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Invariance of the laws of nature: lessons from classical physics

Galileo Galilei 
(1564-1642)

S′ S

   m
d2r
dt2

= F

All inertial frames are equivalent: free space is homogenous and isotropic

  m
d2r′ 

dt2
= F

The fundamental laws of nature preserve their form under space-time transformations such as rotations, temporal shifts, etc.

Part 1: Introduction | Symmetry transformations in QM

boost + rotation



Symmetry operations form a group (such as the SO(3) rotation group): 

  


Harmonices Mundi (The Harmony of the World, 1619) Johannes Kepler

Symmetries form a group

1 is a trivial symmetry

U1, U2 are symmetries =) U1U2 is also a symmetry

U�1 exists
• Identity (1) is the trivial symmetry 


•  and   are symmetries (i.e. elements of the group), then  is also a symmetry
g1 g2 g1g2

•   exists (and is also a symmetry)
g−1

• In general,   
g1g2 ≠ g2g1
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Assume that a given symmetry group G is specified (e.g., 3D rotation)  
transforming the system  into , as in a reference frame change.    

  
S S′ 

: observables , , … and states , , … 
S A B |ψ⟩ |ϕ⟩

will be described by

: observables , , … and states , , … 
S′ A′ B′ |ψ′ ⟩ |ϕ′ ⟩
If  is a symmetry,  

no observable effect can be produced
S ↔ S′ 

Symmetry transformations in QM



Postulating a unitary linear operator  is one way to guarantee the invariance of the quantum laws under symmetry operations U
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Likewise,

Postulating a unitary linear operator  is one way to guarantee the invariance of the quantum laws under symmetry operations U
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Symmetry transformations in QM



Eugene P. Wigner 
(1902-1995)

•  Unitary transformations,   
   

U

•  Anti-unitary transformations,   
   

U* := KU

Symmetry transformations in QM

needed to represent certain discrete symmetries

Part 1: Introduction | Symmetry transformations in QM

Wigner’s theorem states that there are only two ways of preserving the modulus of inner products, namely: 
   

 = complex conjugation operation K



Wigner’s theorem states that there are only two ways of preserving the modulus of inner products, namely: 
   

Eugene P. Wigner 
(1902-1995)

•  Unitary transformations,   
   

U

•  Anti-unitary transformations,   
   

U* := KU

Example: Time-reversal symmetry (motion reversal) 𝒯

-symmetry is enacted by  𝒯Free particle
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Wigner’s theorem states that there are only two ways of preserving the modulus of inner products, namely: 
   

Eugene P. Wigner 
(1902-1995)

•  Unitary transformations,   
   

U

•  Anti-unitary transformations,   
   

U* := KU

Example: Time-reversal symmetry (motion reversal) 𝒯

-symmetry is enacted by  𝒯Free particle
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Symmetry transformations in QM

Spin 1/2
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continuous (differentiable) symmetries                           conservation laws

space shift time shift

Symmetry
Generator



Amalie Emmy Noether 
(1882-1935)
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Amalie Emmy Noether 
(1882-1935)

continuous (differentiable) symmetries                           conservation lawscontinuous (differentiable) symmetries                           conservation laws
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(*) This results from the equation of motion for operators (Heisenberg equation): ∂tG = (i/ℏ)[H, G] = 0

G is constant of motion* 

  is a symmetry of H, i.e.  U = eiaG [U, H] = 0



Amalie Emmy Noether 
(1882-1935)Noether’s theorem: Every continuous symmetry of the dynamics has a corresponding conservation law

Free particle

conservation of momentum

(translation symmetry, )G = − p/ℏ

continuous (differentiable) symmetries                           conservation lawscontinuous (differentiable) symmetries                           conservation laws
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(*) This results from the equation of motion for operators (Heisenberg equation): ∂tG = (i/ℏ)[H, G] = 0

G is constant of motion* 

  is a symmetry of H, i.e.  U = eiaG [U, H] = 0



Part 1: Introduction | Discrete symmetries

Finite group (of order )n

Infinite group

Discrete symmetries

Discrete translation group   of a regular -dimensional latticeℤd d

Example:  of rotation symmetries of a regular -sided polygonCn n

Both types are crucial in the study of crystalline structures



Part 1: Introduction | Spatial symmetries (Crystals)

Each crystallographic lattice possesses a certain symmetry group

  Spatial symmetries in solids

Sets of symmetry operations that completely describe the spatial arrangement of crystalline systems

230 Space Groups
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Bravais lattices

Array of points generated by 

discrete translation operations:

Rijk = i a1 + ja2 + ka3 i, j, k ∈ ℤ

Bravais lattices



Part 1: Introduction | Spatial symmetries (Crystals)

Bravais lattices
➡ 7 basic crystal systems

➡ 4 lattice centerings
14 possibilities (in 3D) 
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Crystal structure = lattice + motif

lattice

+ basis

(or motif) = crystal structure
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Crystal structure = lattice + motif

lattice

+ basis

(or motif) = crystal structure

FCC with a two-atom basis  

or

2 interpenetrating FCC lattices 

Example: rock salt
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PG operations (in 2D): identity, mirror reflections, rotations and glide reflections

mirror + rotation  C6

  Point group symmetries



Part 1: Introduction | Spatial symmetries (Crystals)

PG operations (in 2D): identity, mirror reflections, rotations and glide reflections

mirror + rotation  C6

  Point group symmetries

glide

glide reflection with τ ∥ a

(reflection +  translation)1/2

glide

plane



Part 1: Introduction | Spatial symmetries (Crystals)

