh) 7



Part 1: Introduction | Symmetry transformations in QM

Symmetry transformations in QM

Wigner’s theorem states that there are only two ways of preserving the modulus of inner products, namely:

e Unitary transformations, U

e Anti-unitary transformations, U* := KU » needed to represent certain discrete symmetries

K = complex conjugation operation

(@) = U o|U™) = (U|lU¢)" = ([¢))”

U*=KU

Eugene P. Wigner
(1902-1995)
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Symmetry transformations in QM

Wigner’s theorem states that there are only two ways of preserving the modulus of inner products, namely:

e Unitary transformations, U

e Anti-unitary transformations, U* := KU

Example: Time-reversal symmetry (motion reversal)

Free particle T -symmetryisenacted by [J* = K

6k(r) — K‘POk(I’) = K" =¢ ™ —» k — -k Eugene P. Wigner
(1902-1995)



Part 1: Introduction | Symmetry transformations in QM

Symmetry transformations in QM

Wigner’s theorem states that there are only two ways of preserving the modulus of inner products, namely:

e Unitary transformations, U

e Anti-unitary transformations, U* := KU

Example: Time-reversal symmetry (motion reversal)

Free particle T -symmetryisenacted by [J* = K

6k(r) — K‘POk(I’) = K" =¢ ™ —» k — -k Eugene P. Wigner
(1902-1995)

U” = ZUyK - U*O-ZU*T — —O0y , (7’ — $,y,Z) — S — —S
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continuous (differentiable) symmetries <) conservation laws
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U 1 HU =H / enerator
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Part 1: Introduction | Continuous symmetries & conservation laws

continuous (differentiable) symmetries <) conservation laws

_ U(a) = e"%“~__
U 1 HU =H / enerator
oo | —

U(a)(z) = ¥(z + a)

G:—p:ii > U(a)ze_mp/h




Part 1: Introduction | Continuous symmetries & conservation laws

continuous (differentiable) symmetries <) conservation laws

_ U(a) = e"%“~__
U 1 HU =H / enerator
Ho—o S

Ula) () = d(x +a) U (t)(0) = 9(t)

I i __ ,—tap/h _ = _ _—iHt/h
G = y =i >U(a)—e G = - > U(t) =e¢



Part 1: Introduction | Continuous symmetries & conservation laws

continuous (differentiable) symmetries <) conservation laws

Amalie Emmy Noether
(1882-1935)



Part 1: Introduction | Continuous symmetries & conservation laws

continuous (differentiable) symmetries <) conservation laws

U = ¢'“C js a symmetry of H, i.e. [U,H] = 0

G,H| =0 » G is constant of motion*

Amalie Emmy Noether
(1882-1935)

() This results from the equation of motion for operators (Heisenberg equation): 0,G = (i/h)[H,G] =0



Part 1: Introduction | Continuous symmetries & conservation laws

continuous (differentiable) symmetries =) conservation laws

U = ¢'“C js a symmetry of H, i.e. [U,H] = 0

G,H| =0 » G is constant of motion*

Amalie Emmy Noether

: : : . 1882-1935
Noether’s theorem: Every continuous symmetry of the dynamics has a corresponding conservation law ( )

HCERERTIEY (translation symmetry, G = — p/ )

A

[ H : f)] — () conservation of momentum

() This results from the equation of motion for operators (Heisenberg equation): 0,G = (i/h)[H,G] =0



Part 1: Introduction | Discrete symmetries

Discrete symmetries

Infinite group Discrete translation group Z¢ of a regular d-dimensional lattice

Finite group (of order n) Example: C, of rotation symmetries of a regular n-sided polygon

* Both types are crucial in the study of crystalline structures



Part 1: Introduction | Spatial symmetries (Crystals)

Spatial symmetries in solids

Each crystallographic lattice possesses a certain symmetry group

230 Space Groups

Sets of symmetry operations that completely describe the spatial arrangement of crystalline systems



Part 1: Introduction | Spatial symmetries (Crystals)

