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Most atoms are magnetic in ground state
In condensed matter magnetic order is more elusive



Challenge for modelling materials’ properties

In atoms, molecules and solids, many (102 – 1024) interacting 
electrons and nuclei. Modelling must account for
• Kinetic energies of electrons (and nuclei)
• Electromagnetic interactions
• Indistinguishability of identical electrons, each with spin ½ℏ
    ---- > antisymmetric many electron wavefunctions 
               (Pauli Exclusion Principle PEP)

Ψ 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖, … , 𝑥𝑗, …  = −	Ψ 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑗, … , 𝑥𝑖, …



Atomic Magnetism - topics

• Electron on the H-atom – revision of angular momentum in QM
• Charged particle in a magnetic field B
• H-atom in constant B, orbital and spin moments, 

𝝁 = !
"#
	𝑳, 𝝁 = $!

"#
 S,  Total 𝝁𝐽 =

!
"#
	(𝑳 + g S)

• Many electrons in atoms, wavefunctions in terms of  
antisymmetricised products of 1 – electron functions
• Hund’s Rules
• Zeeman effect à paramagnetism, susceptibility 𝜒,  

(diamagnetism, crystal fields)



Electron in a H-atomAtoms.1

One electron and a symmetric potential, (e.g. H-atom)

i~@ (r, t)
@t

= � ~2
2m

r2 (r, t) + V (r) (r, t)

with stationary states

 (r, t) = �n,l ,m(r , ✓,�)u�e
�iEnt/~

where
�n,l ,m(r , ✓,�) = Rnl(r)Ylm(✓,�)

and principal, n = 1, 2, · · · , angular momentum,
l = 0, 1, · · · , n � 1 and m = �l ,�l + 1, · · · , l and spin,
� =", #, quantum numbers.

H-atom: V (r) = � e
2

4⇡"0r
, En = �13.6

n2
eV.
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Radial probability
distributions deduced from
the radial parts of the wave
function R(r ). The curves
are labelled with the
values of n and ℓ.

becomes

H0 =
∑

i

[−(h̄2/2me)∇2 − Ze2/4πϵ0ri] +
∑

i<j

e2/4πϵ0rij. (4.7)

The sum over many pairs of interacting particles makes this an intractable
analytical problem.2 An appropriate way of dealing with the extra Coulomb
interactions is to suppose that each electron experiences the central potential of
some different, spherically symmetric charge distribution. The potential with
many electrons is no longer a simple Coulomb well and the degeneracy of
the energy of electrons with different ℓ-values but the same principal quantum
number n is lifted. The 4s shell, for example, then turns out to be lower in
energy than the 3d shell, the energy change depends on filling. The sense
in which the shells are filled defines the shape of the periodic table. The
potentials can be determined self-consistently. This is known as the Hartree–Foch
approximation.

n 1 2 3 4 5 6

1s 2s 3s 4s 5s 6s

2p 3p 4p 6p

3d 4d 6d

4f 5f 6f

5g 6g

5d

5p

Sequence of shell filling for
a many electron atom.

When several electrons are present on the same atom, at most two of them,
with opposite spin, can occupy the same orbital. The ions of interest in mag-
netism generally follow the L–S coupling scheme, where individual spin and
orbital angular momenta add3 to give resultant quantum numbers (here S and
L ≥ 0):

S =
∑

si, MS =
∑

msi, L =
∑

ℓi , ML =
∑

mℓi .

2 There is a very complicated analytical solution to the three-body problem, but there are usually
many more than three particles involved in atoms.

3 When spin-orbit coupling is very strong, as it is in the actinides, it is appropriate to first couple
li and si for each electron, to form ji , and then to couple these total angular momenta. This is
the j−j coupling scheme.
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Charged particle in 
a magnetic field Classical picture: with magnetic B = r⇥A and electric fields E = �rV � @A

@t ,

the Hamiltonian is

H =
1

2m
(p� qA)2 + qV

with particle’s motion set by

dv

dt
= q(E+ (v ⇥B)).

Quantum: Ĥ (r, t) = ih̄
@ (r,t)

@t and p ! �ih̄r.

In a constant magnetic field B, A = �1
2(r⇥B) and the Schrodinger Eq. is

✓
� h̄

2

2m
r2 � q

2m
B · L̂+

q
2(r⇥B)2

8m
+ qV

◆
 (r, t) = ih̄

@ (r, t)

@t
.

