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Fundamental Dilemma: 
fast or energy efficient?
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Challenge: 
fast and energy efficient

To discover new fundamental principles 

for the fastest possible writing of magnetic bits
accompanied by minimal loss of energy

Mission:



Magnetic recording: experiment, theory, practice

60 kBT ~ 10-19 J

“0” “1”

ns

0.1 nJ = 10-10 J

Practice
Theory

Experiment

S

N

N

Sultrafast?

non-dissipative?

physics?

high density?



Magnetism –
the strongest quantum mechanical phenomenon

Sz = ±h/2
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Exchange interaction
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L. Néel
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Macrospin approximation: intuitive (classical) view 
of quantum (counter-intuitive) phenomenon
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Macrospin approximation: intuitive (classical) view 
of quantum (counter-intuitive) phenomenon

𝑑𝑈 = 𝑑𝑊 + 𝑑𝑄
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P. Curie (1894): 
“the symmetries of the causes are to be found in the effects". 

𝐅 = −
𝜕𝑈

𝜕𝐱

dx displacement

dP polarization

dM magnetization

Cause Effect Energy (U) 

F mechanical force

E electric field

H magnetic field

Fdx

EdP

HdM



Macrospin approximation: intuitive (classical) view 
of quantum (counter-intuitive) phenomenon
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(1935)

𝑈 - internal energy

𝑊 - work

𝑄 - heat

𝜎 - entropy

𝐓 - torque
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State-of-the-art in data storage: 
heat assisted magnetic recording
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Magnetization reversal
- with a magnetic field in a “wrong” direction;
- without any magnetic field and solely with heat;
- with no heat, no field .



State-of-the-art in data storage: 
heat assisted magnetic recording
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Magnetization reversal
- with a magnetic field in a “wrong” direction;
- without any magnetic field and solely with heat;
- with no heat, no field.



“Most important part of doing physics 
is the knowledge of approximations.”
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L. D. Landau
(1908-1968)



Macrospin approximation: intuitive (classical) view 
of quantum (counter-intuitive) phenomenon
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Ultrafast magnetism: terra incognita of modern science

1 ns

1 ps

1 fs

100 ps

10 ps

100 fs

10 fsLaser pulse

Equilibrium

thermodynamics

Macrospin

approximation

? 
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Curie’s principle
fails!



Precessional switching

M

H

S. Kaka, S. E. Russek, Appl. Phys. Lett. 80, 2958 (2002).
Th. Gerrits et al., Nature 418, 509 (2002).
H. W. Schumacher et al., Phys. Rev. Lett. 90, 017201 (2003).

The shortest time achieved is 100 ps!
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Precessional switching

M

H

 effeff
Mt

HMMHM
M





2




2.3 ps,

several T pulses



Precessional switching
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“No matter how short and strong the magnetic-field pulse, magnetic recording 

cannot be made ever faster.”

2.3 ps,

several T pulses



New route for heat-assisted magnetic recording
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best spatial resolution

Heat Assisted Magnetic Recording
(HAMR)

fastest route

Precessional Switching
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Heat-assisted magnetic switching

Bi-substituted Yttrium Iron Garnet (Bi:YIG)
Ferrimagnet with strong out-of-plane anisotropy
Low Gilbert damping



Experimental setup
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Heat-assisted magnetic switching

20 𝜇𝑚

image with pump

20 𝜇𝑚

image without pump

10 𝜇𝑚

Hx = 5.47 kOe

𝜏 = 3.45 ns



Swicthing as a function of pump and magnetic field
Inhomogenious switching!



Toy model of the switching
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New equilibrium 

(y2)

Initial state 

(y0)

Pump

→ Final state (switching)



Dynamics of the switching

Huge damping!



Damping as a function of amplitude
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 is a function of the amplitude!



State-of-the-art in data storage: 
heat assisted magnetic recording
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Magnetization reversal
- with a magnetic field in a “wrong” direction;
- without any magnetic field and solely with heat;
- with no heat, no field.