Square lattice (4-fold rotations) - this works Pentagonal lattice (5-fold rotations) - this doesn’t 

Point symmetries like n-fold rotations must be compatible with translations

  Point group symmetries
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Bravais lattices

Translation + Centering 




14 possibilities 
=

✦ n-fold rotations (n = 2, 3, 4, 6)

✦ inversion at a point

✦ reflection at mirror planes

D6h

✦ rotoinversions (3D)

Bravais lattices Point group symmetries

32 point groups 
(compatible with crystalline periodicity)

+



Part 1: Introduction | Spatial symmetries (Crystals)

Bravais lattices

✦ n-fold rotations (n = 2, 3, 4, 6)

✦ inversion at a point

✦ reflection at mirror planes

D6h → D3h

✦ rotoinversions (3D)

Bravais lattices Point group symmetries

32 point groups 
(compatible with crystalline periodicity)

+

Translation + Centering 




14 possibilities 
=
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Space groups

Bravais lattices

+ = 73 simple space groups

Bravais lattices Point group symmetries

✦ n-fold rotations (n = 2, 3, 4, 6)

✦ inversion at a point

✦ reflection at mirror planes

32 point groups 
(compatible with crystalline periodicity)

✦ rotoinversions (3D)

+
non-symmorphic symmetry elements


(screw axes & glide planes) 

=
230 space groups

Translation + Centering 




14 possibilities 
=
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Relation between symmetries and energy bands
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Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem

̂TR Ψ(r) = Ψ(r + R)

Translation operator

 is a direct lattice vectorR

Felix Bloch 
(1905-1983)
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Relation between symmetries and energy bands

  is an unitary operator (as seen earlier), sôTR ̂TR Ψ(r) = eiθ(R)Ψ(r)

̂TR1
̂TR2

= ̂TR1+R2

group structure

Translation invariance: Bloch’s theorem

̂TR Ψ(r) = Ψ(r + R)

Translation operator

 is a direct lattice vectorR

Felix Bloch 
(1905-1983)
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Relation between symmetries and energy bands

  is an unitary operator (as seen earlier), sôTR ̂TR Ψ(r) = eiθ(R)Ψ(r)

̂TR1
̂TR2

= ̂TR1+R2

group structure

Translation invariance: Bloch’s theorem

̂TR Ψ(r) = Ψ(r + R)

Translation operator

 is a direct lattice vectorR

Felix Bloch 
(1905-1983)

θ(R) = k ⋅ R [with  ]k ∈ ℝd

crystal momentum



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem

Felix Bloch 
(1905-1983)

̂TR Ψ(r) = Ψ(r + R)

Translation operator

 is a direct lattice vectorR

[ ̂TR, Ĥ] = 0
Energy eigenstates can be 


labelled by the eigenvalues of  ̂TR

periodic crystal Hamiltonian
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Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem

Felix Bloch 
(1905-1983)

̂TR Ψ(r) = Ψ(r + R)

Translation operator

 is a direct lattice vectorR

̂TR Ψk(r) = eik⋅R Ψk(r)

energy eigenstate

(  labelling) k
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Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem

Felix Bloch 
(1905-1983)

̂TR Ψ(r) = Ψ(r + R)

Translation operator

 is a direct lattice vectorR

̂TR Ψk(r) = eik⋅R Ψk(r)

energy eigenstate

(  labelling) k

arbitrariness (!) since , 

with  a reciprocal lattice vector ( )

eik⋅R = ei(k+G)⋅R

G G ⋅ R = 2πℤ

This is dealt with by restricting  to a Brillouin zonek

k ∈ ] − π/a, π/a]3E.g. for a simple cubic lattice



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Translation invariance: Bloch’s theorem

Felix Bloch 
(1905-1983)

̂TR Ψk(r) = eik⋅R Ψk(r) Ψk(r) = u(r)eik⋅r

Bloch’s theorem

Bloch (lattice-periodic) function
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Relation between symmetries and energy bands

Felix Bloch 
(1905-1983)

Hk uk(r) = [−
ℏ2

2m
(ik + ∇)2 + V(r)] uk = ε(k) uk(r)

Eigenvalue problem for :uk(r)

Family of solutions  ( ) with discretely spaced eigenvalues: energy bands! εn(k) n ∈ ℤ
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Relation between symmetries and energy bands

Felix Bloch 
(1905-1983)

Hk uk(r) = [−
ℏ2

2m
(ik + ∇)2 + V(r)] uk = ε(k) uk(r)

Eigenvalue problem for :uk(r)

Family of solutions  ( ) with discretely spaced eigenvalues: energy bands! εn(k) n ∈ ℤ

n = 1

n = 2

n = 3

ki ki + δk



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Felix Bloch 
(1905-1983)

Hk uk(r) = [−
ℏ2

2m
(ik + ∇)2 + V(r)] uk = ε(k) uk(r)

Eigenvalue problem for :uk(r)

Family of solutions  ( ) with discretely spaced eigenvalues: energy bands! εn(k) n ∈ ℤ

n = 1

n = 2

n = 3

ki ki + δk kf. . .
ΔE1

ΔE2

ΔE3

Translation symmetry  
leads to 

energy bands
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Relation between symmetries and energy bands

Felix Bloch 
(1905-1983)

