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3Neuromorphic Computing

Neuromorphic computing: why and what?
• Artificial neural networks
• The hardware problem: energy consumption
• Taking inspiration from the brain: the different approaches

Using emerging technologies: why and what?
• Key examples from spintronics and other technos
• Focus on RF spintronic neural networks

How to train neuromorphic systems?
Questions to have in mind for neuromorphic research



Artificial neural networks: 
algorithms and hardware

1) Algorithms
2) Hardware



5Artificial intelligence applications
• Natural Language Processing (understanding and generating text)
• Image generation and recognition
• Time-series classification and prediction
• Finding patterns in data

A few examples:
Agriculture: automatic inspection of crops
Medicine: images, vital signs from sensors
Autonomous vehicles
Personal assistants
Industry: maintenance, tools



6Artificial neural networks
• Flow of info in non-linear function, tunable parameters
• Hierachical structure inspired from cortex
• You can see it as a giant fitting function
• Topology depends on type of tasks: CNN with filters for vision, 

Transformers for text etc.

Inputs are pixels 
of image, words in 
a text, etc.

Outputs are 
identification of image, 
words in a generated 
text, etc.



7Basic blocks in a neural network 

Neurons
Non-linear activation function

Input

O
ut
pu
t

Synapses: memory
Matrix multiplications with tunable weights
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P!×W!

Inputs Outputs



8The weights are learned with data
• Supervised
You have “labeled data”: you know the correct output
Pro: gives the best performance
Con: requires labeled data

• Reinforcement
You only know if the output is “good” or “bad’
Relevant for some tasks such as gaming

• Unsupervised
You have no knowledge of the correct output. The network finds patterns and 
clusters data.
Pro: the most adapted to the real world
Con: performance is not as good. Typically combined with some supervised 
learning.



9Supervised learning

Inputs
Outputs
Loss = f(outputs, targets)

We have a dataset with inputs and targets (“correct output”)
We split the dataset into training and test sets
1) Train the network with training dataset

- Show examples and compute the loss (i.e. error)
- Update the weights to minimize the loss
- Repeat many times!

2) Test the network with test dataset How do you know 
how to update the 
weights???



10We use gradient descent and 
backpropagation to update the weights
• Gradient descent is a method to update the weights

• Backpropagation is a method to compute the loss gradient

𝑊 = 𝑊 + 𝛼
𝜕𝐿
𝜕𝑊

𝛼 is the learning rate

𝜕𝐿
𝜕𝑊 =?

W

Lo
ss



11BackProp computes gradients using the 
chain rule

ℎ = 𝜎 𝑦(#)
𝑦(%) = ℎ×𝑊(%) +𝑏(%)

𝑦(#) = 𝑥#×𝑊(#) +𝑏(#)
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12Recap of neural network algorithms

• NN are functions with a huge number of tunable parameters
• The basic blocks are non-linear activation functions (“neurons”) 

and tunable matrix multiplications (”synapses”)
• The parameters are learned from data
• Learning relies on computing an error and estimating how much 

each weight contributes to it

Questions?



Artificial neural networks: 
algorithms and hardware

1) Algorithms
2) Hardware



14Modern hardware for neural networks
• CPUs are not optimal for neural networks (“fast car”: successive 

operations, very fast)
• GPUs/TPUs are better for matrix multiplications (‘big truck”: many 

identical operations in parallel)

GPU
Conventional computing platform

High accuracy
102 GOPS/W

Digital CMOS ASICs
103-104 TOPS/W

TPU

“World largest chip” (ASIC)
7 nm TSMC

Power > 15 kW
$ 2 M / chipPower 

100-300 W



15We have efficient AI edge accelerators…
• Google Edge TPU vs TPU

…but they 
are limited to 
inference

Google Edge TPU



16Why is this a problem?

• Huge consummation of datacenters
• Personal devices: learning on edge is required for privacy

Sensor Computing and 
learning

Data

Results



Neuromorphic computing:
Why and what?

1)Taking inspiration from 
the brain
2) Different approaches in 
neuromorphic computing



18Taking inspiration from the brain

Warning….
• Not clear what brain does
• Not clear what brain does and is good for energy efficiency
• Some ideas seem necessary to reduce energy 

consumption, others are more up to debate
• People can have very different opinions on these topics…



19Memory and computing should be close
Computer:

Von Neumann architecture

Sze et al, IEEE Custom Integrated Circuits Conference (2017)

Brain: 
Memory (synapses) and processing 

(neurons) are intertwined



20We can work with reduced precision
Computer:
64 bits floating point accuracy

Brain:
Biology is messy!

