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Microwave experiment

What is a microwave experiment with spin waves?

▪ Microwave excitation of spin waves and detection by other means (e.g. direct current/voltage, BLS, MOKE)

▪ Microwave input + output experiments → transmission and reflection experiments
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Microwave technique

▪ Continuous and pulsed microwave signals having powers up to ≈100 W in frequency range from 1 to 20 GHz

▪ Precise spin-wave amplitude and phase measurements in a wide frequency range using spectrum and network 
analyzers

▪ Temporal measurements with sub-ns resolution using a broadband oscilloscope

▪ Microwave characterization: both linear and nonlinear dynamics of magnetization in nano-structured and in 
macroscopic samples

Magnet

Network 
analyzer

Oscillos-
cope

Spectrum 
analyzer

Microwave
     generators
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Uniform resonant oscillation of ellipsoid
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- only exception: ellipsoid

Magnetic field  inside ellipsoid as function of external field 

with de

0

:

:

B B

B B NM B B

N + + =

= 

r

r
P

r

demag

ext

magnetizing tensor, symmetric, 

demagnetizing field,

for if principalaxisof ellipsoid.

Condition of equilibrium for equilibrium saturation magnetization  in energy min0

1,

:

0

xx yy zz

xy

N N N

B

N x y B

M

( )





  

 



  



 − =


= −  = +



+ − + =

− − +

r r t r

r
r r r r r rr

P P

S ext S

i
S ext S

S ext S S

ext S S

imum:

:     and, with e  

in linear approxim

Equation o

ation

i

f motion

+

int 0

0

0 0 0

0 0

0

1
ˆ, ( ) ,

:

( ) ( ) 0

( )

t
z

xy x zz yy y

zz xx x

M B NM

M
M B M t M m B M e

t

N M m B N M N M m

B N M N M m  + − =Si 0( ) 0xy yN M m



Burkard Hillebrands 2024 European School on Magnetism, York, UK August  28, 2024 5

Uniform resonant oscillation of ellipsoid in oblique field
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Ferromagnetic Resonance

FMR is a measurement method at microwave frequency 

Experiment:

▪ Sample is uniformly magnetized in a static magnetic field 𝐵ext

▪ Alternating microwave field 𝑏µW with fixed frequency is applied to the sample 

in perpendicular direction to 𝐵ext → forced precession of magnetization vector

▪ Sweeping of 𝐵ext

▪ Experimental realization: 

Sample  

- in microwave cavity, or 

- on micro-stripline
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Ferromagnetic Resonance

Resonance frequency:
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Ferromagnetic Resonance
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▪ Inelastic scattering of photons from spin waves:

▪ Intensity of the scattered light is proportional to 
magnon density

Elastically scattered 
light

Brillouin light scattering (BLS) spectroscopy

magnons
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Brillouin light scattering spectrometer

high-resolution interferometry with high contrast
for measurements of acoustic phonons and spin waves
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Brillouin light scattering spectrometer

· etalon in transmission if mirror  

separation L is:  

L = n lLaser/2 

 

· suppression of neighboring orders  

if mirror separations L1, L2 of  

both etalons: 

 L2 = L1 cos a 

       a : angle between etalon axes 
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Brillouin light scattering spectrometer

Sketch of mechanical stage and mirror mounts

(from John Sandercock’s 1993 manual)

Tandem Fabry-Pérot Interferometer
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Time- and space-resolved 
Brillouin light scattering spectroscopy

O. Büttner et al., Phys. Rev. B 61, 11576 (2000)

spatial resolution: 40 µm

time resolution: 1 ns

dynamic range: >60 dB
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Time-resolved BLS spectroscopy

Time resolution: 1 ns
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Dipolar spin waves
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Motion of a spin wave packet in varying field
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Real-time observation of spin wave propagation

SW-pulses created by

microwaves and 

detected by 

light scattering with 

time and space 
resolution

µW pulse 
Generator

DC current
source

from laser

to interferometer

DC conductor provides 

a local 

field inhomogeneity
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Spin wave tunneling
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Spin wave pulse propagation

 

 

position of the dc conductor

zero current

Field

µW pulse 
Generator

DC current
source

from laser

to interferometer

magnetic material: YIG 

S.O. Demokritov et al., Phys. Rev. Lett. 93, 047201 (2004)
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Spin wave pulse propagation