The angular momentum L̂ = (r⇥ p̂) where the components follow [L̂xL̂y � L̂yL̂x] = ih̄L̂z] etc.

leads to an magnetic moment µ = q
2mL̂

In a weak magnetic field (Zeeman Effect) the degeneracy of the energy levels of the electron in a

hydrogen atom are broken and become En +m
eh̄B
2me

.

Pauli-Schrodinger Eq.

✓
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ge
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B · Ŝ� eV (r)
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So, in a weak magnetic fields spectral lines split
                                                                          m=2

                                                                          m=1

                                                                         
n=3, l=0, 1, 2                                                                                          m=0
                                                                                                                     m= -1
                            m=-2

                                                                                                       

but splitting is further doubled  
(Stern Gerlach experiment )
à    electrons’  intrinsic spin  1/2 ℏ 
        and spin magnetic moment, 𝛍𝑠.                                                                     

𝑒𝐵ℏ/2𝑚𝑒



Spin, spin moments, Pauli matrices…

• An electron has spin  ½ℏ with spin magnetic moment, ()ℏ
*+

𝝈 = 	µ𝐵𝝈 
Interaction with magnetic field - µ𝐵	𝐁. 𝝈 , eigenvalues ±	µ𝐵	B
• Spin properties captured by 2 X 2 matrices: Pauli spin matrices, 
			𝝈 =	(𝜎x , 𝜎y , 𝜎z ).  Spin angular momentum S= ½ℏ 𝝈

Relativistic QM, Dirac Eq. --- spin arises naturally and leading 
relativistic corrections include spin-orbit coupling  Λ 𝑟 	𝑳. 𝑺

Classical picture: with magnetic B = r⇥A and electric fields E = �rV � @A
@t ,

the Hamiltonian is
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Pauli-Schrodinger Eq. (omitting diamagnetic term)
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◆
,

Z =
X

i

e
�Ei/kBT =

mJ=JX

mJ=�J

e

�mJ gJ µB B
kBT .

F = �(N/V ) kBT lnZ,

M = �@F

@B

M = MS BJ

✓
mJgJµBB

kBT

◆

MS = (N/V ) gJ µB J

BJ (y) =
(2J + 1)

2J
coth

✓
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2J
y

◆
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coth

⇣
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Atomic Magnetism - topics

• Electron on the H-atom – revision of angular momentum in QM
• Charged particle in a magnetic field B
• H-atom in constant B, orbital and spin moments, 

𝝁 = !
"#
	𝑳, 𝝁 = $!

"#
 S,  Total 𝝁𝐽 =

!
"#
	(𝑳 + g S)

• Many electrons in atoms, wavefunctions in terms of  
antisymmetricised products of 1 – electron functions
• Hund’s Rules
• Zeeman effect à paramagnetism, susceptibility 𝜒,  

(diamagnetism, crystal fields)



Many electrons in atoms – spin and exchangeIdentical particles, spin and exchange

Helium atom, Z = 2, to illustrate.
Kinetic energy of 1st electron, its attraction to doubly charged
nucleus, kinetic energy of 2nd electron, its attraction to
nucleus, repulsion between the two electrons.

Ĥ = Ĥ0 +
e
2

4⇡"0|r1 � r2|

Ĥ � = E� �,  �(r1,�1, r2,�2) = � �(r2,�2, r1,�1).

Neglect e-e interaction and  �(r1,�1, r2,�2) =
1p
2(�a(r1)u1,��b(r2)u2,�0 � �a(r2)u2,��b(r1)u1,�0) where

a = (n, l ,m), b = (n0, l 0.m0), �,�0 =", # and �a(b) are
one-electron hydrogenic functions for Z = 2.