=> The requirements to build a neural network accelerator (ex: 
understanding text, classifying data) are not the same as for a 
general purpose computer (ex: accounting, scientific 
simulations).



213D unlocks high density

Motta et al, Science, 366, 6469 (2019)

3D has many promises but very challenging (access, heat, etc)



22Spikes and dynamics?

spikes, 

oscillations, 

synchronization, 

non-linear dynamics …Are they useful for developing 
artificial systems?

They seem to play an 
important role in the 
brain..



23Stochasticity and noise?

Time

Voltage emitted by neuron

Attractive idea: we could work with noisy, imperfect, unreliable 
devices!

But… might be naïve view of brain, and not clear that it is the best  
for developing artificial systems?

Spike trains of some neurons 
seem stochastic

Biology is noisy

Individual synapses are unreliable



24Neuromorphic ideas are already in 
recent mainstream hardware
• Memory and computing closer
• Fixed-point precision (8 bit for edge TPU!)

Digital CMOS ASICs
103-104 TOPS/W

Memory and computing closer
Fixed-point precision

TPU



Neuromorphic computing:
Why and what?

1)Taking inspiration from the 
brain
2) Different approaches in 
neuromorphic computing



26AI-inspired

Neurons
Non-linear activation function

Input

O
ut
pu
t

Synapses: memory
Matrix multiplications

P
1

P2

w1

w2

"
!
P!×W!

• What is used in applications
• Deep feed-forward networks
• Neurons are static
• Trained by backpropagation



27Neuroscience-inspired

27

• Neurons are dynamic (spikes, oscillations etc.)
• Exotic learning (local learning, self-learning, 

unsupervised learning, etc.)

Time

Voltage emitted by neuron



28Physics-inspired

28

Idea: physical system will naturally go to energy minimum 
=> let’s make this minimum the result of our computation



Questions?



Neuromorphic computing hardware

1) Why emerging technologies?
2) Examples of key ideas and 

realizations
3) Focus on RF spintronic networks



31CMOS based neuromorphic computing

• Developed since the 1980’s!
• Goals have evolved and were not mainly applicative
=> Emulate brain to understand it
=> Platform to test neuroscience algorithms
=> Brain-machine interface, prosthetics
=> Bio-inspired sensors (bio-inspired camera, cochlea etc.)



32CMOS neurons and synapses are complex circuits 
• A transistor is nanoscale but it is just a switch
• CMOS does not provide memory (volatile)

>10 µm
BrainScales: 20 wafers, 4M neurons, 1B synapses CMOS neuron

CMOS synapse

Merolla et al, Science 345, 668 (2014)
Davies et al, IEEE Micro. 38, 82–99 (2018)



33Neuromorphic CMOS chips are limited in the 
number of neurons and synapses they can include

33

Loihi Chip intel : 
130k neurons

Poihiki beach = 64 Loihi
8M neurons

Several Poihiki beach
100M neurons

Energy consumption

Spiking
Learning
MNIST
~ 1 Watt

E. Praxon Frady et al, 
arXiv/2004.12691



34Strength and limits of CMOS
Strengths
• Versatile
• It actually works
• Super reliable, digital is self-correcting
• Established industry, tools etc.

Limits
• Memory is missing
• When going to analogue, advantages are not there



Neuromorphic computing hardware

1) Why emerging technologies?
2) Examples of key ideas and 

realizations
3) Focus on RF spintronic networks



36‘In-memory computing’ with nanodevices 
as non-volatile memory

36

Intel: MRAM integrated into 
22nm FinFET CMOS, IEDM 

2018 Bocquet et al., IEEE IEDM, 2018

RRAM
TE

BE

CEA LETI: 130nm CMOS + HfO2 RRAM 

Resistive-Switching
ReRAMs

Spintronics
MRAMs

Phase Change

ST Microelectronics, IBM

Gbit prototypes: billions of devices on a chip, monolithically intregrated with CMOS



37Non-volatile memristors emulate
synapses

37

Filamentary switching Phase change

Chua, IEEE Trans. 
Circuit Theory (1971)

Yang et al., Nature Nano. (2013) Kuzum et al, 
Nanotechnology (2013)

Ferroelectric

Chanthbouala et al, Nature 
Mat. (2012) 

Variable resistor with 
memory



38Non-volatile memory improves the 
efficiency

CMOS 
only

Nanotech
+ CMOS

CMOS 
only

Nanotech
+ CMOS

Zhang et al, Nature Electronics 3, 371 (2020)



39Crossbar arrays of memristors physically
implement matrix multiplication

39

HP labs

Input 
neurons

Output neurons

V1

V2

V3

G1

G2

G3

I

Voltage U i

G1

G2

Gi

Kirchhoff’s law

Current = S Gi Vi

memristor
V1

V2

V3

The physics is doing the 
computation!



