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Outline

= |ntroduction: Data, Communication, Waves ...
= Spin waves for communication
* Linear devices
* Filters, phase- and time delay units
* Nonlinear devices

e Limiter, signal-to-noise enhancement
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Physical/technical side

— Communication: How to transfer data
from Ato B

Sender - | propagation - Recelver

Storage/ Computing/

Communication

Memory Logic

= Mainly electromagnetic:
high speed + low attenuation
of photons

Signal transfer

— Sl gelessdiie = Different solid state solutions
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RPTU Waves as signal carriers
Communication requires spatially moving dynamics => waves (sound, light, spin ...)
Example: Dispersion relation of

light waves in different media
Speed of the wave packet:

8r > O
A )
N

_0w_ of
Ve =5 T ot

A=4, exp(k - % — wt)
Group velocity defines

Frequency f (GHz)
~

Wave equation speed of energy/information
Interference phenomena propagation C
L] v : _
: : : : _ “n
Linear dispersion relation => Group velocity s : . : y :
* is equal to phase velocity Wavenumber K (rad/om)

* isindependent of frequency/wave vector
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RPTU Communication speed

How “fast” is my communication?

1. Delay time t of the signal is given by the group velocity v, of the wave.

2. Data transfer rate R of the communication is given by the
instantaneous bandwidth Af of the signal and the signal processing devices:

R < Af

=> high bandwidth Af needed for high speed data
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- Electro-magnetic waves as signal carrier

Radio-frequencies /Microwaves
f=30 MHz- 300 GHz / A4, =10 km- 1mm

Visible light in optical fibers
Aem = 1064 nm (f = 280 THz)

» High bandwidth ---f?. ;
* Low attenuation :

(also still used: MHz-GHz electromagnetic waves .
in cables)

Free-space propagation
=> wireless & mobile communications
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Magnetization dynamics

Wave-based data processing
= Coherent coupled

oscillations of
magnetic moments

Spin wave

> k.

Coherent propagation
Interference effects and logic

= Described by the
Landau-Lifshitz-
Gilbert equation

\ = Fundamentals:

”)“ * Intrinsic nonlinearity
7711 See the two lectures * Scalability: down to nanometer wavelength
//“//‘51, of B. Hillebrands * Frequency multiplexing
T)‘){‘;; last Wednesday * Typical frequencies: GHz
:\{{; Ferromagnetic resonance of in-plane magnetized film:
'3'}{ frur = V\/H;H (toH + poMs)
AR\
(effective) magnetic field  saturation magnetisation
P. Pirro, V. |. Vasyuchka, A. A. Serga, and B. Hillebrands, GHz
Advances in Coherent Magnonics, Nat Rev Mater 6, 1114 (2021). VYV = ZST;.UOH =0—1T, uoMg = 0.175 T (YIG) — 2.2 T (Fe)
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RPTU Magnon versus photon dispersion relations

Magnons in a YIG film Photons in different media
7 A DIPOLAR- /
DIPOLAR WAVES EXCHANGE
WAVES
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Magnons: about 103-10° higher wavenumbers for the same frequency range:
= Miniaturization is facilitated: RF devices based on magnons are much smaller
= Magnons travel much slower than photons: RF time and phase delay possible in microstructures
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Frequency range mainly targeted by magnonic applications:
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1-60 GHz

[

RADIO FREQUENCY BANDS & APPLICATIONS }

RADIO FREQUENCY SPECTRUM

Extremely Low Frequency

Frequency: 3 KHZto 30 KHE
Wavelength: 100 kmto 10 km

Low Frequency

Frequency: 30 KHz to 300 KHz
Wavelength: 10 km to 1km

Medium Frequency

Frequency: 300 KHz to3 MHz
Wavelength: 1 km to 100 m

High Frequency

Frequency: 3 MHz to30 MHz
Wavelength: 100 mto 10m

Very High Frequency

Fraquency: 30 MHz to 300 MHz
Wavelength: 10m to1m

Ultra High Frequency

Frequency: 300 MHz 0 3 GHz
‘Wavelength: 1m 10100 mm

Super High Frequency

Frequency: 3 GHZ to 30 GHz
Wavelength: 100 mm to 10 mm

Extremely High Frequency|

Frequency: 30 GHz to300 GHz
Wavelength: 10mm to1 mm

WWW.RFPAGE.COM
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Maritime radie, navigation