7 / 16

Identical particles, spin and exchange

Treat e-e interaction as a perturbation. Exchange degeneracy:

(1) (�a(r1)u1,"�b(r2)u2," � �a(r2)u2,"�b(r1)u1,")

(2) (�a(r1)u1,#�b(r2)u2," � �a(r2)u2,#�b(r1)u1,")

(3) (�a(r1)u1,"�b(r2)u2,# � �a(r2)u2,"�b(r1)u1,#)

(4) (�a(r1)u1,#�b(r2)u2,# � �a(r2)u2,#�b(r1)u1,#)

Show that e-e interaction breaks degeneracy to split states
into two sets: a triplet with spin S = 1,("") and a singlet with
spin S = 0,("#) and energies Ea + Eb + (V � J) and
Ea + Eb + (V + J) respectively.
Coulomb integral

V =

Z Z
|�a(r1)|2Vee(|r1 � r2|)|�b(r2)|2dr1dr2

and Exchange integral

J =

Z Z
�?
a(r1)�b(r1)Vee(|r1 � r2|)�?

b
(r2)�a(r2)dr1dr2
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Ea + Eb +V 2J

S = 0

S = 1



Many electrons in atoms

• 2 electrons in same spatial state occupy different 
spin states (S=0), electrons with ‘parallel’ spins 
(S=1) tend to avoid each other --- spin correlation.

     Magnetic properties of matter.

• Many electron wavefunctions as Slater 
determinants of 1-electron wavefunctions.

• Each electron in effective potential set up by 
nucleus and other electrons, l degeneracy broken.

• Products of states labelled as 1s2, 2s2, 2p6,…

• Hunds’ Rules

One-electron hydrogenic states 

The three quantum number n ,l  ml 
denote an orbital.

Orbitals are denoted    nxml,        
x = s, p, d, f... for l = 0,1,2, 3,...

Each orbital can accommodate at 
most two electrons* (ms=±1/2)

*The Pauli exclusion principle: No two electrons can have the same four quantum numbers.
⇒  Two electrons in the same orbital must have opposite spin.

n l ml ms No of states 

1s 1 0 0 ±1/2 2 
2s 2 0 0 ±1/2 2 
2p 2 1 0,±1 ±1/2 6 
3s 3 0 0 ±1/2 2 
3p 3 1 0,±1 ±1/2 6 
3d 3 2 0,±1,±2 ±1/2 10 
4s 4 0 0 ±1/2 2 
4p 4 1 0,±1 ±1/2 6 
4d 4 2 0,±1,±2 ±1/2 10 

4f 4 3 0,±1,±2,±3 ±1/2 14 
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Most atoms are magnetic in ground state
In condensed matter magnetic order is more elusive
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Hunds’ Rules
First add orbital L and spin S momenta of the electrons
 
Then couple them to give total  J = L + S

 J2     à.   j(j+1) ℏ2,             Jz  à mJ ℏ, mJ = -J, -J+1, …, J

J= |L + S|, |L + S -1|, …, |L – S|

Different J-states are termed multiplets  2S+1XJ
X = S, P, D, F, G, … for L = 0, 1, 2, 3, 4, …

Total magnetic moment 𝝁𝐽 = − !
"# 	(𝑳 + g S) = - gJ

!
"# 	𝐉 

where  𝑔𝐽	 = 3/2	 +	(	𝑆(𝑆 + 1)	– 	𝐿(𝐿 + 1))/2𝐽(𝐽 + 1)

Hunds’ Rules:

To determine ground state of 
many electron atom/ion

 1. Maximise S

 2. Maximise L consistent with S

 3. Couple L and S to form J
•   Shell <  half full, J= |L – S|
•   Shell  > half full, J = L + S



Examples
Co2+ ion     (Co Z = 27)
1s2, 2s2, 2p6, 3s2, 3p6, 3d7, (4s2)

m   -2    -1    0    1     2

        ↑    ↑   ↑   ↑   ↑
           ↓    ↓    .     .    .

Maximising S = 3/2
Maximising  L  = 3
J = L + S = 9/2

4F9/2

Sm3+  ion     (Sm Z = 62)
[Xe], 4f5, (6s2, 5d1)

m     -3  -2   -1  0   1   2    3

           .    .    ↑    ↑   ↑   ↑   ↑
           .     .    .      .    .     .    .

Maximising S = 5/2
Maximising  L  = 5
J = |L – S| = 5/2

6H5/2

Try Mn2+  (Mn Z=25) and Ho3+  (Ho Z=67) ions
Mn2+ :S=5/2, L=0, J= 5/2, 6S5/2.
Ho3+ :S=2,L=6, J=8, 5I8 
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Atomic Magnetism - topics

• Electron on the H-atom – revision of angular momentum in QM
• Charged particle in a magnetic field B
• H-atom in constant B, orbital and spin moments, 

𝝁 = !
"#
	𝑳, 𝝁 = $!