Hk uk(r) = [−
ℏ2

2m
(ik + ∇)2 + V(r)] uk = ε(k) uk(r)

Eigenvalue problem for :uk(r)

Family of solutions  ( ) with discretely spaced eigenvalues: energy bands! εn(k) n ∈ ℤ

Pt 

Ψnk(r) = un(r)eik⋅r

Band index

Energy bands  reflect 

crystal symmetries

{εn(k)}



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Ĥ =
p̂2

2m
+ V(r), V(r) = V(r + R)

 is a direct lattice vectorR denotes the crystal potentialV(r) a2

a1

Rnm = n a1 + m a2

My

Mx MdMd*



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

Ĥ =
p̂2

2m
+ V(r), V(r) = V(r + R)

 is a direct lattice vectorR denotes the crystal potentialV(r) a2

a1

Rnm = n a1 + m a2

Beyond translation,  has discrete, point-group symmetries:V(r)

➡ 4-fold rotations ( ,   &  ) with a rotation axis 90∘ 180∘ 270∘ ∥ a1 × a2

➡ mirrors: Mx, My, Md, Md*

My

Mx MdMd*
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Relation between symmetries and energy bands

Ĥ =
p̂2

2m
+ V(r), V(r) = V(r + R)

 is a direct lattice vectorR denotes the crystal potentialV(r) a2

a1

Rnm = n a1 + m a2

Beyond translation,  has discrete, point-group symmetries:V(r)

➡ 4-fold rotations ( ,   &  ) with a rotation axis 90∘ 180∘ 270∘ ∥ a1 × a2

➡ mirrors: Mx, My, Md, Md*

My

Mx MdMd*

r′ = U r

any unitary (spatial) symmetry

V(U r) = V(r)
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∇2 + V(r)] Ψnk(r) = εn(k)Ψnk(r)

Suppose a solution ( ) was foundn, k
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Relation between symmetries and energy bands

[−
ℏ2

2m
∇2 + V(r)] Ψnk(r) = εn(k)Ψnk(r)

Suppose a solution ( ) was foundn, k

symmetry transformation 

[−
ℏ2

2m
∇2

Ur + V(Ur)] Ψnk(Ur) = εn(k)Ψnk(Ur)

Laplacian is invariant under Euclidean transformations:  ∇2
Ur = ∇2

r

Symmetric by construction
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Relation between symmetries and energy bands

[−
ℏ2

2m
∇2 + V(r)] Ψnk(r) = εn(k)Ψnk(r)

Suppose a solution ( ) was foundn, k

symmetry transformation 

[−
ℏ2

2m
∇2

Ur + V(Ur)] Ψnk(Ur) = εn(k)Ψnk(Ur)

Laplacian is invariant under Euclidean transformations:  ∇2
Ur = ∇2

r

Symmetric by construction

[−
ℏ2

2m
∇2

r + V(r)] Ψnk(Ur) = εn(k)Ψnk(Ur)

New solutions  with energy  are obtained!Ψnk(Ur) εn(k)
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Relation between symmetries and energy bands

What are the quantum numbers of the symmetry-related solutions  ?Ψnk(Ur)



Part 1: Spatial Symmetries | Band structure

Relation between symmetries and energy bands

What are the quantum numbers of the symmetry-related solutions  ?Ψnk(Ur)

(*) Note that  is just another lattice vector and UR k ⋅ UR = (U−1k) ⋅ R

Ψnk(Ur + UR) = eik⋅UR Ψnk(Ur) ⇔ Ψnk(Ur + UR) = ei(U−1k)⋅R Ψnk(Ur)
(*)

Bloch’s theorem:

Ψk(r + R) = eik⋅R Ψk(r)
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Relation between symmetries and energy bands

What are the quantum numbers of the symmetry-related solutions  ?Ψnk(Ur)

 is a Bloch eigenstate with wavevector  and energy . That is,  .  Ψnk(Ur) U−1k εn(k) Ψnk(Ur) = Ψn,U−1k(r)

(*) Note that  is just another lattice vector and UR k ⋅ UR = (U−1k) ⋅ R

Ψnk(Ur + UR) = eik⋅UR Ψnk(Ur) ⇔ Ψnk(Ur + UR) = ei(U−1k)⋅R Ψnk(Ur)
(*)

Bloch’s theorem:

Ψk(r + R) = eik⋅R Ψk(r)
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Relation between symmetries and energy bands

εn(k) = εn(Uk)

Energy bands inherit symmetries of the crystal potential

Example: centro-symmetric systems like Pt

εn(k) = εn(−k)
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Relation between symmetries and energy bands

εn(k) = εn(Uk)

Energy bands inherit symmetries of the crystal potential

degeneracies therefore emerge from spatial symmetries like inversion

We shall see shortly that spatial symmetries are important for band crossings in topological materials

Example: centro-symmetric systems like Pt

εn(k) = εn(−k)
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Relation between symmetries and energy bands

Time-reversal symmetry

  𝒯−1Ĥ 𝒯 = Ĥ 𝒯Ψnk(r) = Ψ*nk(r) is a solution with the same energy than   Ψnk(r)

In the absence of internal degrees of freedom (DOF), like spin, TRS is enacted by the anti-unitary operator U* = K ≡ 𝒯
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Relation between symmetries and energy bands

Time-reversal symmetry

  𝒯−1Ĥ 𝒯 = Ĥ 𝒯Ψnk(r) = Ψ*nk(r) is a solution with the same energy than   Ψnk(r)