Bravais lattices

Bravais lattices

Array of points generated by
discrete translation operations:

Rijk= ial +jaz+ka3 l,],kE VA



Part 1: Introduction | Spatial symmetries (Crystals)

Bravais lattices

= 7 basic crystal systems
14 possibilities (in 3D)

= 4 |lattice centerings

Simple Face-centered Body-centered .
CuBIC
b
Cc
a
Simple Base-centered
a MONOCLINIC
. .
Simple Body-centered c
TETRAGONAL 5
c
[/ v b
a
c c
Ed : :
A ‘ HEXAGONAL RHOMBOHEDRAL  TRICLINIC
a a

Simple Body-centered Face-centered Base-centered

ORTHORHOMBIC
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Crystal structure = lattice + motif

lattice

basis
- _I_ (or motif) crystal structure



Part 1: Introduction | Spatial symmetries (Crystals)

Crystal structure = lattice + motif

lattice

basis
- _I_ (or motif) crystal structure

FCC with a two-atom basis

Example: rock salt or

2 interpenetrating FCC lattices




Part 1: Introduction | Spatial symmetries (Crystals)

Point group symmetries

PG operations (in 2D): identity, mirror reflections, rotations and glide reflections

mirror + rotation C



Part 1: Introduction | Spatial symmetries (Crystals)

Point group symmetries : Lll"g = ; J?TT

glide reflection with 7 || a

PG operations (in 2D): identity, mirror reflections, rotations and glide reflections

/ﬂ(\
S
glide O,
plane
mirror + rotation (; -

(reflection + 1/2 translation)



Part 1: Introduction | Spatial symmetries (Crystals)

Point group symmetries

Point symmetries like n-fold rotations must be compatible with translations

Square lattice (4-fold rotations) - this works Pentagonal lattice (5-fold rotations) - this doesn’t




Part 1: Introduction | Spatial symmetries (Crystals)

Bravais lattices * Point group symmetries

32 point groups

(compatible with crystalline periodicity)

Bravais lattices

Translation + Centering

14 possibilities 4+ n-fold rotations (n = 2, 3, 4, 6)
4+ inversion at a point
4+ reflection at mirror planes

4+ rotoinversions (3D)
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Bravais lattices * Point group symmetries

32 point groups

(compatible with crystalline periodicity)

Bravais lattices ;
T ' e

Translation + Centering

14 possibilities 4+ n-fold rotations (n = 2, 3, 4, 6)
4+ inversion at a point
4+ reflection at mirror planes

4+ rotoinversions (3D)



Part 1: Introduction | Spatial symmetries (Crystals)

Bravais lattices * Point group symmetries * Space groups

32 point groups

(compatible with crystalline periodicity)

Bravais lattices

1
1

73 simple space groups

_|_

: : non-symmorphic symmetry elements
Translation + Centerin |
G 9 (screw axes & glide planes)

14 possibilities 4+ n-fold rotations (n = 2, 3, 4, 6)

4+ inversion at a point

4+ reflection at mirror planes

230 space groups

4+ rotoinversions (3D)



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands



Part 1: Spatial Symmetries | Band structure

Translation operator

TR ¥(r) = ¥(r + R)

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem R is a direct lattice vector

Felix Bloch
(1905-1983)
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Translation operator

TR ¥(r) = ¥(r + R)

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem R is a direct lattice vector

Felix Bloch
(1905-1983)

Ty is an unitary operator (as seen earlier), so TR P(r) = ¢“YBY(r)



Part 1: Spatial Symmetries | Band structure

Translation operator

TR ¥(r) = ¥(r + R)

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem R is a direct lattice vector

Felix Bloch
(1905-1983)

Ty is an unitary operator (as seen earlier), so TR P(r) = ¢“YBY(r)

group structure

TRITRZ — TR1+R2



Part 1: Spatial Symmetries | Band structure

Translation operator

TR ¥(r) = ¥(r + R)

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem R is a direct lattice vector

Felix Bloch
(1905-1983)