"#
 S,  Total 𝝁𝐽 =

!
"#
	(𝑳 + g S)

• Many electrons in atoms, wavefunctions in terms of  
antisymmetricised products of 1 – electron functions
• Hund’s Rules
• Zeeman effect à paramagnetism, susceptibility 𝜒,

(diamagnetism, crystal fields)



Zeeman effect, 𝜒, 
paramagnetism
• What is the change to magnetization M to N atoms in 

volume V by applying a magnetic field B?
• Energy levels are split into  2J+1
• Partition function Z, Free Energy, magnetisation M

J
J-1
J-2
.
.
-J

gJ 𝜇𝐵	𝐵

Classical picture: with magnetic B = r⇥A and electric fields E = �rV � @A
@t ,

the Hamiltonian is

H =
1

2m
(p� qA)2 + qV

with particle’s motion set by

dv

dt
= q(E+ (v ⇥B)).

Quantum: Ĥ (r, t) = ih̄
@ (r,t)

@t and p ! �ih̄r.

In a constant magnetic field B, A = �1
2(r⇥B) and the Schrodinger Eq. is

✓
� h̄

2

2m
r2 � q

2m
B · L̂+

q
2(r⇥B)2

8m
+ qV

◆
 (r, t) = ih̄

@ (r, t)

@t
.

The angular momentum L̂ = (r⇥ p̂) where the components follow [L̂xL̂y � L̂yL̂x] = ih̄L̂z] etc.

leads to an magnetic moment µ = q
2mL̂

In a weak magnetic field (Zeeman Effect) the degeneracy of the energy levels of the electron in a

hydrogen atom are broken and become En +m
eh̄B
2me

.

Pauli-Schrodinger Eq.
✓

1

2m
(p̂+ eA)2 +

ge

2m
B · Ŝ� eV (r)

◆
 (r, t) = ih̄

@ (r, t)

@t
.

 (r, t) =

✓
 "(r, t)
 #(r, t)

◆
,

Z =
X

i

e
�Ei/kBT =

mJ=JX

mJ=�J

e

�mJ gJ µB B
kBT .

F = �(N/V ) kBT lnZ, MS = (N/V ) gJ µBB J

M = �@F

@B
= MS B

✓
�mJgJµBB

kBT

◆

B (y) =
(2J + 1)

2J
coth

✓
(2J + 1)

2J
y

◆
� 1

2J
coth

⇣
y

2J

⌘

� =
M

H
=

µ0M

B
= (N/V )

µ
2
eff

3kBT

µeff = gJµB

p
(J(J + 1))

Paramagnetism weak, positive, T-dependent

(stronger than T-independent diamagnetism).

Classical picture: with magnetic B = r⇥A and electric fields E = �rV � @A
@t ,

the Hamiltonian is

H =
1

2m
(p� qA)2 + qV

with particle’s motion set by

dv

dt
= q(E+ (v ⇥B)).

Quantum: Ĥ (r, t) = ih̄
@ (r,t)

@t and p ! �ih̄r.

In a constant magnetic field B, A = �1
2(r⇥B) and the Schrodinger Eq. is

✓
� h̄

2

2m
r2 � q

2m
B · L̂+

q
2(r⇥B)2

8m
+ qV

◆
 (r, t) = ih̄

@ (r, t)

@t
.

The angular momentum L̂ = (r⇥ p̂) where the components follow [L̂xL̂y � L̂yL̂x] = ih̄L̂z] etc.

leads to an magnetic moment µ = q
2mL̂

In a weak magnetic field (Zeeman Effect) the degeneracy of the energy levels of the electron in a

hydrogen atom are broken and become En +m
eh̄B
2me

.

Pauli-Schrodinger Eq.

✓
1

2m
(p̂+ eA)2 +

ge

2m
B · Ŝ� eV (r)

◆
 (r, t) = ih̄

@ (r, t)

@t
.

 (r, t) =
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 "(r, t)
 #(r, t)

◆
,

Z =
X

i

e
�Ei/kBT =

mJ=JX

mJ=�J

e

�mJ gJ µB B
kBT .