Ψnk(r + R) = eik⋅R Ψnk(r) [Ψnk(r + R)]* = e−ik⋅R [Ψnk(r)]*

 is a Bloch eigenfunction with wavevector [Ψnk(r)]* −k

In the absence of internal degrees of freedom (DOF), like spin, TRS is enacted by the anti-unitary operator U* = K ≡ 𝒯
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Relation between symmetries and energy bands

εn(k) = εn(−k)

General property of TR invariant systems 

(even if they lack spatial inversion symmetry, such as GaAs)

  𝒯−1Ĥ 𝒯 = Ĥ 𝒯Ψnk(r) = Ψ*nk(r) is a solution with the same energy than   Ψnk(r)

Time-reversal symmetry

In the absence of internal degrees of freedom (DOF), like spin, TRS is enacted by the anti-unitary operator U* = K ≡ 𝒯
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Relation between symmetries and energy bands

The spin degree of freedom: Kramers degeneracy

ε↑(k) = ε↓(−k)

time-reversal symmetry 𝒯

ε

k

2 Kramers’ pairs
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Relation between symmetries and energy bands

The spin degree of freedom: Kramers degeneracy

ε↑(k) = ε↓(−k)

time-reversal symmetry 𝒯

ε

k

2 Kramers’ pairs

k

ε

inversion symmetry  I

ε↓(↑)(k) = ε↓(↑)(−k)
ε↑(k) = ε↓(k)

spin-degenerate bands

 symmetryI𝒯
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Relation between symmetries and energy bands

Magnetic materials

broken  symmetry𝒯spin-degeneracy lifting (FMs)

Think of a Stoner instability, 
Uρ(εF) ≥ 1

ε

k

M

ε↓

ε↑

M ≠ 0



Relation between symmetries and energy bands

TR symmetry is effectively restored if  + spatial operation

is a good symmetry of the crystal!

𝒯

Magnetic materials
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Relation between symmetries and energy bands

TR symmetry is effectively restored if  + spatial operation

is a good symmetry of the crystal!

𝒯

Bipartite  
antiferromagnetic lattice

Magnetic materials
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Relation between symmetries and energy bands

TR symmetry is effectively restored if  + spatial operation

is a good symmetry of the crystal!

𝒯

Bipartite  
antiferromagnetic lattice

τs
Sublattice translation


Magnetic materials
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Relation between symmetries and energy bands

TR symmetry is effectively restored if  + spatial operation

is a good symmetry of the crystal!

𝒯

Bipartite  
antiferromagnetic lattice

τs
Sublattice translation


 symmetry𝒯τs

k

ε
Kramers antiferromagnetism

𝒯

Magnetic materials

Part 1: Time-reversal symmetry | Band structure
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Relation between symmetries and energy bands

Altermagnets combine unique properties of ferromagnets and antiferromagnets

staggered magnetic order both in real space (like AFMs) and in -space (like FMs)k

III. PHYSICAL CONCEPTS

To illustrate the potential and stimulate future research of
altermagnetism in a broad condensed-matter physics field,
we now discuss our understanding of, and outlook on,
unique features of the altermagnetic phase in the context of
several overarching physical concepts.

A. Lifted Kramers spin degeneracy

Energy bands are Kramers spin degenerate [77,78]
across the whole Brillouin zone in all crystals that
are invariant under the symmetry transformation that
combines T and space inversion. Lifting Kramers spin
degeneracy by breaking the symmetry has brought forth a
plethora of physically intriguing and technologically
relevant phenomena, ranging from topological phases
of matter [41,42,79–84] and dissipationless Hall transport
[2,37,42], to charge-spin conversion effects in spintronic
memory devices [40,85–87].
For the many decades of spin-physics research, lifting of

the Kramers spin degeneracy in energy bands has been
considered to originate from two basic mechanisms—
relativistic and nonrelativistic—where the latter is due to
an internal magnetization in ferromagnets or an applied
magnetic field. We start by briefly recalling these two
mechanisms to highlight their distinction from the uncon-
ventional mechanism in altermagnets. Before moving on to
altermagnets, we also briefly review the physics of (lifted)
Kramers spin degeneracy in antiferromagnets to further
emphasize the distinct physics of altermagnetism.
The first conventional mechanism of lifting the Kramers

spin degeneracy that does not require magnetic order links
the broken space-inversion symmetry in the direct crystal
space to the spin space by the electron’s relativistic spin-
orbit coupling [88,89]. It results in inversion-asymmetric

spin-split energy bands with typically noncollinear spin
textures in the reciprocal momentum space. An example of
a Rashba spin splitting in an inversion-asymmetric non-
magnetic 2D system is illustrated in Fig. 9(a).

TABLE III. Altermagnetic candidates identified from ab initio calculations. We list the nonmagnetic space group, spin point group,
even-parity wave anisotropy, metallic (M) or insulating/semiconducting (I) conduction type, altermagnetic transition temperature, and
altermagnetic spin-splitting magnitude and anisotropy type.