Ty is an unitary operator (as seen earlier), so TR P(r) = ¢“YBY(r)

group structure

TRITRZ — TR1+R2

OR) =k -R [withk € R?]

|

crystal momentum



Part 1: Spatial Symmetries | Band structure

Translation operator

TR ¥(r) = ¥(r + R)

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem R is a direct lattice vector

Felix Bloch
(1905-1983)

periodic crystal Hamiltonian

[Tr, H] =0

Energy eigenstates can be
labelled by the eigenvalues of TR



Part 1: Spatial Symmetries | Band structure

Translation operator

TR ¥(r) = ¥(r + R)

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem R is a direct lattice vector

Felix Bloch
(1905-1983)

energy eigenstate
(K labelling)



Part 1: Spatial Symmetries | Band structure

Translation operator

TR ¥(r) = ¥(r + R)

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem R is a direct lattice vector

Felix Bloch
(1905-1983)

» This is dealt with by restricting K to a Brillouin zone

E.g. for a simple cubic lattice k € | — n/a, ©/a]’

energy eigenstate arbitrariness () since ¢’k R = ¢{k+G)R

(K labelling) with G a reciprocal lattice vector (G - R = 2z27)



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem

Felix Bloch
(1905-1983)

RO R O SERCEE
X
Bloch’s theorem \

Bloch (lattice-periodic) function




Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Eigenvalue problem for 4 (r):

Hy u (r) = —% ik V)2 V(r)| y = e(K) yy(r) I(=1e;:)x5 Elgsc;r;

* Family of solutions ¢,(K) (n € Z) with discretely spaced eigenvalues: energy bands!
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Relation between symmetries and energy bands

Eigenvalue problem for 4 (r):

Hy u (r) = —% ik V)2 V(r)| y = e(K) yy(r) I(=1e;:)x5 Elgsc;r;

* Family of solutions ¢,(K) (n € Z) with discretely spaced eigenvalues: energy bands!

n=23
n=~>2
n=1




Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Eigenvalue problem for 4 (r):

Hy u (r) = —% ik V)2 V(r)| y = e(K) yy(r) I(=1e;:)x5 Elgsc;r;

* Family of solutions ¢,(K) (n € Z) with discretely spaced eigenvalues: energy bands!

n=23
n=~>2
n=1

k. k, + ok



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Eigenvalue problem for 4 (r):

— -
Hy, uy (r) = —h— (ik V)2 V(r)| u, = e(K) (1) Felix Bloch
KTk dm Kk Kk (1905-1983)

* Family of solutions ¢,(K) (n € Z) with discretely spaced eigenvalues: energy bands!

..................................................... I o
I S
Y P Translation symmetry
..................................................... . I AR, leads to
energy bands
D= ] e e I AL




Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Eigenvalue problem for 4 (r):

— -
Hy, uy (1) = —h— (K + V) + V()| , = e(K) 1(1) Felix Bloch
K7k dm Kk Kk (1905-1983)

* Family of solutions ¢,(K) (n € Z) with discretely spaced eigenvalues: energy bands!

|
}
N

10 \
y

il k- :
(1) = u,(r)e’” | b5 iA
|
Band index Pt

Energy bands {¢,(K)} reflect
crystal symmetries




Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

~7)
~ P
H = F V(r), V(r) = V(r + R)
2m
V(r) denotes the crystal potential R is a direct lattice vector

maz



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

~7)
~ P
H = - V(r), V(r) = V(r + R)
2m
V(r) denotes the crystal potential R is a direct lattice vector

Beyond translation, V(r) has discrete, point-group symmetries:

= 4-fold rotations (90°, 180° & 270°) with a rotation axis || a; X a,

= mirrors: M, M, M ;, M ;-

maz



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

~7)
~ P
H = F V(r), V(r) = V(r + R)
2m
V(r) denotes the crystal potential R is a direct lattice vector

Beyond translation, V(r) has discrete, point-group symmetries:

= 4-fold rotations (90°, 180° & 270°) with a rotation axis || a; X a,

= mirrors: M, M, M ;, M ;-

Mx Md
‘ """" My
’ """ an =na;+map

-} V(Ur) = V(r)

any unitary (spatial) symmetry



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Suppose a solution (n, K) was found

