Magnetization reversal: from fundamental principles to fundamental limits

Alexey V. Kimel Ultrafast Spectroscopy of Correlated Materials, Radboud University, Nijmegen, The Netherlands

Challenge:

fast and energy efficient

Mission:

To discover new fundamental principles for the fastest possible writing of magnetic bits accompanied by minimal loss of energy

Magnetic recording: experiment, theory, practice

Magnetism –

the strongest quantum mechanical phenomenon

Macrospin approximation: intuitive (classical) view of quantum (counter-intuitive) phenomenon

U - internal energy W - work Q - heat σ - entropy

$$\mathbf{M} = -\gamma \frac{\sum S_i}{V} \neq 0 \qquad \mathbf{M} = -\gamma \frac{\sum S_i}{V} \neq 0 \qquad \mathbf{L} = -\gamma \frac{\sum (\mathbf{S}^{\dagger} - \mathbf{S}^{\ddagger})}{V}$$
Ferromagnet
(J>0)
$$\mathbf{Ferrimagnet}$$
(J<0)
$$\mathbf{S}_1 \mathbf{S}_2 \quad \mathbf{S}_{n-1} \mathbf{S}_n$$

Macrospin approximation: intuitive (classical) view of quantum (counter-intuitive) phenomenon

$$dU = dW + dQ$$
$$dW = \mu_0 \mathbf{H} d\mathbf{M}$$

$$\mu_0 \mathbf{H}_{eff} = -\left(\frac{\partial U}{\partial \mathbf{M}}\right)_{\sigma}$$

$$\mathbf{F} = -\frac{\partial U}{\partial \mathbf{x}}$$

P. Curie (1894):

"the symmetries of the causes are to be found in the effects".

Cause	Effect	Energy (U)
F mechanical force	d x displacement	Fdx
E electric field	dP polarization	EdP
${f H}$ magnetic field	d M magnetization	HdM

Macrospin approximation: intuitive (classical) view of quantum (counter-intuitive) phenomenon

- U internal energy
 W work
 Q heat
 σ entropy
- T torque

$$\frac{d\mathbf{S}}{dt} = \mathbf{T} \qquad \frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{eff} - \frac{\lambda}{M^2} \mathbf{M} \times \left(\mathbf{M} \times \mathbf{H}_{eff}\right) \qquad \text{equation}$$
(1935)

$$\mathbf{M} = -\gamma \frac{\sum S_i}{V} \neq 0$$

$$\mathbf{M} = -\gamma \frac{\sum S_i}{v} \neq 0$$

Ferromagnet (J>0) S₁S₂ S_{n-1}S_n

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{eff} - \frac{\lambda}{M^2} \mathbf{M} \times \left(\mathbf{M} \times \mathbf{H}_{eff}\right)$$

Magnetization reversal

- with a magnetic field in a "wrong" direction;
- without any magnetic field and solely with heat;
- with no heat, no field .

Magnetization reversal

- with a magnetic field in a "wrong" direction;
- without any magnetic field and solely with heat;
- with no heat, no field.

L. D. Landau (1908-1968) "Most important part of doing physics is the knowledge of approximations."

Macrospin approximation: intuitive (classical) view of quantum (counter-intuitive) phenomenon

$$\mathbf{M} = -\gamma \frac{\sum S_i}{V} \neq 0$$

Ferromagnet (J>0) $S_1 S_2 \qquad S_{n-1} S_n$

$$\mathbf{M} = -\gamma \frac{\sum S_i}{V} \neq 0$$

Ferrimagnet (J<0) S₁ S₂ S_{n-1}S_n

$$\mathsf{L} = -\gamma \frac{\sum(\mathbf{S}_{2i-1} - \mathbf{S}_{2i})}{V}$$

Antiferromagnet (J<0) S₁ S₂ S_{n-1} S_n

Ultrafast magnetism: terra incognita of modern science

Precessional switching

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{eff} - \frac{\lambda}{M^2} \mathbf{M} \times \left(\mathbf{M} \times \mathbf{H}_{eff}\right)$$

S. Kaka, S. E. Russek, Appl. Phys. Lett. 80, 2958 (2002).
Th. Gerrits et al., Nature 418, 509 (2002).
H. W. Schumacher et al., Phys. Rev. Lett. 90, 017201 (2003).

The shortest time achieved is 100 ps!

Precessional switching

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{eff} - \frac{\lambda}{M^2} \mathbf{M} \times \left(\mathbf{M} \times \mathbf{H}_{eff}\right)$$

letters to nature

The ultimate speed of magnetic switching in granular recording media

I. Tudosa 1 , C. Stamm 1 , A. B. Kashuba 2 , F. King 3 , H. C. Siegmann 1 , J. Stöhr 1 , G. Ju 4 , B. Lu 4 & D. Weller 4

2.3 ps, several T pulses

Precessional switching

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{eff} - \frac{\lambda}{M^2} \mathbf{M} \times \left(\mathbf{M} \times \mathbf{H}_{eff}\right)$$

letters to nature

The ultimate speed of magnetic switching in granular recording media

2.3 ps,

several T pulses

I. Tudosa¹, C. Stamm¹, A. B. Kashuba², F. King³, H. C. Siegmann¹, J. Stöhr¹, G. Ju⁴, B. Lu⁴ & D. Weller⁴

Applied physics

Speed limit ahead

C. H. Back and D. Pescia

Are there any limits to what science and technology can achieve? When it comes to recording data in magnetic media, the answer is yes: there is a natural limit to the speed at which data can be encoded.