40State of the art

10+ millions synapses
Speech processing

104 GOPs/W

IBM analogue chip, Nature, 2023



41Limits
• Learning is hard to achieve: not easy to program the weights 

continuously (errors, non-linearities, lack of endurance)
• Architecture constrained to arrays with at least 1 transistor per 

nanodevice.
• 3D on the way but many challenges

Lin et al, Nature Electronics 3, 225 (2020)

8 layers



42Photonics matrix multiplication

Ring resonators
Phase change devices as synapses

Xu, X., Tan, M., Corcoran, B. et al. 11 TOPS 
photonic convolutional accelerator for optical neural 
networks. Nature 589, 44–51 (2021)

Feldmann, J., Youngblood, N., Karpov, M. et al. Parallel
convolutional processing using an integrated photonic tensor
core. Nature 589, 52–58 (2021)

Mach-Zender interferometers



43Strengths and limits of photonics
Strengths:
• Light is super fast!
• Waveguides can cross each other
• You can frequency multiplex over a huger frequency band and 

process many inputs in parallel
• Compatible with CMOS

Limits:
• Devices are much larger than nanodevices (micron size)
• Getting the non-linearity requires high power
• Conversion to electronics might remove the speed advantage



44Spintronic synaptic arrays

Jung, S., Lee, H., Myung, S. et al. A crossbar array of 
magnetoresistive memory devices for in-memory computing. 
Nature 601, 211–216 (2022)

20,000 MTJs + CMOS
Borders et al. "Measurement-driven
neural-network training for integrated
magnetic tunnel junction arrays." 
Physical Review Applied 21.5 (2024)

64x64 synapses + CMOS



45Multilevel synapses with magnetic textures 

S. Fukami et al, Nat. Mater. 15, 535 (2016)

K M Song et al, Nature Electronics 3, 148 (2020)
R Chen et al, Phys. Rev. Appl. 14, 014096 (2020)

Antiferro/ferro bilayer

Domain wall

Skyrmions

Lequeux, S et al. Sci Rep 6, 31510 (2016)



46Strengths and limits of spintronics
Strengths:
• MRAM is mature commercial techno
• Purely physical phenomena: endurance + predictive models
• Multifunctional
• High speed
• Nano

Limits (for now!):
• ON/OFF ratio is small (2-3 compared to > 104 in other technos)
• Multilevel synapses do not scale down well
• Smaller scale realizations



47Spiking Neurons

Wang et al, Nature Electronics, 1, 137 (2018)

• With volatile memristive devices
• With integrated photonics
• With spintronic devices

Pros: 
• Complex bio-inspired  behavior 

with compact device
• Spike enable bio-inspired 

learning rules (not BackProp)

Cons:
• Integration with synapses not easy
• Spiking network perfs behind BP



48Leveraging oscillations

Romera et al. Nature (2018) Zahedinejad, et al. Nature 
nanotechnology 15.1 (2020)

Dutta, et al. Nat Electron 4, 502–
512 (2021).

Network of coupled oscillators can store and retrieve patterns
Oscillations in the brain play role for learning
=> How to couple them efficiently?
=> Computing algorithm?



49Leveraging non-linear dynamics

Yokouchi et al. Science 
Advances 8.39 (2022)

Gartside et al. Nature 
Nanotechnology 17.5 (2022)

Körber et al. Nature 
Communications 14.1 (2023)

Interacting 
skyrmions

Spin-ices and 
spin waves

Magnon-scattering

Take full advantage of physic of system
Next step is to go beyond reservoir to unlock complex tasks

J. Torrejon et al, Nature 547, 428 (2017)

Oscillator transient dynamics



50Leveraging stochastic behavior

Borders et al. Nature
573.7774 (2019)

thermal noise

DE 
P AP

0.100 0.125 0.150

400

500

600

 

 

Re
sis

ta
nc

e 
(W

)

Time (s)
0.100 0.125 0.150

400

500

600

700

Re
sis

ta
nc

e 
(W

)

Time (s)
0.100 0.125 0.150

400

500

600

Re
sis

ta
nc

e 
(W

)

Time (s)

V = 0 V > 0V < 0

Mizrahi et al, Nature Communications 9 (1), 1 (2018)
Daniels et al, Phys. Rev. Applied, 13, 034016 (2020)

Neural 
networks

Ising 
machine

Thermal noise is leveraged for energy efficiency
Next step: high density coupling



Neuromorphic computing hardware

1) Why emerging technologies?
2) Examples of key ideas and 

realizations
3) Focus on RF spintronic 

networks



52Problems we want to address

• Cascading layers to go towards deep networks
• Dense tunable connections to go toward complex tasks
• Think of full architecture and system integration



53Magnetic Tunnel Junction as neuron and 
synapse

J. Grollier et al, PIEEE 104, 2024 (2016)

Ferromagnet

Ferromagnet

Tunnel barrier

Electrical Read and Write
High speed dynamics

Non-linear activation function

Input

O
ut
pu
t

Tunable weighted sums

P
1

P2

w1

w2

"
!