Space group Spin point group Anisotropy Conduction TAM (K) Splitting (meV) References

RuO2 P42=mnm 24=1m1m1m d-wave M 400 1400 [3,18]
KRu4O8 I4=m 24=1m d-wave M ! ! ! 300 [16]
Mn5Si3 P63=mcm 2m2m1m d-wave M ≈200 150 [6]
ðCr;FeÞSb2 Pnma 2m2m1m d-wave M ! ! ! 200 [7]
CaCrO3 Pnma 2m2m1m d-wave M 90 200 [9]
CrSb P63=mmc 26=2m2m1m g-wave M 705 1200 [16]

MnF2 P42=mnm 24=1m1m1m d-wave I 67 297 [20,48]
MnO2 P42=mnm 24=1m1m1m d-wave I ! ! ! 900 [17]
CuF2 P21=c 22=2m d-wave I 69 350 [16]
La2CuO4 Bmab 2m2m1m d-wave I 317 10 [16]
LaMnO3 Pnma 2m2m1m d-wave I 139,5 20 [22,76]
κ-Cl Pnma 2m2m1m d-wave I 23 50 [4]
Fe2O3 R3̄c 13̄2m g-wave I 966 200 [16]
MnTe P63=mmc 26=2m2m1m g-wave I 310 1100 [16]

(a) Relativistic

(b) (d)

(c) Altermagnetic

FIG. 9. (a)Model relativistic Rashba spin-split bands. (b)Model
of antiferromagnetic zero-magnetization crystal of BiCoO3

with magnetic symmetry T t, and with broken space-inversion
symmetry. (c) Model nonrelativistic altermagnetic spin split-
ting. (d) Model of altermagnetic crystal of RuO2 with non-
relativistic spin symmetry ½C2kC4t%. The crystal are discussed in
Refs. [16,101].

ŠMEJKAL, SINOVA, and JUNGWIRTH PHYS. REV. X 12, 040501 (2022)

040501-10

Šmejkal, Sinova 

& Jungwirth (2022)
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Relation between symmetries and energy bands

Altermagnets combine unique properties of ferromagnets and antiferromagnets

staggered magnetic order both in real space (like AFMs) and in -space (like FMs)k

𝒯τs 𝒯τs

M = 0 M = 0

Antiferromagnet Altermagnet

III. PHYSICAL CONCEPTS

To illustrate the potential and stimulate future research of
altermagnetism in a broad condensed-matter physics field,
we now discuss our understanding of, and outlook on,
unique features of the altermagnetic phase in the context of
several overarching physical concepts.

A. Lifted Kramers spin degeneracy

Energy bands are Kramers spin degenerate [77,78]
across the whole Brillouin zone in all crystals that
are invariant under the symmetry transformation that
combines T and space inversion. Lifting Kramers spin
degeneracy by breaking the symmetry has brought forth a
plethora of physically intriguing and technologically
relevant phenomena, ranging from topological phases
of matter [41,42,79–84] and dissipationless Hall transport
[2,37,42], to charge-spin conversion effects in spintronic
memory devices [40,85–87].
For the many decades of spin-physics research, lifting of

the Kramers spin degeneracy in energy bands has been
considered to originate from two basic mechanisms—
relativistic and nonrelativistic—where the latter is due to
an internal magnetization in ferromagnets or an applied
magnetic field. We start by briefly recalling these two
mechanisms to highlight their distinction from the uncon-
ventional mechanism in altermagnets. Before moving on to
altermagnets, we also briefly review the physics of (lifted)
Kramers spin degeneracy in antiferromagnets to further
emphasize the distinct physics of altermagnetism.
The first conventional mechanism of lifting the Kramers

spin degeneracy that does not require magnetic order links
the broken space-inversion symmetry in the direct crystal
space to the spin space by the electron’s relativistic spin-
orbit coupling [88,89]. It results in inversion-asymmetric

spin-split energy bands with typically noncollinear spin
textures in the reciprocal momentum space. An example of
a Rashba spin splitting in an inversion-asymmetric non-
magnetic 2D system is illustrated in Fig. 9(a).

TABLE III. Altermagnetic candidates identified from ab initio calculations. We list the nonmagnetic space group, spin point group,
even-parity wave anisotropy, metallic (M) or insulating/semiconducting (I) conduction type, altermagnetic transition temperature, and
altermagnetic spin-splitting magnitude and anisotropy type.

Space group Spin point group Anisotropy Conduction TAM (K) Splitting (meV) References

RuO2 P42=mnm 24=1m1m1m d-wave M 400 1400 [3,18]
KRu4O8 I4=m 24=1m d-wave M ! ! ! 300 [16]
Mn5Si3 P63=mcm 2m2m1m d-wave M ≈200 150 [6]
ðCr;FeÞSb2 Pnma 2m2m1m d-wave M ! ! ! 200 [7]
CaCrO3 Pnma 2m2m1m d-wave M 90 200 [9]
CrSb P63=mmc 26=2m2m1m g-wave M 705 1200 [16]

MnF2 P42=mnm 24=1m1m1m d-wave I 67 297 [20,48]
MnO2 P42=mnm 24=1m1m1m d-wave I ! ! ! 900 [17]
CuF2 P21=c 22=2m d-wave I 69 350 [16]
La2CuO4 Bmab 2m2m1m d-wave I 317 10 [16]
LaMnO3 Pnma 2m2m1m d-wave I 139,5 20 [22,76]
κ-Cl Pnma 2m2m1m d-wave I 23 50 [4]
Fe2O3 R3̄c 13̄2m g-wave I 966 200 [16]
MnTe P63=mmc 26=2m2m1m g-wave I 310 1100 [16]

(a) Relativistic

(b) (d)