Maritime radio, navigation

AM radio, Aviation radio,
navigation

Amateur radio, NFC, aviation,
weather broadcast

FM radio, VHFtelevision

Moahile, Wi-Fi, GPS, 4G,
UHFtelevision

0 =

O
Satellite, 5G, Wi-Fi, Radio

astronomy >
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RPTU

Magnonic systems for signal processing and computing

Linear systems Nonlinear magnon systems
Linear SW propagation Nonlinear SW propagation
* RF phase shifter * Half-adder (AND gate)
* RF delay lines * Ring resonators
* RF filters, isolators * Magnon Transistor
tunable via the applied tunable via the magnon intensity
magnetic fields (Hy, /1>) (I ,1;)

f 1
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RPTU Linear (Magnonic) devices for radio-frequency applications

Linear systems
(Input-output relation independent of RF power/magnon intensity)

= Phase delay unit
shifts (only) the phase ¢ of the signal by a shift A¢ (which should be constant

over the bandwidth Af)

= Time delay unit
delays a signal by a time delay At (all frequency components in the bandwidth

should have the same delay to avoid signal distortion)

= Filter
removes a selected frequency range from the spectrum

York, UK, 03.09.2024
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Applications of RF delay units

Tunable Directional antennas, e.g. for massive MIMO (“Multiple Input Multiple Output”)

c t N Massive APAA for ini H .
ey IR New B oo, Tunable miniaturized phase delay units
base stations base stations

(better: time delay units)

‘ beam )
\ ﬁ ? 4 o
()
‘. ‘ ‘. ‘ >— terminal
Antenna
n
S
’ N
Analog D Hybrid Analog/Digital — .
Beamforming Beamforming ! Beamforn%ngg Antenna AS — vg At
n+1
(11}
= 4

i ) Many RF antennas with different time delays
IEEE signal processing
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RPTU 1. “Stationary” magnonic devices

One big advantage of magnonic devices is their reconfigurability using different external fields.
For simplicity, let us first understand how a magnonic devices works at a fixed external field.

Input Output Dispersion relation (schematic)

f
Whay

Ll

YIG

"a

. 4
=
R

Propagation distance d

Phase delay: A (f;) = ky - d (A¢g can be >> 27) kN? > k

: d d
Time delay: At(f;) = ot = 37 ARG (A¢g can be >> 2m)

Filter function? BandwidthAf ? Efficiency of energy transduction?
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- Excitation of spin waves using microwave antennas

General idea:

* A microwave of frequency f propagating in a wire-like conductor is creating
AC electron currents of the same frequency

* According to Biot-Savart’s law the AC currents create AC magnetic fields which can excite
the spin waves if their direction has a perpendicular to the static magnetization

Cross section
of a single wire:
(“stripline antenna”)

In z direction, the wire is usually considered as
infinitely extended

Conductor (orange): Au, Cu, Al, superconductor...