P!×W!

In this talk: AI-inspired approach



54Magnetic tunnel junctions as radiofrequency neurons

DC current IS

RF voltage emitted

Above a threshold current: auto-oscillations
Non-linear activation function => Neuron

Non-linear activation function

Torrejon et al. "Neuromorphic computing with nanoscale spintronic oscillators." Nature (2017)

Voltage



55

Synaptic multiplication : 
Output = W x Input
𝑉!" = W×𝑃#$

--- Linear fit
𝑉!" = W×𝑃#$

55

MTJ as RF synapse

𝑉!"

𝑃#$ , 𝑓#$

Resonance 
(“Spin diode effect”)

Theory: Leroux, et al, Physical Review Applied 15, 034067 (2021)
Experiments: Leroux et al. Neuromorph. Comput. Eng. 1, 011001 (2021) 



56We tune the weight through the resonance
frequency

56

Idc
Metallic 
strip line

𝑃#$ , 𝑓#$

𝑉!"

Multiplication by tunable weightTuning the resonance frequency

Shift of resonance 
frequency

𝑉!" = W 𝑓#$% ×𝑃&'



57How to get non-volatile synapses

Analogue non-volatile control of frequency through magnetic anisotropy
by resistive switch material
Ex: Choi et al. Nat Commun 13, 3783 2022

Binary non-volatile control of frequency through vortex polarity reversal
Ex: Pigeau et al. "Optimal control of vortex-core polarity by resonant microwave pulses." 
Nature Physics 7.1 (2011)

+ Others



58Connecting a nano-neuron to a nano-
synapse

Frequency
of synapse
(weight)

𝑉!"

𝐼!"

RF

Resonator SynapseOscillator Neuron

If
s



59

𝑓#$%& 𝑓#$%' 𝑓#$%( 𝑓#$%)

𝑉-.# 𝑉-.% 𝑉-.& 𝑉-./

Spin-diode 
voltage 𝑉-.

fRF (MHz)

𝑃#$ , 𝑓#$

We connect several synapses of different resonance
frequencies in series

𝑉-. ="
)

𝑉-.)

Different frequencies achieved by diameter, shape, thickness etc.



60We leverage frequency multiplexing to implement the 
weighted sum

𝑓#$%& 𝑓#$%' 𝑓#$%( 𝑓#$%)
fRF (MHz)

𝑉-. ="
)

𝑉-.#) ="
)

𝑃01) 𝑊(𝑓01) − 𝑓234) )

𝑉-.## 𝑉-.#% 𝑉-.#& 𝑉-.#/

𝑓01# 𝑓01% 𝑓01& 𝑓01/

Spin-diode 
voltage 𝑉-.

Σ

𝑃*+&

𝑃*+'

𝑃*+(

𝑃*+)

𝑓01#

𝑓01%

𝑓01&

𝑓01/

VDC IDC

Rough frequency tuning => connectivity
Fine frequency tuning => weight tuning



61Frequency multiplexing simplifies the 
architecture => higher density is possible

V2 IDC

V1 IDC



62Experimental non-linear classification

• Pout  = 0• Pout  ≠ 0

Each task: different set of weights

97.7% accuracy

A. Ross, N. Leroux et al., Nature Nano 2023



63Simulations of hardware neural networks

• Research in AI relies on libraries that perform training via 
BackPropogation.

• Computes the gradients of the loss versus the weights and 
updates the weights (“automatic differentiation”) from your 
model

𝑊 = 𝑊 + 𝛼
𝜕𝐿
𝜕𝑊

In my case we train the resonance frequencies: 

𝑓 = 𝑓 + 𝛼
𝜕𝐿
𝜕𝑓

• Big strength of spintronics: we have good models 
(analytical, LLG, micromagnetics)



64Performance of simulated spintronic network is as good as 
conventional software network

Basak, et al., COMSNETS IEEE, 2021.