(c) Altermagnetic

FIG. 9. (a)Model relativistic Rashba spin-split bands. (b)Model
of antiferromagnetic zero-magnetization crystal of BiCoO3

with magnetic symmetry T t, and with broken space-inversion
symmetry. (c) Model nonrelativistic altermagnetic spin split-
ting. (d) Model of altermagnetic crystal of RuO2 with non-
relativistic spin symmetry ½C2kC4t%. The crystal are discussed in
Refs. [16,101].
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Sublattices connected by rotation:



Gapped topological matter

Trivial insulator as an atomic limit

a−1

εk

k
Egap

atomic limit ( )a = ∞
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Gapped topological matter

Trivial insulator as an atomic limit

a−1

εk

k
Egap

➡  Band structure admits smooth  with  


(Bloch functions  are smooth on the BZ torus ) 

ψn |ψn,k+G⟩ = |ψn,k⟩
un(k) T

trivial topology

Berry connection, , is smooth on 𝓐n(k) = i⟨un(k) |∇kun(k)⟩ T

atomic limit ( )a = ∞

a
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Gapped topological matter

Cn =
1

2π ∮∂BZ
dk ⋅ 𝓐n(k)

No. of vortices of the vector field 𝓐(k)

For 2D:

Vortices emerge from phase discontinuities in 
 (so-called topological obstructions)ψn(k)

For smooth ,  due to  
Stokes theorem applied to a closed manifold:

un(k) Cn = 0

∫ ∫T2

∇ × f ⋅ dS = 0
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Gapped topological matter

Topological insulators vs trivial insulators

topologically non trivial
Large ‘gap-closing’ perturbation

cannot be adiabatically deformed into one another 

atomic limit ( )a → ∞

εF
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SOC



spin up 
spin down

εF

conduction band

valence band

k
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0 π/a−π/a

TI vacuum
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Quantum spin Hall insulator

,    
Cs = (C↑ − C↓)/2 σs

yx = (e/2π) Cs

ℤ2 = Cs mod 2

helical edge

 symmetry protected𝒯



spin up 
spin down

Quantum spin Hall insulator

,    
Cs = (C↑ − C↓)/2 σs

yx = (e/2π) Cs

ℤ2 = Cs mod 2

helical edge

εF

conduction band

valence band

k

E

0 π/a−π/a

Quantum Hall insulator 

,    C = C↑ + C↓ ∈ ℤ σyx = (e2/h) C

chiral edgeC = ν

B

Broken 𝒯
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,    
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σyx = (e2/h) C σs

yx = (e/2π) Cs
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spin-polarised edge

Broken 𝒯
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spin up 
spin down

Quantum spin Hall insulator

,    
Cs = (C↑ − C↓)/2 σs

yx = (e/2π) Cs

ℤ2 = Cs mod 2

helical edge

Non-spatial symmetries play a key role in the classification of gapped topological phases of matter!
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k

E
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Gapped topological phases call for a classification based upon generic quantum-mechanical symmetries, such as TR symmetry (TRS)  (*)

(*) Translation and typical point-group symmetries are not generic enough in this context due to being easily broken by impurities, defects, etc.

Spatial symmetries  
(act non-locally in real space)

Non-spatial symmetries  
(act locally in real space)

Credit: Sebastian Kokott
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https://gitlab.com/Kokookster


Starting point: Wigner-Dyson classification of random matrices

No TR invariance (as in the IQHE)

TR invariance with  (as in the QSHE)𝒯2 = − 1

TR invariance with  (integer angular momentum)𝒯2 = + 1

𝒯−1 H(k) 𝒯 = H(−k)

Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter



Starting point: Wigner-Dyson classification of random matrices

No TR invariance (as in the IQHE)

TR invariance with  (as in the QSHE)𝒯2 = − 1

TR invariance with  (integer angular momentum)𝒯2 = + 1

𝒯−1 H(k) 𝒯 = H(−k)

Another generic symmetry: particle-hole symmetry (PHS)

No PHS ( ) 𝒞 = 0

PHS with 𝒞2 = + 1PHS with 𝒞2 = − 1

𝒞−1 H(k) 𝒞 = − H(−k)
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These non-spatial symmetries combined offer  possibilities, but there is one more!9 = 3 × 3

𝒞, 𝒯 = {0,1, − 1}
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Chiral (‘sublattice’) symmetry:   𝒮 = 𝒯 ⋅ 𝒞
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Part 2: Non-Spatial Symmetries | 10-fold classification of topological matter



Chiral (‘sublattice’) symmetry:   𝒮 = 𝒯 ⋅ 𝒞 unitary symmetry ( ) 𝒮 = 0,1𝒮−1 H(k) 𝒮 = − H(k)
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Chiral (‘sublattice’) symmetry:   𝒮 = 𝒯 ⋅ 𝒞 unitary symmetry ( ) 𝒮 = 0,1𝒮−1 H(k) 𝒮 = − H(k)

States with energy  are

 connected via 

±E
𝒮

Example: graphene𝒮 = σz
σz H σz = − H

𝒮
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 is uniquely fixed by TRS and PHS except when     2 choices  or   𝒮 = 𝒯 ⋅ 𝒞 𝒯, 𝒞 = 0 ⟹ 𝒮 = 0 𝒮 = 1

All together, we have  distinct choices(9 − 1) + 2 = 10

10-fold way (Altland & Zirnbaeur, 1997)
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Class 𝒯

A (unitary)