Toggle magnetic switching

Sub-ps
laser (heat)

pulse

Ultrafast toggle switching of magnetization 
violates the Curie principle!

T. Ostler et al Nature Comm. 3, 666 (2012).

26



Heat as a sufficient stimulus for magnetization reversal

“Two-spin” model. Heat-induced reversal
T. Oslter et al, Nature Comm. 3, 666 (2012).

Fe

Free

electrons
Gd

Lattice

TL=300 K
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P. Curie (1894):

"the symmetries of the causes are to be found in the effects". 
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How can heat-induced magnetization reversal
be possible at all?



Two-spin model and conservation
of angular momentum

J. Mentink et al, Phys. Rev. Lett. 

108, 057202 (2012).
I. Radu et al, Nature 

472 205-208 (2011). 

Fe

Free

electrons
Gd

Lattice

(TL=300K)

DL1

DL2

DL1 > DL2Gd

Fe

1) Hot electrons (t<te-ph)
2) Different demagnetizations (t<tFe-Gd)

3) Strongly non-equilibrium state (t~te-ph and t<tFe-Gd)

4) Relaxation
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Femtosecond vs picosecond pulse excitation

Sublattices are brought out of mutual equilibrium,
if excited faster than the Fe-Gd exchange interaction

C. Davies et al, arXiv:1904.11977 (2019).

Phys. Rev. Applied 13, 024064 (2019).

30



10 ps
laser (heat)

pulse

Ultrafast heating as a stimulus!
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Sci. Adv. e1603117 3 (2017).



State-of-the-art in data storage: 
heat assisted magnetic recording
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Magnetization reversal
- with a magnetic field in a “wrong” direction;
- without any magnetic field and solely with heat;
- with no heat, no field.



Photo-magnetism of Co-substituted iron garnet

Y2CaFe3.9Co0.1GeO12 / GGG (001)

laser CW:  EII[110] EII[1-10]

Light-induced slow (~mm/sec) motion of domain wall

A.Chizhik et al. PRB, 57 (1998).    

A.Stupakiewicz et al. PRB, 64 (2001).    

Y3+

Co2+

Co2+

Fe3+

Fe3+

Co3+

Co3+
Recording?

Heating?

Speed? 



Photo-magnetic recording in iron garnet

Y2CaFe3.9Co0.1GeO12 on GGG (001)

thickness d=7.5 μm (grown by LPE)

50 fs pulse 50 fs pulse

200×200 mm2

A. Stupakewiecz et al,

arXiv:1609.05223

Nature 542, 71 (2017).

http://arxiv.org/abs/1609.05223


Photo-magnetic recording

 single pulse

 repeatable switching

 zero applied field

 room temperature

A. Stupakewiecz et al,

arXiv:1609.05223

Nature 542, 71 (2017).

http://arxiv.org/abs/1609.05223


Selection rules for magnetic writing with light
on iron-garnet

A. Stupakiewicz et al, Nature Comm  10, 612 (2019). 

Optical  resonant excitation of tetrahedral and octahedral 

Co2+ sublattices



Dynamics of the laser-induced switching in garnet
high Gilbert damping: α = 0.2

after 60 ps – FMR mode, ~3.4 GHz 

60 ps 60 ps

switched after the first quarter-period
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Fundamental limits of repetition rate 
of magnetic writing on Y3Fe5O12:Co

Rewriting at the frequency of 20 GHz (50 ps per bit)!
K. Szerenos et al. Phys. Rev. Applied 12, 044057 (2020).
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Efficiency of the photo-magnetic recording

Optical  resonant excitation 

of tetrahedral Co2+ 

DT ~1 K

20 aJ per 20*20*10 nm3 bit





Summary

Understanding magnetization reversal is the key for understanding
the fundamental limits on the rate of writing of magnetic bits.

Ultrafast magnetization reversal is a counter-intuitive process.

If a stimulus is ultrafast, magnetization can be reversed with a
“wrong” magnetic field, solely with heat or even without any heat.



Outlook –
ultrafast antiferromagnetism as the next challenge
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Gordon Research Conference
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