Potential barrier: reflection and tunneling   

position of the dc conductor

positive current

 

 

dip in field acts like potential barrier

Field

µW pulse 
Generator

DC current
source

from laser

to interferometer

magnetic material: YIG 

S.O. Demokritov et al., Phys. Rev. Lett. 93, 047201 (2004)
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Reflection of spin wave at barrier and spin wave tunneling
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Non-exponential decrease of spin wave intensity with barrier size
A. A. Serga et al., Appl. Phys. Lett. 94, 112501 (2009)
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Spin-wave Fabry-Perot interferometer

Short SW pulse

18 ns

Long SW pulse

40 ns

Carrier frequency: 

7.125 GHz

Bias field: 

 1836 Oe

Wave number:

 112 rad/cm

Group velocity: 

 ≈30 km/s

Film thickness:

 5.7 µm

Scan region: 

 6.0 × 1.8 mm2

Logarithmic scale

A. A. Serga et al., Appl. Phys. Lett. 94, 112501 (2009)
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Spin-wave tunneling through mechanical gap

Film thickness:

 6 µm

Gap width:

 20 µm

Frequency:

 7.125 GHz

Magnetic field:

 1835 Oe

Logarithmic scale
position 

of the gap

T. Schneider et al., Europhys. Lett. 90, 27003 (2010)
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Spin wave cavity

positions 

of the gaps

Film thickness:

 6 µm

Gap width:

 20 µm

Frequency:

 7.125 GHz

Magnetic field:

 1839 Oe

Logarithmic scale
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Application: Spin waves in films 
with internal field distribution

Regions with canted 

magnetization and zero 

internal field are located 

near the  edges of the stripe
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Dynamics in inhomogeneous stripe
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Active

Stabilization

+

Positioning

▪ position stability:
infinite

▪ accuracy: 
better than 20 nm

▪ high reproducibility 

Frequency Analysis

▪ frequency range:
1 GHz – 1 THz

▪ spectral resolution:
100 MHz

Viewing System

▪ controlling sample while 
measuring

Sample Stage

▪ optical resolution:
250 nm

▪ 2D piezo stage

BLS microscopy
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Micro-focused Brillouin light scattering spectroscopy

Brillouin light scattering microscopy

Experiment:

Laser focus on the sample
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Micro-focused Brillouin light scattering spectroscopy

T. Sebastian et al., Appl. Phys. Lett. 100, 112402 (2012)

Micro-structured Co2Mn0.6Fe0.4Si spin-wave conduitBrillouin light scattering microscopy

Experiment:
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Four-magnon interactions in a spin-wave waveguide

High frequency harmonic generation 

3.5 GHz
T. Sebastian et al., Phys. Rev. Lett. 110, 067201 (2013)

FMR

µ0Hext = 48 mT
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(Non-)linear Processes

▪ Linear process

▪ Nonlinear processes
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Four-magnon interactions in a spin-wave waveguide

Linear regime

f MW =10.5 GHz

MW power
+ 5 dBm

Spin-wave

instability

µ0Hext = 48 mT

P. Pirro et al., Phys. Rev. Lett. 113, 227601 (2014)
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Four-magnon interactions in a spin-wave waveguide

f MW =10.5 GHz

Nonlinear regime

Δf Δf

MW power
+ 9 dBm

f1, f2 : unstable modes

µ0Hext = 48 mT

Spin-wave

instability

P. Pirro et al., Phys. Rev. Lett. 113, 227601 (2014)
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Four-magnon interactions in a spin-wave waveguide

f MW =10.5 GHz

Δf Δf

MW power
+ 13 dBm

Spin-wave

instability

µ0Hext = 48 mT

Nonlinear regime

f1, f2 : unstable modes

Spin-wave

instability

P. Pirro et al., Phys. Rev. Lett. 113, 227601 (2014)
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Wavenumber resolution principle

Frequency resolution

Wavenumber
resolution

Wavenumber
uncertainty!
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Wavenumber resolution principle

Frequency resolution

Wavenumber
resolution
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Wavenumber resolution experiment

Max wavenumber 2.36×105 rad/cm

Wavenumber resolution 0.02×105 rad/cm

Frequency resolution

Wavenumber
resolution
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Time-, space- and wavevector-resolved 
Brillouin light scattering spectroscopy