F = �(N/V ) kBT lnZ,

M = �@F

@B

M = MS BJ

✓
mJgJµBB

kBT

◆

MS = (N/V ) gJ µBB J

BJ (y) =
(2J + 1)

2J
coth
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2J
y

◆
� 1

2J
coth

⇣
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J ! 1,B (y) = coth(y)� 1

y
.

J =
1

2
,B1/2 (y) = tanh(y)

y ! 0,BJ (y) =
(J + 1)y

3J

� =
M

H
=

µ0M

B
= (N/V )

µ
2
eff

3kBT

µeff = gJµB

p
(J(J + 1))

1

Workings, saturation magnetization, Ms, Brillouin function BJ(y)…

Classical picture: with magnetic B = r⇥A and electric fields E = �rV � @A
@t ,

the Hamiltonian is

H =
1

2m
(p� qA)2 + qV

with particle’s motion set by

dv

dt
= q(E+ (v ⇥B)).

Quantum: Ĥ (r, t) = ih̄
@ (r,t)

@t and p ! �ih̄r.

In a constant magnetic field B, A = �1
2(r⇥B) and the Schrodinger Eq. is

✓
� h̄

2

2m
r2 � q

2m
B · L̂+

q
2(r⇥B)2

8m
+ qV

◆
 (r, t) = ih̄

@ (r, t)

@t
.

The angular momentum L̂ = (r⇥ p̂) where the components follow [L̂xL̂y � L̂yL̂x] = ih̄L̂z] etc.

leads to an magnetic moment µ = q
2mL̂

In a weak magnetic field (Zeeman Effect) the degeneracy of the energy levels of the electron in a

hydrogen atom are broken and become En +m
eh̄B
2me

.

Pauli-Schrodinger Eq. (omitting diamagnetic term)

✓
1

2m
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e

2m
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◆
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◆
,
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i

e
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e
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✓
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kBT
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Exchange interactions, magnetic order and structure - topics

• Dipolar interactions between moments, 𝝁i’s 

• Exchange interactions  
                        -    Direct exchange
                        -    Superexchange
                        -    Indirect exchange
• Itinerant electrons --- 𝝁i’s ?

• “Spin” models for magnetism over longer length 
scales - mean field approximation

• Magnetic order,  Tc, TN. Magnetic phases



Dipolar Interactions
Edd ~	(𝝁1	. 𝝁2	 − 3(𝝁1. 𝑹)(𝝁2. 𝑹))/R3

Edd ~ 10-5 eV

Dipoles order at v. low T but magnetic ordering 
temperatures can be much higher  e.g
Tc  of Fe ~ 1000K, Gd ~ 290K,  Nd2Fe14B ~ 700K
 TN of antiferromagnetic MnO ~ 120K.

Need another physical mechanism
 

𝝁1 𝝁2

R

Spin and Exchange effects from many 
electrons spread over several atoms 
are principal causes of magnetic order 
in condensed matter 



Challenge for modelling materials’ properties

• Kinetic energies of electrons (and nuclei)
• Electromagnetic interactions
• Indistinguishability of identical electrons, each with spin ½ℏ
    ---- > antisymmetric many electron wavefunctions (PEP)

Ψ 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖, … , 𝑥𝑗, …  = −	Ψ 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑗, … , 𝑥𝑖, …
• Many electron states in terms of products of 1-electron states in 

effective potentials (HF, DFT, etc.)
• Exchange and spin effects 



Exchange interactions

Molecules 1.

Timescale separation (Born-Oppenheimer Approximation).
Nuclei slowly oscillating about classical equilibrium positions
while electrons move rapidly in near static potential from
nuclei and subjected to interactions with each other.
Nuclei tend to move to positions of minimum electronic and
nuclear Coulomb energy. Electrons bond the nuclei.

Nuclear vibrational energies (me

M
)
1
2 times smaller than

electronic excitation energies. Nuclear rotational energies me

M

times smaller. eV: 0.01 to 0.1 eV: 0.0001 eV.
Bonding in molecules. Models from H

+
2 and H2 insights.

Guess electronic wave functions ignoring kinetic energy of
nuclei.

12 / 16

H2
+  ion first, single electron 

Hydrogen molecule illustration

E0E0

𝜎 ∗ 	antibonding

𝜎 bonding

2t

2 electrons in the H2 molecule

E0

S=0, both electrons in symmetric 
bonding state

S=1, both electrons in antisymmetric 
anti-bonding state

J ! 1,B (y) = coth(y)� 1

y
.