2
—h—Vz + V(l') LPnk(r) — gn(k)ank(r)

2m




Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

. Laplacian is invariant under Euclidean transformations: V%h, . V%
Suppose a solution (n, K) was found

—%V2+ V) | ¥, (r) = ,(K)W, (1) # —h—v%h.+ V(Ur) | ¥, (Ur) = e (K)W,; (Ur)

_ _ o 1

symmetry transformation Symmetric by construction




Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Suppose a solution (n, K) was found

h2
——V* + V(r)
2m

Y (r) =¢ (K'Y, (r)

—

Laplacian is invariant under Euclidean transformations: V%h, . V%

symmetry transformation

-

h 2
——V2,_+ V(Ur)

2m

T _

¥ (Ur) = ¢,(k)Y,, (Ur)

Symmetric by construction

\_

hZ
——V; + V(r)

2m

¥ (Ur) = ¢ (K)P, (Ur)

J

New solutions ¥, (Ur) with energy ¢, (k) are obtained!



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

What are the quantum numbers of the symmetry-related solutions ¥, (Ur) ?



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands _

What are the quantum numbers of the symmetry-related solutions ¥, (Ur) ?

Bloch’s theorem:
()

P (Ur+ UR) = ¢®UR Y (Ur) ¥, (Ur+ UR) =V ORY (Ur)

(*) Note that UR is just another lattice vector and k - UR = (U—lk) ‘R



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands _

What are the quantum numbers of the symmetry-related solutions ¥, (Ur) ?

Bloch’s theorem:
()

P (Ur+ UR) = ¢*URY (Ur) ¥, (Ur+ UR) =V ORY  (Ur)

(" )

¥ . (Ur) is a Bloch eigenstate with wavevector U ~Ik and energy £,(K). Thatis, ¥, (Ur) =¥, ;- ().
- W,

(*) Note that UR is just another lattice vector and k - UR = (U—lk) ‘R



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Example: centro-symmetric systems like Pt

e (k) = ¢, (UK) e (K) = ¢ (—Kk)

Energy bands inherit symmetries of the crystal potential



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Example: centro-symmetric systems like Pt

e (k) = ¢, (UK) e (K) = ¢ (—Kk)

Energy bands inherit symmetries of the crystal potential

v

degeneracies therefore emerge from spatial symmetries like inversion

We shall see shortly that spatial symmetries are important for band crossings in topological materials



Part 1: Time-reversal symmetry | Band structure

Relation between symmetries and energy bands

Time-reversal symmetry

In the absence of internal degrees of freedom (DOF), like spin, TRS is enacted by the anti-unitary operator U* = K =

g-\gg =H > IV, (r) = \P:k(r) is a solution with the same energy than ¥, (T)




Part 1: Time-reversal symmetry | Band structure

Relation between symmetries and energy bands

Time-reversal symmetry

In the absence of internal degrees of freedom (DOF), like spin, TRS is enacted by the anti-unitary operator U* = K =

g-\gg =H > IV, (r) = \P;lkk(r) is a solution with the same energy than ¥, (T)

Y@ +R) =e*RY (r) & [V, (r+R)*=e™R¥ (r)]*

= 4 [V, (r)]* is a Bloch eigenfunction with wavevector —k



Part 1: Time-reversal symmetry | Band structure

Relation between symmetries and energy bands

Time-reversal symmetry

In the absence of internal degrees of freedom (DOF), like spin, TRS is enacted by the anti-unitary operator U* = K =

g-\gg =H > IV, (r) = \P:k(r) is a solution with the same energy than ¥, (T)

e (k) = e (—k)

General property of TR invariant systems
(even if they lack spatial inversion symmetry, such as GaAs)



Part 1: Time-reversal symmetry | Band structure

Relation between symmetries and energy bands

The spin degree of freedom: Kramers degeneracy

time-reversal symmetry &

e1(k) = £,(=K)