Resolution

Time                       1 ns

Frequency            50 MHz

Max wavenumber 2.36×105 rad/cm

Wavenumber resolution   2×103 rad/cm

B0
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Wavevector-resolved BLS spectroscopy

Wavenumber q (x105 rad/cm)
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Thermal spectrum of 6 µm thick YIG film

PhononsMagnons
Backward Volume Spin Wave

Max wavenumber 2.36×105 rad/cm

Wavenumber resolution   2×103 rad/cm

300 µm300 nm

Wavelength λ
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Anti-Stokes
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Outlook: Pumped magnon spectra

Calculated magnon dispersion branches

(111) LPE-grown YIG film: 6.7 µm
Width of the pumping area: 50 µm
Microwave power: 20 W
Pumping pulse: 1 µs
Pumping frequency: 13.2 GHz 

BLS setup + microwave pumping circuit

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Outlook: Pumped magnon spectra

(111) LPE-grown YIG film: 6.7 µm
Width of the pumping area: 50 µm
Microwave power: 20 W
Pumping pulse: 1 µs
Pumping frequency: 13.2 GHz 

BLS setup + microwave pumping circuitBLS wavevector-resolved spectra (time integrated)

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Outlook: Pumped magnon spectra

BLS wavevector-resolved spectra (time integrated)

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)



Burkard Hillebrands 2024 European School on Magnetism, York, UK August  28, 2024 43

Outlook: Pumped magnon spectra

“Virtual” pumped, 
forced magnons

BLS wavevector-resolved spectra (time integrated)

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Outlook: Pumped magnon spectra

“Real” parametric magnons

BLS wavevector-resolved spectra (time integrated)

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Outlook: Pumped magnon spectra

Magnon BEC 
and magnon gas

BLS wavevector-resolved spectra (time integrated)

BEC BEC

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)



Burkard Hillebrands 2024 European School on Magnetism, York, UK August  28, 2024 46

Outlook: Pumped magnon spectra

BLS wavevector-resolved spectra (time integrated)

BEC BEC

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Outlook: Pumped magnon spectra

BLS wavevector-resolved spectra (time integrated)

BEC BEC

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Outlook: Pumped magnon spectra

Central spot:

“Double-bottom 
virtual” magnons

Right spot:

Left spot:

Confluence processes:BLS wavevector-resolved spectra (time integrated)

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)



Burkard Hillebrands 2024 European School on Magnetism, York, UK August  28, 2024 49

Outlook: Pumped magnon spectra

BLS wavevector-resolved spectra (time integrated)

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Outlook: Pumped magnon spectra

BLS wavevector-resolved spectra (time integrated)
4-magnon scattering process

similar to 
the kinetic instability

No magnon states with

negligibly weak process!

BEC BEC

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Outlook: Pumped magnon spectra

Classical version of 
quantum enhancement

▪ Full phase correlation in the pairs of 
parametric waves with ±qpar



▪ Consider a pair of parametric magnons 
as a coherent wave object



▪ Therefore, such a four-magnon 
scattering process is phase enhanced

In quantum optics: 
nonlinear processes with quantum-
correlated input have higher efficiency

BLS wavevector-resolved spectra (time integrated)

BEC BEC

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Outlook: Pumped magnon spectra

Classical version of 
quantum enhancement

▪ Full phase correlation in the pairs of 
parametric waves with ±qpar



▪ Consider a pair of parametric magnons 
as a coherent wave object



▪ Therefore, such a four-magnon 
scattering process is phase enhanced

In quantum optics: 
nonlinear processes with quantum-
correlated input have higher efficiency

BLS wavevector-resolved spectra (time integrated)

BEC BEC

V. S. L’vov et al., Phys. Rev. Lett. 131, 156705 (2023)
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Summary: What we leaned in this lecture:

▪ Ferromagnetic resonance and basics of microwave 

experiment with spin waves

▪ Brillouin light scattering (BLS) spectroscopy

▪ Time- and space-resolved BLS

▪ BLS microscopy

▪ Wavevector-resolved BLS

▪ Nonlinear processes

▪ Coherency might enlarge four-magnon processes – classical version of 

quantum enhancement
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