Magnonic waveguide
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Calculation of antenna fields

In the magneto-static approximation, Biot-Savart’s law can be used to calculate the dynamic
fields of the microwave currents:

1,0 h,
o J — h,
L
. “~ 0,59
J e
L dkd¢ & /
27r € 00
©
N
Integration for a rectangular antenna cross section g 0,5
with width 2a and thickness 2b: )
P
- I 1 (b—y)*+ (a—x)? b—y a—x
hy(x,y) ~Smab [(a—x) [Eln((—b—y)z-k(a—x)z) +a—xatan(b—y) -1,0- | . . . . .
—b—y a—x L (b—y)P*+(-a—x) -30 -20 -10 0 10 20 30
e (55) [ o (P )
b—y (—a—x) —b—y (—a—x)” X(Hm)
+ atan — atan ,
—a—x b—y —a—x —b—y
* Here, I is the total current running in the antenna width: 2a = 1.15 pm,
* Similar expression for the field in y direction thickness: 2b = 0.22 um
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RPTU Excitation efficiency of microwave antennas

The excitation efficiency of spin waves is calculated based on the general connection of the dynamic
magnetization with the dynamic microwave field (external field) and the dynamic dipolar field of the spin
wave via the susceptibility tensor:

mdyn _ )Z(hMW + hd)

= Results depend on the geometry (Surface waves, Backward Volume, Forward Volume...)
= Efficiency of excitation is always proportional to the Fourier transform of the microwave field
along the propagation direction (and also on the mode profile across the waveguide)

— k ro 4
n n
mL (kx) o< b7 - by(ky). X
- \
Waveguide mode dependent factor Fourier transform of the excitation field

T. Schneider, A. A. Serga, T. Neumann, B. Hillebrands, M. P. Kostylev, Phase reciprocity of spin-wave excitation by a microstrip antenna,
PRB 77, 214411 (2008).

V. F. Dmitriev, B. A. Kalinikos, Excitation of propagating magnetization waves by microstrip antennas, Sov. Phys. J. 31, 875 (1988).
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RPTU Excitation efficiency: wave vector dependence

= Spatial extend of the antenna field defines the “effective linear momentum” which can be
provided by the antenna to create linear momentum (p = fk) of spin waves

= The wave-vector-dependent excitation efficiency is mainly given by the Fourier transform
of the antenna fields

e e 1,0
T ,04 o
2 1 I —h, KS) “The narrower the antenna,
— (7))
© . C 5 0,8- the broader the spectrum”
c 051 © <
(O] - =
e J S '“;
[ i
© oo L - C 0,6
- :> S5 c
b} °o g
N - € 044
S -0.5 8 ©
G
£ 2%
(@) © 0,2-
=Z 1.0 =
30 20 -10 0 10 20 30 o) Briw,
Z 0,0 T T T T T T T 1 T
X (um) 0 2 4 6 8 10 12 14 16 18 20

k. (rad/um)
Fourier transform of both field components is the same!
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Antennatype examples

(b) — Stripline
1,51 —— U-shape
— Coplanar

(b)
.1,0

0,5+

0,0
-0,5-

1,0+

Normalized out-of-plane
antenna field

-1,51

A
rl\)
o
M_.
N

. U-shape Coplanar waveguide
Stripline (CPW)

Due to the alternating current directions, the out-of-plane field of U-shape and CPW is much better confined
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Coplanar waveguide (CPW)
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RPTU

Wave-vector spectrum

Antennatypes

Unwanted electo-magnetic crossstalk
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> CPW offers lowest e.m.crosstalk (in this example also the best transmission)
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Signal Transmission
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100nn YIG
P = —20dBm
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Magnitude and phase
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Potential loss channels

Pinut
Input

P reflected

P output
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Propagation losses

1000 LIS I L L e L L L LB B L L B LB B B LB L L LB B
I o 1 = (Gilbert) damping leads to propagation loss of SW
800 - . —— 200nm ] d
=2 % 107* _ —_ [
fg S . — IOOnm | = PL —_ 20 10g10 (eXp( 6 ))
= $  Experiment 799nm | SW
% i 12 T 4 T ¥ L1 ) ¥ T T T T T T T T T T T T
% 400 i ] [ —— 799nm
ke " ; SW lifetime 1o o B a=2x10"
200 i & = %\ e it d =21um
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1 a o
0 S G TG O VS VI G N SN A O v ) i RS W T W R T W S R WV (A K O e $
50 100 150 200 250 300 350 400 450 TSW X ————— 2 6
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o
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100 200 300 400
External field poHex (MT)
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- Spin-wave dispersion relations in thick YIG films