𝒞 𝒮 Some examples

0 0 0

d = 2 d = 3

ℤ 2D IQHE, 2D Chern insulator, broken-  metal𝒯

AI (orthogonal) +1 0 0 − −

−

-1 0 0 ℤ2 ℤ2AII (symplectic)

AIII (chiral unit.) 0 0 1 − ℤ

BDI (chiral ortho.) +1 +1 1 − −

CII (chiral symp.) -1 -1 1 − ℤ2

D -1 -1 1 ℤ −

C 0 -1 0 ℤ −

DIII -1 +1 1 ℤ2 ℤ

CI +1 -1 1 − ℤ

Bogoliubov-de 
Gennes 

(Superconductors)

Chiral 

Wigner-Dyson

 topological insulators (bismuth-antimony alloys)  
& QSH insulators (2d)

ℤ2

graphene

2D spin quantum Hall fluid in d+id SCs
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Part 2: Topological semi-metals protected by symmetry

Topological semi-metals

Topological band crossings 
near Fermi level

Band inversion

SOC

Dirac point

Weyl points

TI

WSM
DSM

C = 1C = 0

(a)

(b)

(c)

Type-I 

Type-II 

hole	 electron	

(d)

Figure 1

The topological insulator (TI) and Weyl semimetal (WSM) or Dirac semimetal (DSM). The
topology of both a TI and a WSM/DSM originates from similar inverted band structure. (a) The
spin-orbit coupling (SOC) opens a full gap after the band inversion in a TI, giving rise to metallic
surface states on the surface. (b) In a WSM/DSM, the bulk bands are gapped by SOC in the 3D
momentum space except at some isolating linearly crossing points, namely Weyl points/Dirac
points, as a 3D analogue of graphene. Due to the topology of the bulk bands, topological surface
states appear on the surface and form exotic Fermi arcs. In a DSM all bands are doubly
degenerate while in a WSM the degeneracy is lifted due to the breaking of the inversion symmetry
or time-reversal symmetry, or both. (c) The type-I WSM. The Fermi surface (FS) shrinks to zero
at the Weyl points when the Fermi energy is su�ciently close to the Weyl points. (d) The type-II
WSM. Due to the strong tilting of the Weyl cone, the Weyl point acts as the touching point
between electron and hole pockets in the FS.

of the Berry curvature. These Weyl points always appear in pairs (25, 26); otherwise, the

Berry flux becomes divergent. The WSM requires the breaking of either the time-reversal

symmetry (TRS) or the lattice inversion symmetry. When the TRS and inversion symmetry

coexist, a pair of degenerate Weyl points may exist, leading to the related Dirac semimetal

(DSM) phase (24, 27, 28, 29). In other words, a DSM can be regarded as two copies of

WSMs. At the critical point during the transition from a TI to a normal insulator, the

conduction and valence band touching points are the 3D Dirac points or Weyl points (24),

which depends on whether the inversion symmetry exists or not.

Although such gapless band touching has long been known, its corresponding topological

nature has been appreciated only recently (11). Imagine a single pair of Weyl points in a

— • Topological Materials 3

Figure adapted from 

B. Yan and C. Felser (2017)

Experimental evidence: 

Weyl semi-metal (WSM): TaAs family (2015), NbAs (2015), TaP (2016), …, 2D bismuthene (2024)

Dirac semi-metal (DSM): Cd3As2 (2014), PtSe2 (2017) … Au2Pb (2023), TlBiSSe (2023)

interesting physics

➡ Fermi Arcs

➡ Unconventional magneto-optical response

➡ Chiral magneto-electric response

➡ Spin-momentum locking
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E = ± ℏv k2
x + k2

y + k2
z

E

Weyl semimetal 

Requires broken or broken inversion symmetry 
(recall Kramers’ theorem)

𝒯

(non-degenerate linearly dispersing bands)
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E = ± ℏv k2
x + k2

y + k2
z

E

Weyl semimetal 

|u+(θ, ϕ)⟩ = e−iϕ cos
θ
2

| ↑ ⟩ + sin
θ
2

| ↓ ⟩

 is single valued except at the “north pole” ( )|u+⟩ θ = 0, ϕ = ?

Other choice of gauge will merely move the singularity to 

another location on the 2-sphere

The singularity acts as a source/drain of Berry curvature

Inspection of the eigenstate hints at a topological charge

(non-degenerate linearly dispersing bands)
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E = ± ℏv k2
x + k2

y + k2
z

E

Weyl semimetal 

| + E⟩ ℬ+(k) = −
1
2

k
|k |3

non-zero topological charge 
(monopole)

1
2π ∮node

ℬ(k) ⋅ dSk = ± 1

Quantised topological charge (Chern number)

(non-degenerate linearly dispersing bands)

ℬ(k) = ∇k × 𝒜(k)
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E

k

Total Berry flux penetrating the whole BZ is zero.        
 BZ

∑
i

Ci = 0

(BZ is a closed manifold )
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E

ℬ1,2(k) = ∓
1
2

k
|k |3

k

Total Berry flux penetrating the whole BZ is zero.        

 Weyl nodes come in pairs!

BZ

∑
i

Ci = 0

(BZ is a closed manifold )



Spatial symmetries

Act non-locally in real space 

(i.e. transform lattice points, ) ri → ri′ 

Symmorphic

Nonsymmorphic

Mirror, rotation, etc.

translation  by a fraction 

of a Bravais lattice vector

t

accidental band crossings

(perturbatively stable *)

symmetry-enforced crossings

(stable)

Part 2: Topological semi-metals protected by symmetry

Non-spatial symmetries

* These can be removed by large symmetry-preserving deformations.