"No matter how short and strong the magnetic-field pulse, magnetic recording cannot be made ever faster."

New route for heat-assisted magnetic recording

Heat-assisted magnetic switching

Bi-substituted Yttrium Iron Garnet (Bi:YIG) Ferrimagnet with strong out-of-plane anisotropy Low Gilbert damping

Experimental setup

Heat-assisted magnetic switching

 $\tau = 3.45 \, {\rm ns}$

Swicthing as a function of pump and magnetic field Inhomogenious switching!

0.25 0.31 0.37 0.42 Optical fluence (Jcm⁻²)

Toy model of the switching

Dynamics of the switching

Huge damping!

Damping as a function of amplitude

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{eff} - \frac{\lambda}{M^2} \mathbf{M} \times \left(\mathbf{M} \times \mathbf{H}_{eff}\right)$$

λ is a function of the amplitude!

State-of-the-art in data storage: heat assisted magnetic recording M Reader Laser **Coercive Forc** Heating Coil Cooling Recording Η Head Field M Media Ambient Temp T (K) **Near Field**

Magnetization reversal

- with a magnetic field in a "wrong" direction;
- without any magnetic field and solely with heat;
- with no heat, no field.

T. Ostler et al *Nature Comm.* **3**, 666 (2012).

Ultrafast toggle switching of magnetization violates the Curie principle!

Heat as a sufficient stimulus for magnetization reversal

"Two-spin" model. Heat-induced reversal

T. Oslter et al, Nature Comm. 3, 666 (2012).

P. Curie (1894):

"the symmetries of the causes are to be found in the effects".

How can heat-induced magnetization reversal be possible at all?

Two-spin model and conservation of angular momentum

CREDIT: NIELS BOHR ARCHIVE, PHOTOGRAPH BY ERIK GUSTAFSON, COURTESY AIP EMILIO SEGRÈ VISUAL ARCHIVES, MARGRETHE BOHR COLLECTION

Physicists Wolfgang Pauli, left, and Niels Bohr demonstrating a "tippe top" toy in 1954. Tippe tops flip upside down to spin on their handle and are part of the "Secret Science of Toys" festival at the Fleet Science Center on Jan. 21.

472 205-208 (2011).

J. Mentink et al, *Phys. Rev. Lett.* **108**, 057202 (2012).

- Hot electrons (t<τ_{e-ph})
 Different demagnetizations (t<τ_{Fe-Gd})
 Ctrangly non-conditional to the conditional to the conditic to the conditional to the conditic to the conditional to
- 3) Strongly non-equilibrium state (t~t_{e-ph} and t< τ_{Fe-Gd}) 4) Relaxation

Femtosecond vs picosecond pulse excitation

Sublattices are brought out of mutual equilibrium, if excited faster than the Fe-Gd exchange interaction

PHYSICS

Ultrafast magnetization reversal by picosecond electrical pulses

Yang Yang,¹*[†] Richard B. Wilson,²*[†] Jon Gorchon,^{3,4}* Charles-Henri Lambert,³ Sayeef Salahuddin,^{3,4} Jeffrey Bokor^{3,4†}

Sci. Adv. e1603117 3 (2017).

10 ps laser (heat) pulse

Ultrafast heating as a stimulus!

State-of-the-art in data storage: heat assisted magnetic recording M Reader Laser **Coercive Forc** Heating Coil Cooling Recording Η Head Field M Media Ambient Temp T (K) **Near Field**

Magnetization reversal

- with a magnetic field in a "wrong" direction;
- without any magnetic field and solely with heat;
- with no heat, no field.

Photo-magnetism of Co-substituted iron garnet

laser CW:

Y₂CaFe_{3.9}Co_{0.1}GeO₁₂ / GGG (001)

A.Chizhik et al. *PRB*, 57 (1998). A.Stupakiewicz et al. *PRB*, 64 (2001).

Light-induced slow (~µm/sec) motion of domain wall

laser spot

Photo-magnetic recording in iron garnet

Photo-magnetic recording

Selection rules for magnetic writing with light on iron-garnet

Optical resonant excitation of tetrahedral and octahedral Co²⁺ sublattices

A. Stupakiewicz et al, Nature Comm 10, 612 (2019).

Dynamics of the laser-induced switching in garnet

Fundamental limits of repetition rate of magnetic writing on Y₃Fe₅O₁₂:Co

Rewriting at the frequency of 20 GHz (50 ps per bit)!

K. Szerenos et al. Phys. Rev. Applied 12, 044057 (2020).

Efficiency of the photo-magnetic recording

of tetrahedral Co²⁺

Article

https://doi.org/10.1038/s41467-024-48438-3

Ultrafast all-optical toggle writing of magnetic bits without relying on heat

T. Zalewski ¹, A. Maziewski¹, A. V. Kimel² & A. Stupakiewicz ¹

Summary

- Understanding magnetization reversal is the key for understanding the fundamental limits on the rate of writing of magnetic bits.
- Ultrafast magnetization reversal is a counter-intuitive process.
- If a stimulus is ultrafast, magnetization can be reversed with a "wrong" magnetic field, solely with heat or even without any heat.

Outlook -

ultrafast antiferromagnetism as the next challenge

Gordon Research Conference

"Spin Dynamics in Low Dimension and Low Symmetry Environment"

June 29-July 4, 2025 Les Diablerets, Switzerland