2 Kramers’ pairs




Part 1: Time-reversal symmetry | Band structure

Relation between symmetries and energy bands

The spin degree of freedom: Kramers degeneracy

time-reversal symmetry & inversion symmetry /

ey(k) = €,(=k) £,1n(K) = €)1 (=k)

2 Kramers’ pairs

19 symmetry

e1(k) = &,(K)

spin-degenerate bands




Part 1: Time-reversal symmetry | Band structure

Relation between symmetries and energy bands

Think of a Stoner instability,
Up(ep) 2 1

Magnetic materials

spin-degeneracy lifting (FMs) * broken I symmetry
M#0
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Relation between symmetries and energy bands

Magnetic materials

TR symmetry is effectively restored if S + spatial operation
Is a good symmetry of the crystal!
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Magnetic materials

TR symmetry is effectively restored if S + spatial operation
Is a good symmetry of the crystal!

Bipartite
antiferromagnetic lattice




Part 1: Time-reversal symmetry | Band structure

Relation between symmetries and energy bands

Magnetic materials

TR symmetry is effectively restored if S + spatial operation
Is a good symmetry of the crystal!

Bipartite
antiferromagnetic lattice

Sublattice translation



> > €

ntiferromagnetism
\&/

Kramers a

rgy bands

Part 1: Time-reversal symmetry | Band structure
symmetries and ene

Relation between

Magnetic materials

-
2
: > >
N 2 2 o
N

> >
> > €
> >

> > €

Is a good symmetry of the crystal!

%)
-
©
\rn =

|VA||VA|?

TR symmetry is effectively restored if S + spatial operation

2 P> >
EF = € > <
P > >
2 o o o
- > >




Part 1: Time-reversal symmetry | Band structure

Relation between symmetries and energy bands

Altermagnets combine unique properties of ferromagnets and antiferromagnets

staggered magnetic order both in real space (like AFMs) and in k-space (like FMs)

Smejkal, Sinova
& Jungwirth (2022)
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Relation between symmetries and energy bands

Altermagnets combine unique properties of ferromagnets and antiferromagnets

staggered magnetic order both in real space (like AFMs) and in k-space (like FMs)

T
g T 9 T Smejkal, Sinova

\) 8 & Jungwirth (2022)

Altermagnet

Antiferromagnet




Part 1: Time-reversal symmetry | Band structure

Relation between symmetries and energy bands

Altermagnets combine unique properties of ferromagnets and antiferromagnets

staggered magnetic order both in real space (like AFMs) and in k-space (like FMs)

. *
Sublattices connected by rotation:
4 * (G, | | Gy
> non-relativistic spin-group symmetry
JC T JG T Smejkal, Sinova

\) 8 & Jungwirth (2022)

Altermagnet

Antiferromagnet




Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Gapped topological matter

® ® O O O O O

O ® O o O O @)

Trivial insulator as an atomic limit ® o6 o6 o o o o

El \—/
4 \ /
> ' ’ I Egap
atomic limit (@ = o0)
—1

>




Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Gapped topological matter

® ® O o @) @) ®

o ® O ® o O O

Trivial insulator as an atomic limit ® 6 o6 o o o o

El \\/
4 ~__ -~
. N
atomic limit (@ = o0)
> a_l

= Band structure admits smooth y;, with |y, 1. G) = | ¥, )

(Bloch functions u,(K) are smooth on the BZ torus T)

Berry connection, &, (k) = i{u,(k) |V, u,(K)), is smooth on T

trivial topology




Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Gapped topological matter

‘mm

1
C,=— dk - A (K)
27 ) 5p7

e

No. of vortices of the vector field & (K)

Vortices emerge from phase discontinuities in
v, (K) (so-called topological obstructions)

For smooth u,(k), C, = 0 due to
Stokes theorem applied to a closed manifold:

VXf-dS=0

N L




Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Gapped topological matter

Topological insulators vs trivial insulators

cannot be adiabatically deformed into one another

atomic limit (a — o)

g topologically non trivial

Large ‘gap-closing’ perturbation
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spin up
spin down

conduction band

—rla

A
vacuum




Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

spin up
spin down

conduction band

A
vacuum

Quantum spin Hall insulator

C,=(C, = C)I2, oy, = (el2n)
Z, = C;mod?2

J_symmetry protected




Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

spin up
spin down

conduction band

Broken

Quantum Hall insulator Quantum spin Hall insulator

C=C+C e”Z o,= (e?/h) C C,=(C, - C)/2, oy, = (e/2n) C;
Z, = C;mod?2



Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

spin up
spin down

conduction band

Broken

Broken I

Quantum Hall insulator Quantum spin Hall insulator Quantum anomalous Hall / Chern insulator

C=0G+C €2 o,= (e*/h) C C,=(C, - C)/2, oy, = (e/2n) C; Oy = (e*/h) C, o,, = (e/2m) C;
Z, = C;mod?2



Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

spin up
spin down

conduction band

Broken

Broken I

Quantum Hall insulator Quantum spin Hall insulator Quantum anomalous Hall / Chern insulator
C=C,+C,€Z o,=(hC C,=(C,—CDI2, o= (el2n)C, 6,c = (€2Ih) C, ¢S, = (e/27) C,
Z, = C;mod?2

Non-spatial symmetries play a key role in the classification of gapped topological phases of matter!



Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Gapped topological phases call for a classification based upon generic quantum-mechanical symmetries, such as TR symmetry (TRS) (%)

Spatial symmetries
(act non-locally in real space)

Non-spatial symmetries
(act locally in real space

Credit: Sebastian Kokott

(*) Translation and typical point-group symmetries are not generic enough in this context due to being easily broken by impurities, defects, etc.


https://gitlab.com/Kokookster

Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Starting point: Wigner-Dyson classification of random matrices

== No TR invariance (as in the IQHE)

== TR invariance with 2=_1 (as in the QSHE)

== TR invariance with 2=41 (integer angular momentum)

I VHK)T = H(-Kk)



Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Starting point: Wigner-Dyson classification of random matrices

q Another generic symmetry: particle-hole symmetry (PHS)
== No TR invariance (as in the IQHE)

== TR invariance with 2=_1 (as in the QSHE)

» No PHS (% — 0)

== TR invariance with 2=41 (integer angular momentum)

=g PHSWith©G>’=—1 == PHSwith%’=+1

g 'HKk)J = H(-k) &' H(K) € = — H(—k)



Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

These non-spatial symmetries combined offer 9 = 3 X 3 possibilities, but there is one more!

¢,9 =1{0,1,-1}
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Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Chiral (‘sublattice’) symmetry: & =5 - € * STTHK)S = — H(K)  unitary symmetry (S = 0,1)

0 Hap
Hyp 0




Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Chiral (‘sublattice’) symmetry: & =5 - € * ST'HK)S = — H(K)  unitary symmetry (S = 0,1)

O HAB A
H = 7t
AB 0 S
. Example: graphene
S =o0
< r ~ .
States with energy = FE are
O, HGZ =—H connected via &




Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

& = T - € is uniquely fixed by TRS and PHS exceptwhen &, =0 — 2choices $ =0or & =1

All together, we have (9 — 1) + 2 = 10 distinct choices

10-fold way (Altland & Zirnbaeur, 1997)



Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter

Wigner-Dyson

Chiral

Bogoliubov-de
Gennes
(Superconductors)

Class g € d=2 d=3 Some examples

A (unitary) 0 0 VA — 2D IQHE, 2D Chern insulator, broken-J metal

Al (orthogonal) +1 0 — —

ATI (symplectic) _1 0 Z, Z, Z, topological insulators (bismuth-antimony alloys)
& QSH insulators (2d)

AIII (chiral unit.) 0 0 — 7

BDI (chiral ortho.) +1 +1 — — graphene

CII (chiral symp.) -1 -1 — Z,

D -1 -1 Z —

C 0 -1 J — 2D spin quantum Hall fluid in d+id SCs

DIII -1 +1 Z, VA

CI +1 -1 —



Part 2: Topological semi-metals protected by symmetry

Figure adapted from
B. Yan and C. Felser (2017)