Spintronic

Software

Analogue

Leroux et al. "Convolutional Neural Networks with 
Radio-Frequency Spintronic Nano-Devices." 
Neuromorph. Comput. Eng. 2022

Identify drone type from 
its emission spectrum (10 

classes, real data)

Convolutional neural network on 
MNIST

Spintronic

Software

A. Ross et al. Nature Nanotechnology (2023)



6510 fJ/synapse and 100 fJ/neuron for MTJs with 20 nm diameter

Comparable to energy consumption estimations for 
memristive or optical devices

Consumption 
of the whole 
architecture



66Much lower energy consumption than CMOS 
technologies
MNIST on RF spintronic network:

MLP with a 128-neuron hidden layer (1,084 neurons + 238,000 synapses) => 1 nJ. 

CNN (8576 neurons + 6.7 million synapses) => 68 nJ. 

Göltz, et al. Nat Mach Intell 3, 823–835 (2021)

RF drones task:

3.4 mW for MLP

USRP: 45 W
GHz ADC: several mW



Questions?



The problem of training



69How do you train your neural network?
Off-chip training Chip-in-the-loop training Self-learning

Chip can be only used for inference
Or has to communicate with server to learn 

new things

Chip can learn new things 
autonomously 

1. Train on computer
2. Configure chip 

accordingly

Computer is used 
to train the chip

Chip trains itself
No computer needed

Data

Tune weights

Data

Data

Tune weightsTune weights



70BackProp is non-local

ℎ = 𝜎 𝑦(#)
𝑦(%) = ℎ×𝑊(%) +𝑏(%)
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71Backpropagation vs. neuro/physics 
inspired rules

Backpropagation is state of the art 
performance on actual tasks

But… Not hardware friendly (non-local, 
very small weights updates etc.)

Neuro/physics rules are hardware friendly: 
Local (synapse modified only by neurons 
around)
Self-learning by the physics of system

But…. Performance on hard tasks is low 
because they do not minimize the global error

Can we merge the two to get the advantages of both?

Does the brain perform some kind of backpropagation?

Lillicrap, T.P., Santoro, A., Marris, L. et al. Backpropagation and 
the brain. Nat Rev Neurosci 21, 335–346 (2020)

Video of Hinton « Stanford Seminar - Can the brain do back-propagation? »
https://www.youtube.com/watch?v=VIRCybGgHts

Hot topic in AI and computational neuroscience + critical for us

https://www.youtube.com/watch?v=VIRCybGgHts


Questions to have in 
mind when doing 
research in 
neuromorphic 
computing



73What are the inputs and outputs?
How do you feed inputs to your system?
How do you read the outputs? (simple circuit or giant 
microscope?)

Can you build deep networks?
Are your inputs/outputs compatible with CMOS integration?

Power 
consumption Area

Christensen et al 2022 Neuromorph. Comput. Eng. 2 022501 



74Is my system scalable to complex tasks?
Scalability
Can I stack layers into deep networks? 
Can I achieve dense connectivity? 
Can I have high fan in and fan out?
What will the total architecture look like? CMOS circuits 
etc…

Trainability
Are my connections tunable? 
Can the weights be non-volatile?
How will I perform the learning? (Rule? Weights 
update?)

Transformer 
architecture



75Is my system robust to reality?

How does my performance is affected by:
• Errors in programming
• Non-linearities
• Variability
• Noise
• Change of temperature
Etc.



76Is my system competitive with other 
technologies?

Digital CMOS accelerators are really good now!

Important metrics:
• Speed
• Energy consumption
• Power consumption
• Compactness

Tops/W is much used metrics but can be 
computed in many ways. Use with 
caution…

Inference-only neuromorphic systems may be not enough to compete except 
for niche application (ex: quantum hardware, specific sensor etc.) => learning

W. J. Dally, et al., "Evolution of the Graphics 
Processing Unit (GPU)," in IEEE Micro, 2021



77

Neuromorphic computing is large and diverse field 
=> need for interdisciplinary mindset

Challenges are how to build scalable deep dense networks, that can 
learn by themselves

Conclusions

77

Reviews:
2022 roadmap on neuromorphic computing and engineering, DV Christensen et al., Neuromorph. Comput. Eng. 2 (2022)
Physics for neuromorphic computing, Marković, D., Mizrahi, A., Querlioz, D. et al. Nat Rev Phys 2, 499–510 (2020)
Neuromorphic spintronics , Grollier, J., Querlioz, D., Camsari, K.Y. et al. Nat Electron 3, 360–370 (2020)
Neurotech series of tutorials: https://neurotechai.eu/educational/

Need to be 
co-designed

Many exciting research 
opportunities for you!

Materials
Devices
Circuits
Architectures
Algorithms We are hiring postdocs and students

https://neurotechai.eu/educational/