Act locally in real space 
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Use Clifford algebra  to write a generic model for a band crossing in d spatial dimensions:{1, σx, σy, σz}

energy shift ( )f0 ≡ 0

Hk = f0(k) 1 + fx(k)σx + fy(k)σy + fz(k)σz
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Accidental band crossings

Use Clifford algebra  to write a generic model for a band crossing in d spatial dimensions:{1, σx, σy, σz}

ΔH2 = ( f 2
x + f 2

y + f 2
z ) 1

Recall:


 ; σ2
i = 1 {σi, σj} = 2δij 1Ek = ± f2

x (k) + f2
y (k) + f2

z (k)

energy shift ( )f0 ≡ 0

Hk = f0(k) 1 + fx(k)σx + fy(k)σy + fz(k)σz
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 ; σ2
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energy shift ( )f0 ≡ 0
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fi = ℏ vi ki

3D

Assume crossings are pinned 

to a high-symmetry point like Γ



Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Use Clifford algebra  to write a generic model for a band crossing in d spatial dimensions:{1, σx, σy, σz}

ΔH2 = ( f 2
x + f 2

y + f 2
z ) 1

Recall:


 ; σ2
i = 1 {σi, σj} = 2δij 1Ek = ± f2

x (k) + f2
y (k) + f2

z (k)

energy shift ( )f0 ≡ 0

Hk = f0(k) 1 + fx(k)σx + fy(k)σy + fz(k)σz

( )i = x, y, z

2D

fz = 0

fz ≡ m ≠ 0

fi = ℏ vi ki

3D

Assume crossings are pinned 

to a high-symmetry point like Γ
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Accidental band crossings

Symmetry class A (unitary)

, 𝒯 = 0, 𝒞 = 0 𝒮 = 0

No spatial symmetries: 3DHk = ℏv (σxkx + σyky + σzkz)
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, 𝒯 = 0, 𝒞 = 0 𝒮 = 0
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Accidental band crossings

Symmetry class A (unitary)

, 𝒯 = 0, 𝒞 = 0 𝒮 = 0

No spatial symmetries: 3D

Hk = ℏv (σxkx + σyky) 2D  perturbation opens gap σz unstable

 perturbation just shifts the crossing pointσi

stable

Hk = ℏv (σxkx + σyky + σzkz)
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Accidental band crossings

Symmetry class A (unitary)

, 𝒯 = 0, 𝒞 = 0 𝒮 = 0

No spatial symmetries: 3D

Hk = ℏv (σxkx + σyky) 2D  perturbation opens gap σz unstable

 perturbation just shifts the crossing pointσi

stable

Hk = ℏv (σxkx + σyky + σzkz)

2DMirror plane:

Mx = σy

Hk = M−1
x H−kx,ky

Mx

Satisfied with
"Graphene”

To protect the 2D band crossing, 

we add a spatial symmetry!
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Accidental band crossings

Symmetry class A (unitary)

, 𝒯 = 0, 𝒞 = 0 𝒮 = 0

No spatial symmetries: 3D

Hk = ℏv (σxkx + σyky) 2D  perturbation opens gap σz unstable

 perturbation just shifts the crossing pointσi

stable

Hk = ℏv (σxkx + σyky + σzkz)

2DMirror plane:

Mx = σy

Hk = M−1
x H−kx,ky

Mx

Satisfied with
"Graphene”

To protect the 2D band crossing, 

we add a spatial symmetry!

 is now symmetry forbidden!σz

M−1
x σzMx = − σz

stable

Symmetry protected 

semi-metallic phase
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Accidental band crossings
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Example: surface of a 3D TI
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Part 2: Topological semi-metals protected by symmetry

Accidental band crossings

Symmetry class AII (symplectic)

𝒯 = 1

Hk = ℏv (σxkx + σyky)2D

Example: surface of a 3D TI
𝒯 = iσy K

𝒯−1 σi 𝒯 = − σi

Hk = 𝒯−1 H−k𝒯

The TRS operation 
reverses momenta and spin

Band crossing is protected by TRS!

𝒯−1 (mσz) 𝒯 = − mσz
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Understanding important features of the band structures of crystals 

Characterising spin arrangements in unconventional magnetic phases of matter

Classifying topological insulators and topological semimetals 
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Reading suggestions: Colloquium: topological insulators, Hasan & Kane (2010)

Classification of topological quantum matter with symmetries, Ching-Kai Chiu et al (2016) 

Weyl and Dirac Semimetals in Three Dimensional Solids, Armitage, Mele & Vishwanath (2018)

Emerging research landscape of altermagnetism, Šmejkal, Sinova & Jungwirth (2022)
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Overview

Symmetries provide a powerful toolbox in solid state physics, which allows, for example, for

Understanding important features of the band structures of crystals 

Characterising spin arrangements in unconventional magnetic phases of matter

Classifying topological insulators and topological semimetals 

Thank you for your attention!

Reading suggestions: Colloquium: topological insulators, Hasan & Kane (2010)

Classification of topological quantum matter with symmetries, Ching-Kai Chiu et al (2016) 

Weyl and Dirac Semimetals in Three Dimensional Solids, Armitage, Mele & Vishwanath (2018)

Emerging research landscape of altermagnetism, Šmejkal, Sinova & Jungwirth (2022)

 