Topological band crossings
near Fermi level

opological semi-metals

WSM '

DSM”>

interesting phyS|cs

Band inversion

= Fermi Arcs

= Unconventional magneto-optical response
= Chiral magneto-electric response

= Spin-momentum locking

Experimental evidence:
Weyl semi-metal (WSM): TaAs family (2015), NbAs (2015), TaP (2016), ..., 2D bismuthene (2024)
Dirac semi-metal (DSM): Cd3As2 (2014), PtSe2 (2017) ... Au2Pb (2023), TIBiSSe (2023)



Part 2: Topological semi-metals protected by symmetry

Weyl semimetal

(non-degenerate linearly dispersing bands)

E=im¢@+@+@

Requires broken & or broken inversion symmetry
(recall Kramers’ theorem)



Part 2: Topological semi-metals protected by symmetry

EA

Weyl semimetal

(non-degenerate linearly dispersing bands)

Yy <

E=+ hv\/kg + k2 + k2

/ Inspection of the eigenstate hints at a topological charge \

. 0 v
|u, (0, ) = e COSE| T)+sin5| 1)

+ | u, ) is single valued except at the “north pole” (€ = 0, ¢ = ?)

Other choice of gauge will merely move the singularity to

another location on the 2-sphere
\ The singularity acts as a source/drain of Berry curvature /




Part 2: Topological semi-metals protected by symmetry

EA

Weyl semimetal

(non-degenerate linearly dispersing bands)

Yy <

E=+ hv\/kg + k2 + k2

AB(K) = V, x A(K)

B :
\“\3\; }‘?nl:h ff',f!f/ 2, non-zero topological charge
ANy N v T
YW\, (monopole)
3 N \{‘ LI' J“'_(,/ //‘//f;//'j:_
o \‘}*\f‘; yiod {/‘ffé’.’f—
e e R R

. = ..
- = —
‘? D
3 S - _I_
~ T~
\ \ \ N 3
~ N
\ \ \:‘\g\ k
L) N
\ \\t\\\x\

-~

27 Jnhode
g

~

J

Quantised topological charge (Chern number)
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Topological semi-metals protected by symmetry
E

Part 2

Total Berry flux penetrating the whole BZ is zero.

(BZ is a closed manifold )
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(BZ is a closed manifold )
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Part 2: Topological semi-metals protected by symmetry

Act locally in real space

Non-spatial symmetries

~

Symmorphic

Mirror, rotation, etc. (perturbatively stable )

—

accidental band crossings

g
Spatial symmetries
Act non-locally in real space \
* symmetry-enforced crossings

(i.e. transform lattice points, r; — r;)

Nonsymmorphic

translation t by a fraction (stable)
of a Bravais lattice vector

* These can be removed by large symmetry-preserving deformations.



Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Use Clifford algebra {1, Oy Oy GZ} to write a generic model for a band crossing in d spatial dimensions:
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Accidental band crossings

Use Clifford algebra {1, Oy Oy GZ} to write a generic model for a band crossing in d spatial dimensions:

Hy = fo(k) 1 + (K)o, + f,(K)o, + f.(K)o,
{
' k = (k1, ., ka)

energy shift (f, = 0)
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Accidental band crossings

Use Clifford algebra {1, Oy Oy GZ} to write a generic model for a band crossing in d spatial dimensions:

Recall:

61.2 = 1; {0, 0,} =20;1

Hy = fy®) 1+ (K)o, + £,(K)o, + £.(K)o. B = % /£200) + 1700 +/2()
1
' k = (ki, ... ka)

energy shift (f, = 0)

AH” = (fi+f; +/D)1



Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Use Clifford algebra {1, Oy Oy GZ} to write a generic model for a band crossing in d spatial dimensions:

Recall:

61.2 = 1; {0, 0,} =20;1

Hy = fy®) 1+ (K)o, + £,(K)o, + £.(K)o. B = % /£200) + 1700 +/2()
1
' k = (ki, ... ka)

energy shift (f, = 0)