J =
1

2
,B1/2 (y) = tanh(y)

y ! 0,BJ (y) =
(J + 1)y

3J

� =
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H
=

µ0M

B
= (N/V )

µ
2
eff

3kBT

µeff = gJµB

p
(J(J + 1))
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p̂
2

2m
+ VA + VB, ĤA =
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+ VA, ĤA�A(r) = E0�A(r).
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EFX

n
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✓
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◆
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Direct exchange

General aspect of 2 electrons – 
spins combine to form either an S =0 singlet state (↑↓) 
                                                         or an S=1  triplet state (↑↑). 
Difference in energy  - exchange 2J, 

J ! 1,B (y) = coth(y)� 1

y
.

J =
1

2
,B1/2 (y) = tanh(y)

y ! 0,BJ (y) =
(J + 1)y

3J

� =
M

H
=

µ0M

B
= (N/V )

µ
2
eff

3kBT

µeff = gJµB

p
(J(J + 1))

Ĥ =
p̂
2

2m
+ VA + VB, ĤA =

p̂
2

2m
+ VA, ĤA�A(r) = E0�A(r).

 (r) = cA�A(r) + cB�A(r), t =

Z
�
⇤
B(r)Ĥ�A(r)dr, S =

Z
�
⇤
B(r)�A(r)dr

J =

Z Z
�
⇤
a(r1)�b(r1)Vee(|r1 � r2|)�⇤

b(r2)�a(r2) dr1dr2

1

Motivates  Heisenberg model
 

H = - Σ Jij Si . Sj  

between pairs of spins

 Important when metal atoms like Fe, Mn, Co, Ni  are close together



!"#$%$&'()*+$!"#$%$&'()*+$!"#$%$&'()*+$!"#$%$&'()*+$

!"#$%"&$'( )($*&'++",)-('$*./012)*(# $3' ,)-('$*#, "&%$+)(#*$*"(%,'$)2 "0*4'#

Superexchange

Most often antiferromagnetic, prevalent in transition metal oxides MnO etc.



Indirect exchange

Interaction between 2 

partially-filled f-shells 

in lanthanides via their 

effect on the 

conduction electrons,  

[Xe] 4fn 6s2 5d1

R12

𝜒conduction

𝐽𝝁1 J𝝁2

JRKKY  ~ J2𝝁1. 𝝁2 𝜒cond (R12) ∝ 9:; 	<	=>	?!"
?!"

#

𝜑(𝒓)	~	exp(i k.r)



Exchange interactions, magnetic order and structure - topics

• Dipolar interactions between moments, 𝝁i’s 

• Exchange interactions  
                        -    Direct exchange
                        -    Superexchange
                        -    Indirect exchange
• Itinerant electrons --- 𝝁i’s ?

• “Spin” models for magnetism over longer length 
scales - mean field approximation

• Magnetic order,  Tc, TN . Magnetic phases



Itinerant and localised electrons
Rare earths in solids are described in terms of both localised 
atomic orbitals (partially filled f-shells)  and delocalised Bloch waves 
of the conduction electrons

Localisation
Degree of electron localisation causes magnetism in solids or not.

• Simple metals and semi-conductors – non-magnetic
• Rare earth atoms have atomically localised magnetic moments
• Transition metals have partially filled d-shells, weakly localised electrons
      subject to itinerant exchange interactions. 

Stoner model paradigm (rigorously with DFT)



Itinerant electrons and the Stoner model
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1

Veff. and Beff. depend on charge and spin 
densities  n(r) and M(r). A ferromagnetic metal 
sustains a finite spin density M and the 
electronic band structure is spin-polarised.

Local magnetic moments are identified in 
regions around the atoms. These are the ‘spins’ 
for describing magnetic order in itinerant 
electron magnets with orientations {ei}

Magnetization density and magnetization

M =

Z

VZ

d3r m(r)

m(r) = n+(r)� n�(r) =
X

m

|'+
m(r)|2 �

X

m

|'�
m(r)|2

Local magnetic

moment per unit cell M

I. Mertig ESM 2017  lecture notes 



Spin-polarised density of states of the electrons

Spin-polarized density of states

D±(E) = D0(E ± 1

2
IM)

D+

D�

E

Majority electrons

Minority electrons

EF

D(E), d.o.s.