YIG film, 400 nm thickness, 30 mT external field, surface wave geometry

Dispersion relations Mode profiles over the film thickness
4.0b...|....|.. o 200
5 150 4 0.20
087 100 N
I LR |
06% oS
S £ of ;
1 0_4§ s e 0.10 é
0-2"_§ o 0.05
1 2 ~150
0.0 i
‘ —200 H
Wave vector k (rad/pm) k (rad/um)

Surface mode hybridizes with modes quantized over the film thickness
(Perpendicular standing spin wave modes, PSSW) => “hybridization gaps” in the spectrum
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Bandwidth

P = —-20dBm
Bext = 166mT
0 — 3 @ ¢ € L + & & I T & F E T 4 & [ T T 7T
[ —— 100nm VYIG : 0.5
—20 [ = 200nm YIG ]
o - —— 400nm YIG ] 0473
S [ — 80onm VIG - 2
=l § 08 5
3 2
£ i \ G
2 —60 1022
£ ;8
11D
—80 ]
| 1 1 1 ! 1 1 1 1 1 ! 1 1 1 ! | 1 | 1 1 L 1 0.0
6.6 6.8 7.0 7.2 7.4 7.6 '
f (GHZ) Wave vector k (rad/um)

> Steeper dispersion relation increases bandwidth for same antenna
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RPTU Isolation / Non-remproca(lkeiclge)atlon of the surface wave

P = —20dBm 50

O QG DO« g

Frequency f (GHz)

H ext -
» Directed flow of energy: lower losses

» Magnonic delay line is also a RF isolator
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RPTU Non-reciprocity doesn’t always have the same reason

Non-reciprocal excitation caused by the break of time reversal symmetry + excitation by both
antenna field components (in-plane and out-of-plane)
=> NOT connected to the spatial non-reciprocity of the Surface Wave (MSSW)

Most antennas excite only the Surface Wave using both components, that’s why the other
modes (Backward Volume or Forward Volume) are (usually) excited reciprocally.

Non-teciprocal dynamic mode profi “Helicity” of magnetization precession

Ny
+k

SNOESEORD
929

-~ ® B, \ -k
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Frequencies of competing phonon-based technologies

Miniaturized filters/phase shifters/time delay units in today's RF applications: Surface and Bulk Acoustic Wave systems

SAW

Input Transducer Output Transducer

Piezoelectric Substrate

BAW

Stress field
Top electrode of acoustic wave

F2 pm thick
ot 2 GHz

Acoustic,
reflector

BAW filter structure

Philipp Pirro
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Market / Application

Military L-Band S-Band C-Band
Automotive

WiFi

4G High Bands

5G Mid Bands

A

Micro RF Filter Technologies

Single Crystal

Poly Crystal BAW

TC-SAW BAW

SAW

FOM-Power Performance

Frequency (GHz)
Chen, P.; Li, G.; Zhu, Z., Micromachines 2022, 13, 656, https://doi.org/10.3390/mi13050656

SAW /BAW:
= No tunability
= No solutions above 10 GHz
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RPTU 2. Tuning magnonic devices

Example: Dispersion relations of dipolar-exchange spin-waves in an 800 nm thick film of Yttrium Iron Garnet (YIG) with in-plane
magnetisation:

woH = 200 mT Magnetic field dependence of frequencies
7‘: . ¥ T T T T T T T T T T
e g 25:—k:Orad/um
8.5 A _
. Damon-Eshbach : kLHerr, k = 10rad/um
] [ = k|| Herr, k = 10rad/pm
80 . surface mode ~20F
E ] A
o 2
<75 F w15 F
> I i b d:
-nf . S I Frequency band ]
370 S .t 1
i ] Change field g1 | (k=0-10 rad/yum)]
6.5 ] : ]
R i st :
60 DR ST I SN DO N YN N I ) N O P A () T I S W T S T T G E :
0 1 L 1 1 I 1) 1 1 1 1 1 1 1 1 1
00 25 5.\(/)\/ 75 k1o.od 125 150 175 poclward-Volume 0 200 400 600 200
ave-vector k (rad/um) mode Magnetic field poHex: (MT)
Previous lectures: frmMr =V \/.UOH (uoH + poMs)
Dispersion relation of magnons depends on /!
propagation direction, saturation magnetization, (effective) magnetic field  saturation magnetisation
film thickness, magnetic field..... GHz

y ~ 28~ 1oH = 0 — 1T, toMs = 0.175 T (YIG) (2.2 T for Fe)
Philipp Pirro
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Frequency bands available for magnonics

A
Frequen
FR | | Peak capacity, High-precision sensing, sub-THz s
THz Communication-on-chips 6G  130-174.8 GHz, 92-114.25 GHz YIG
s i O S 90 GHz T
FR2‘ Micro coverage, high- oAV = o5 [ —— k=0rad/um
} capacity, localization 5G/6G 24-52 GHz, 57-71 GHz g [ —— kLHerr, k= 10rad/um
: e L S e e ] 24GHz [ —— k|| Hers, k = 10rad/pm
Important for Medium coverage Upper Mid-band g =2
. FR3|| and capacity 5G-Advanced/6G 7-24 GHz a I r
cost-efficient enhancement. : 2 L
...................... T T e e e S e S S E e S LS 7 GHz g_. « 15 F J
GG Mid-band | 2 > r
Urban Marco & (46156166 15,18,21,23,26GHz | \'5 § T
Micro coverage = =10 r ]
5G/6G 2.5-7.1 GHz 2T
FR1 D 1 GHz N
Low-band r
Broad | (46/56/6G 600, 700, 800, 900 MHz | " ]
coverage & | | ¥ el Y [
loT B R ISy sl ~ 500 MHz [
6G 0 f L L 1 f ' L 1 L L 1 L L
- : 0 200 400 600 800
f \ . o Magnetic field poHext (MT
fosei] & 0 £l 3 & — -
FR | | Application g i :
Rural Urban Dense urban  Hotspot Localarea Indoor Urtra-short
\ > 3000 m 1000 m 300 m 100 m 30m 10m <01m

=> magnonic applications based on YIG are well suited for FR3 (7-24 GHz), no miniaturized solutions on the market
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Tunable signal transmission in time domain

400nm YIG _
P = —20dBm Frequency domain Time domain
[ — 1445mT
0.15 F - 40 - —_— 172.9mT -
__ 010 F . =
= X ] i 20
© L B
S 005 FFT, =
%) r 1 )
[%2] L 4 - 0
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= - 1 £
) - ] —
& —0.05 F ] E o
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—0.10 | ;
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® = >
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Frequency dependence

Field dependence Thickness dependence
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Commerical magnonic components

Yttrium-lron-Garnet tuned RF oscillators
(YTO) produced by Rohde & Schwarz.

=> Bulky, power-hungry due charge current based
magnetic fields
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RPTU “Field generation problem”

Strengths of Magnonics
= Tunablity via magnetic fields
= Low power loss inside the magnonic domain

Standard experimental approach:
= Use an electromagnet to provide the bias field

=> Large energy consumption (Joule heating) outside the
magnonic domain

Nanosc.se

Electromagnet

Challenge to create energy-efficent devices:
How to provide magnetic fields (static and dynamic) in an energy efficient, compact and scalable manner?
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Inear systems

Linear SW propagation

* RF time-delay units

* RFfilters, isolators
tunable via the applied
magnetic fields (H,, H>)

f1

P
T

v

Kfix

Philipp Pirro

Magnonic systems for signal processing

l_\N\’l—_ < 3 MONCHEN
Funded by the Q. % - \
European Union THALES = sl

www.mandmems.eu s 7 Q.
@POM@I’ POLiT.E.s;Ig:O\ “
. . LONR
Standalone magnonic device
Coes High frequency Tunable miniaturized
waveguide . . .
SW delay lines time delay units

A

Ma@hetic Filix
CoRientrators

SmCo micromagnet

York, UK, 03.09.2024
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RPTU M&MEMS approach to generate magnetic fields

Replace electric currents as sources for magnetic fields to maximize energy efficiency and scalability while
maintaining tunablity of the devices.