AH” = (fi+f; +/D)1

>< * f=hvk

Assume crossings are pinned
to a high-symmetry point like 1"



Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Use Clifford algebra {1, 0., 0, 0.} to write a generic model for a band crossing in d spatial dimensions:

noE Recall:
c:=1:{c,0) =251
Hy = fo(k) 1 + £ (K)o, + f(K)o, + f.(K)o, Ey =+ \/f;?(k) + f7(K) + f2(k) , 10 05} = 204
T
|
energy shift (f, = 0) k = (k17 e kd)

AH” = (fi+f; +/D)1

>< =) [ =hvik ><
/

Assume crossings are pinned
to a high-symmetry point like I /\

)




Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Symmetry class A (unitary) No spatial symmetries:  Hy = hv (6,k, + 6,k + 0,k,)

I =0,¢=0,8=0




Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Symmetry class A (unitary) No spatial symmetries:  Hy, = hv (6,k, + o,k, + 0,k

o; perturbation just shifts the crossing point
I =0,¢=0,8§=0 stable




Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Symmetry class A (unltary) No Spatial SymmetrieS: Hk — hv (kax + Gyky + O-ZkZ) O; perturbation just shifts the Crossing point
I =0,¢=0,8§=0 stable

Hy, = hv(ok, + Gyky) o, perturbation opens gap

* unstable



Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Symmetry class A (unltary) No Spatial SymmetrieS: Hk — hv (kax + Gyky + O-ZkZ) O; perturbation just shifts the Crossing point
I =0,¢=0,8§=0 stable

Hy, = hv(ok, + Gyky) o, perturbation opens gap

* unstable

To protect the 2D band crossing,

\/ we add a spatial symmetry!

Mirror plane: Hk — Mx_1 H—k ' Mx
X"y

"Graphene”

Satisfied with Mx — gy



Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Symmetry CIaSS A (unltary) No Spatial SymmetrieS: Hk = hv (kax + Gyky + O-ZkZ) O; perturbation just shifts the Crossing point
I =0,¢=0,8§=0 stable
Hy, = nv (o .k, + Gyky) o, perturbation opens gap » unstable

To protect the 2D band crossing,

\/ we add a spatial symmetry!

Mirror plane: Hk — Mx_1 H—k k Mx o, is now symmetry forbidden! » stable
xo™vy
—1
"Graphene” M-loM = —06
Satisfied with Mx — gy x U7X Z

Symmetry protected
semi-metallic phase



Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Symmetry class All (symplectic) Hy = hv(ok, + Gyky)
g =1

Example: surface of a 3D Tl



Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Symmetry class All (symplectic

I =1

Example: surface of a 3D Tl

)

Hy = hv (o,k, + o,k,)

5’7=i6yK

The TRS operation
reverses momenta and spin



Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Symmetry class All (symplectic) Hy = hv(ok, + Uyky)
g =1

Example: surface of a 3D Tl

5’7=iayK

The TRS operation
reverses momenta and spin

Band crossing is protected by TRS!

g —1 G —
g~ (mo,)J = — mo,



Overview

Symmetries provide a powerful toolbox in solid state physics, which allows, for example, for
Understanding important features of the band structures of crystals
Classifying topological insulators and topological semimetals

Characterising spin arrangements in unconventional magnetic phases of matter
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Overview

Symmetries provide a powerful toolbox in solid state physics, which allows, for example, for
Understanding important features of the band structures of crystals

Classifying topological insulators and topological semimetals

Characterising spin arrangements in unconventional magnetic phases of matter
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Thank you for your attention!

Reading suggestions: Colloquium: topological insulators, Hasan & Kane (2010)
Classification of topological quantum matter with symmetries, Ching-Kai Chiu et al (2016)

@ Weyl and Dirac Semimetals in Three Dimensional Solids, Armitage, Mele & Vishwanath (2018)

Emerging research landscape of altermagnetism, Smejkal, Sinova & Jungwirth (2022)
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