 D↑ (↓)(E) =  D(E ± I M/2)

M = N↑ −	 N ↓ 

Ferromag. if (I D(EF)) > 1
Stoner criterion EF

∇

σ σ

σ

σ

15/08/2024, 17:30 Electronic Structure: Metals and Insulators | SpringerLink

https://link.springer.com/referenceworkentry/10.1007/978-3-030-63101-7_4-1#Fig1 10/126

b.c.c. Fe  non-magnetic and 
ferromagnetic  bands  and density of states 



,DPG21

The challenge and strategy for magnetic materials
modelling ab initio

1024 electrons and nuclei. Density Functional Theory.

Complicated collective modes are excited as T is increased.

Distinguish relatively slowly varying modes from faster ones.

Slow nuclei vibrations about nearly fixed crystal lattice positions
surrounded by electron glue with fast and slow fluctuations · · ·

Spin waves at low T coalesce into
‘local moments’ at higher T -

local polarisation of electronic spin
density around an atom changes
orientation slowly on time scale
of other electronic behaviours, {êi}.
Energies H{êi}.

Julie Staunton
Magnetic phase diagrams from first-principles electronic structure theory - modelling of caloric e↵ects

Fluctuating local moments and interacting electrons
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Magnetic phase diagrams from first-principles electronic structure theory - modelling of caloric e↵ects

Fluctuating local moments and interacting electrons
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Julie Staunton
Magnetic phase diagrams from first-principles electronic structure theory - modelling of caloric e↵ects

Fluctuating local moments and itinerant electrons

’Spins’   from collective behaviour of the 
electrons for further atomistic modelling

Localised and itinerant magnetism



Exchange interactions, magnetic order and structure - topics

• Dipolar interactions between moments, 𝝁i’s 

• Exchange interactions  
                        -    Direct exchange
                        -    Superexchange
                        -    Indirect exchange
• Itinerant electrons --- 𝝁i’s ?

• “Spin” models for magnetism over longer length 
scales - mean field approximation

• Magnetic order,  Tc, TN . Magnetic phases



Spin models, magnetic ordering and structure
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Mean field approximation

A very useful inequality, 
the Feynman – Peierls’  Inequality

Brillouin function againWeiss field

For ferromagnetic order, m1 = m2 = m3 …..= m,
        antiferromagnetic, e.g. mi’s  m1 = -m2 = m3 = -m4  …..

𝒎 𝑹 = 𝑚𝑸	(cos 𝑸. 𝑹 sin 𝑎, sin 𝑸. 𝑹 sin 𝑎, cos 𝑎)
S. J. Blundell, Magnetism in Condensed Matter (OUP, 2001)
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p̂
2

2m
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4f 4g 4c 4e 8j1 8j2 16k1 16k2 4g

R Fe B

Example of  Nd2Fe14B – the ubiquitous magnet

Nd spin 

Nd+Fe spin 

Nd orb Fe orb

Exp a) c)c)b)

3

FIG. 2. The relative strengths of interactions between sites in
the unit cell (boron sites not included), Jij , (Eq. 3) highlight-
ing the RE-TM ones (sites 48–51 and 52–55 correspond to 4f
and 4g respectively). Numerical values in meV are given in [9]
along with specific site coordinates. Red/blue color indicates
FM/AF interactions.

Consequently beyond-pairwise terms are clearly identi-
fied in DLM-DFT theory from the non-linear dependence
of the Weiss fields on the {mi} [21–25]. The {mi} order
parameters, describing an equilibrium state at a temper-
ature T , are given by the self-consistent solution of Eq.2
and mi = (�1/�hi + coth�hi), the Langevin function,
(� = 1/kBT ).

Figure 1(a) shows the magnetization as a function of
T compared to experiment and resolved into the RE and
TM spin and orbital components. The magnetization
is directed along ✓ = 45� in the (xz)-plane. Full cal-
culational details are given in the Supplemental Mate-
rial [9] and references [16, 26–28]. The contribution from
a particular site i is found by multiplying its local mo-
ment magnitude, µi, by the order parameter mi(T ). The
Fe and Nd spin moments interact antiferromagnetically
(AF) and order in an anti-parallel alignment in a fer-
rimagnetic state, but the large orbital moment of Nd,
pointing opposite to its spin, leads to overall ferromag-
netic (FM) order. The Fe orbital moments are small
(⇠ 0.05µB/atom). The calculated Tc is 1058 K, which,
although an overestimate of 473 K in comparison to the
experiment [11], is reasonable for a first-principles theory
which uses a mean field approximation for the statistical
mechanics of the e↵ective spins [28].