Two magnetic field sources are used in M&MEMS:

= Permanent magnets
=> Tunablity is provided by MEMS

= Magneto-elastic fields
=> Strain is provided by surface acoustic waves (SAW)

Both approaches allow for a voltage-based control and tuning of the magnonic devices with
low energy consumption.
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On-chip integrated permanent magnets

SmCo permanent magnets
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Device concept: Phase / time delay unit
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Device concept: Phase / time delay unit
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Device concept: Filter
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Device concept: Filter
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Example: Filter the signal from an STNO
Only STNO STNO filtered by magnonic filter
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Zero-power reconfigurable magnonic RF filter
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Short current pulses magnetize the AINiCo (=> see lecture of P. Tozman) magnets partially
=> depending on the pulse voltage, different bias fields/resonance frequencies are reached

X. Du, et al., Frequency Tunable Magnetostatic Wave Filters with Zero Static Power Magnetic Biasing Circuitry,
Nat. Commun. 15, 3582 (2024).
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Nonlinear magnonic devices
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RPTU Nonlinear magnonic devices

How does this nonlinear limiter work?
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1) If the RF frequency component gets too strong (the “attacking/jamming” signal), a
magnon instability is triggered because the threshold for this process is triggered. The
energy is flowing then from the initial mode to modes at other frequencies, which
dissipate in several channels.

2) For large spin-wave powers, the magnon impedance is changed due to the nonlinearity.
This leads to an increase of RF reflection, decreasing the transmitted signal.
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RPTU Nonlinear devices based on the nonlinear magnon shift
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Bistability-based nonlinear magnon devices

Nonlinear magnonic system A: YIG waveguide in Forward Volume Geometry
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Q. Wang, PP, et al., Sci. Adv. 9, eadg4609 (2023).
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RPTU Nonlinear shift, foldover effect and bistability
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Micromagnetic simulations

Spin-wave emission from high amplitude state

(confirmed by time resolve uBLS)
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Spin waves with 230 nm wavelength (12 % of
antenna width) are excited by the nonlinear
transformation

Nonlinear emission is about 260% more
efficient compared to a linear transformation
in a simple field gradient gradient

Q. Wang, PP, et al., Sci. Adv. 9, eadg4609 (2023).

Philipp Pirro

European School on Magnetism 2024

York, UK, 03.09.2024



RPTU Normalized spin-wave amplitudes from biastable systems
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- Signal repeater

(Magnonic) signal envelope/

Repeated and amplified signal
pules

Decay, noise etc

Q. Wang et al., All-Magnonic Repeater Based on Bistability, Nat. Commun. 15, 7577 (2024).
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RPTU Magnonic repeater based on bistability

YIG waveguide, 1 um wide, Forward volume (330 mT) UBLS
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“Trigger transition to
high amplitude state .

Repeats spin-wave pulse with 6x intensity amplification
using a SW packet.”

Q. Wang et al., All-Magnonic Repeater Based on Bistability, Nat. Commun. 15, 7577 (2024).
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RPTU Conclusions

= Spin waves can be used to delay and filter Radio-Frequency signals

= Spin-wave devices are tunable by the magnetic field
=> replace several static devices by one flexible device

= Spin waves can act as RF Isolators due to their intrinsic non-reciprocities
= Due to intrinsic nonlinearities, SWs can play an important role for advanced

nonlinear RF processing like signal-to-noise enhancement and frequency
selective limiters.
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