On each of the six Fe and two Nd sublattices ([8, 9]
the magnetic order varies from complete, {mi = 1},
at T = 0K to zero above Tc, {mi = 0}. Figure 1(b)
shows how the temperature dependence of magnetic or-
der varies across the sublattices. The Nd sublattices dis-
order more quickly than all the Fe sublattices except
the 8j1 one. Complementary information in Fig. 1(c)
shows that Weiss fields, {hi}, promote strong ordering
when large and have considerable sublattice variation,

notably the factor ⇠4 di↵erence between the 8j1 and
8j2 sites. Analysis of {hi}, Eq.2, reveals the presence
and importance of interactions that fall outside those of
a Heisenberg-like model. For such a pairwise model the
Jij interactions (Fig. 2), directly obtained from the Weiss
fields for small values of the {mi}, are used to construct
the model’s Weiss fields and {mi} at all T (dashed lines
in Fig. 1(c)). There are large discrepancies from the full
ab initio DLM-DFT data away from Tc, leading us to
propose a more realistic representation of the interac-
tions which is straightforward to incorporate into atom-
istic spin modelling of the magnet’s properties. It leads
to a magnetic energy per unit cell

⌦̄ = �
1

2

X

ij

Jijmi ·mj �
1

4

X

i

BI(mi ·M)2, (3)

where i, j run over the sites in the unit cell, I denotes one
of the 8 sub-lattices to which the site i belongs and M
is the total magnetization per unit cell, M =

P
i µimi

where the order parameters on the RE sites are anti-
parallel to the TM sites for the ferrimagnetic state. The
second, higher order term captures the e↵ect of the over-
all spin-polarization of the electronic structure on the
e↵ective interactions between the local moments. Com-
puting Weiss fields from this expression fits the DLM-
DFT calculations very well as shown by the full curves in
Fig. 1(c) and ⌦̄ closely approximates h⌦iT . Table I lists
the BI parameters that measure the sublattice-dependent
size of these higher order, multi-spin terms.

System 4c 4e 8j1 8j2 16k1 16k2 Rf Rg

Nd2Fe14B -15.42 14.31 -5.06 -1.38 3.82 4.44 -2.53 -1.41

Y2Fe14B -13.68 9.91 -4.07 1.27 4.25 4.07 0.0 0.0

TABLE I. E↵ective, multi-spin interaction constants (in µeV),
BI , for Nd2Fe14B and Y2Fe14B.

Fig. 2 shows the relative strengths of the Jij interac-
tions between pairs of sites. They are represented on a
64 ⇥ 64 grid (56 Fe sites and 8 RE sites and arranged
according to sublattice). Numerical values are given as
Supplemental Material [9]. Assuming a range less than
roughly 5Å, they can be directly used in atomistic spin
simulations together with the terms from Table I. The
figure illustrates the vital importance on the RE mag-
netic ordering of the hexagonal nets of Fe atoms [8, 9]
from the k1, k2 and notably sites on the j1 and j2 sublat-
tices. Indeed the largest contributions to the Weiss fields
at the RE sites originate from the j1 and j2 sublattices.
The TM-TM interactions are particularly varied rang-

ing from FM (red) for the majority to AF (blue). The
j1 sites have AF interactions with e, c and RE sites and
strong FM ones with j2 sites. This frustration drives
this sublattice’s aversion to magnetic order. The diver-
sity of the interactions stems from the profound e↵ect

Pairwise exchange Jij and higher order BI parameters 
produced  for further atomistic spin modelling.

J. Bouaziz et al. PRB 107, L020401,(2023). 



Exchange interactions, magnetic 
order and structure - topics

• Dipolar interactions between moments, 𝝁i’s 

• Exchange interactions  
•                         -    Direct exchange
•                         -    Superexchange
•                         -    Indirect exchange
• Itinerant electrons --- 𝝁i’s ?

• “Spin” models for magnetism over longer 
length scales - mean field approximation

• Magnetic order,  Tc, TN . Magnetic phases
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