

2024 European School on Magnetism

27 August - 6 September 2024, York, UK

Dipolar and exchange spin waves

Burkard Hillebrands

Fachbereich Physik and Landesforschungszentrum OPTIMAS Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau Kaiserslautern, Germany

https://physik.rptu.de/ags/hillebrands

Definitions and relations

Matter in external magnetizing field \vec{H} shows magnetic moment.

Magnetization \vec{M} is the total magnetic moment per unit volume.

Dia- and paramagnetic materials: relation between \vec{M} and \vec{H} is linear: $\vec{M} = \chi \vec{H}$ Magnetic field: $\vec{B} = \mu_0 (\vec{H} + \vec{M}) = \mu \vec{H}$

with $\mu = \mu_0 (1 + \chi) = \mu_0 \mu_r$, μ_r is the relative permeability of the material. Magnetic polarization: $\vec{J}_{pol} = \mu_0 \vec{M}$

Energy $E_{\rm m}$, torque \vec{T} , and force \vec{F} of a single magnetic dipole $\vec{\mu}_{\rm m}$ in magnetic field \vec{B} : $E_{\rm m} = -\vec{\mu}_{\rm m} \cdot \vec{B}$ (Zeeman energy of a magnetic dipole $\vec{\mu}_{\rm m}$ in magnetic field \vec{B}) $\vec{T} = \vec{\mu}_{\rm m} \times \vec{B}$ $\vec{F} = \vec{\nabla} (\vec{\mu}_{\rm m} \cdot \vec{B})$

Field \vec{B} generated by magnetic dipole $\vec{\mu}_{\rm m}$ in distance \vec{r} :

$$\vec{B} = \mu_0 \left(\frac{3(\vec{\mu}_{\rm m} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{\mu}_{\rm m}}{r^3} \right)$$

Rheinland-Pfälzische

Kaiserslautern

Landau

RP

Definitions and relations

Interaction energy
$$E_{dip-dip}$$
 of two dipoles $\vec{\mu}_1$ and $\vec{\mu}_2$ at positions \vec{r}_1 and \vec{r}_2 :
 $E_{dip-dip} = \mu_0 \left(\frac{\vec{\mu}_1 \cdot \vec{\mu}_2}{r_{12}^3} - 3 \frac{(\vec{\mu}_1 - \vec{r}_{12})(\vec{\mu}_2 - \vec{r}_{12})}{r_{12}^5} \right)$ with $\vec{r}_{12} = \vec{r}_1 - \vec{r}_2$

Magnetic moment $\vec{\mu}$:

can be viewed at a circular current *I* of an electron about an area $\vec{A} = A\hat{n}$, \hat{n} :normal vector of area:

$$\vec{\mu} = I \vec{A}$$

Circular orbit with radius r, $A = \pi r^2$, $I = -|e| \cdot \frac{\omega}{2\pi}$:

$$\vec{\mu} = -\frac{1}{2} |e| \omega r^2 \hat{n}$$

Comparison to angular momentum \vec{J} of an electron with mass m_e:

$$\vec{J} = \vec{r} \times m_{e} \vec{v} = m_{e} \omega r^{2} \hat{n}$$
$$\Rightarrow \qquad \vec{\mu} = -\frac{|e|}{2m_{e}} \vec{J}$$

Definitions and relations

Angular momentum \vec{J} is quantized in units of \hbar

⇒ Elementary quantum of magnetic moment is Bohr magnetron

$$\mu_{\rm B} = -\frac{|e|\hbar}{2m_{\rm e}} = 9.2740 \cdot 10^{-24} \,\text{J/T}$$

Electrons also have spin. They have orbital momentum $\vec{\mu}_{i}$ and spin momentum $\vec{\mu}_{s}$:

$$\vec{\mu}_{l} = -\frac{|e|}{2m_{e}}\vec{l} , \quad \vec{l}^{2} = l(l+1)\hbar^{2}$$
$$\vec{\mu}_{s} = -g_{e}\frac{|e|}{2m_{e}}\vec{s} , \quad \vec{s}^{2} = s(s+1)\hbar^{2}$$

with $g_{e} = 2.0023$ the gyromagnetic ratio of the electron.

The spin moment is oriented (anti-) parallel to the external field with value

$$\mu_{s} = g_{e} \frac{|e|}{2m_{e}} \cdot |s_{z}|\hbar = g_{e}\mu_{B}|s_{z}| \approx \mu_{B} \quad , \quad s_{z} = \pm \frac{1}{2}$$

with s_{j} the magnetic spin quantum number

Ferromagnetic spin chain: magnon

Spin waves

Spin dynamics

Torque
$$\stackrel{!}{T}$$
 acting on moment $\stackrel{!}{\mu}_{m}$ in field $\stackrel{!}{B}$:
 $\stackrel{\Gamma}{T} = \stackrel{\Gamma}{\mu}_{m} \times \stackrel{\Gamma}{B}$

 \Rightarrow moment moves perpendicular to field direction \Rightarrow precession

Angular momentum
$$\stackrel{\Gamma}{L} = -\frac{h}{g\mu_{B}} \stackrel{\Gamma}{\mu}_{m} = -\frac{1}{\gamma} \stackrel{\Gamma}{\mu}_{m}$$

$$\Rightarrow \stackrel{\Gamma}{T} = \frac{d\stackrel{\Gamma}{L}}{dt} = -\frac{1}{\gamma} \frac{\partial\stackrel{\Gamma}{\mu}_{m}}{\partial t} \stackrel{!}{=} \stackrel{\Gamma}{\mu}_{m} \times \stackrel{\Gamma}{B}$$

with $\gamma = g\mu_{\rm B}$ / h the gyromagnetic ratio, $g \approx 2$ (electron): γ / $2\pi = 28$ GHz/T

Transition to magnetization: Γ

$$\frac{1}{\gamma} \frac{\partial M}{\partial t} = -\stackrel{\mathrm{f}}{M} \times \stackrel{\mathrm{f}}{B}_{\mathrm{eff}}$$

Spin dynamics

$$\frac{1}{\gamma} \frac{\partial M}{\partial t} = - \stackrel{r}{M} \times \stackrel{r}{B}_{eff} - \text{Landau-Lifshitz torque equation}$$

with $\stackrel{r}{B}_{eff}$ the effective magnetic field, acting on the magnetization: $\stackrel{r}{B}_{eff} = \stackrel{r}{B}_0 + \stackrel{r}{B}(t) + \stackrel{r}{B}_{ani} + \stackrel{r}{B}_{exchange} + \dots$

Coherent dynamics: spin waves

Spin wave: collective motion of magnetic moments

Landau-Lifshitz torque equation

Coherent dynamics: spin waves

Spin wave: collective motion of magnetic moments

Landau-Lifshitz torque equation

Coherent dynamics: spin-wave decay

Landau-Lifshitz-Gilbert torque equation with damping

Two types of energy contributions

exchange energy: generated by twist of neighbored spins

dipolar energy:

generated by magnetic poles in long-wavelength spin waves

Dispersion of electromagnetic wave

Dispersion of electromagnetic wave

Dipolar spin waves

Control of spin wave propagation

Wavevector k:

 k_{parallel} defined by input frequency and dispersion

Dispersion shifted vertically by change in magnetic field

Dispersion curves for spin waves

Dispersion curves for spin waves

Backward volume magnetostatic spin wave

Magnetostatic surface spin wave

Excitation of dipolar spin waves

Input microwave signal

Backward volume magnetostatic spin waves (BVMSW)

Excitation of BVMSW measured with Brillouin light scattering microscopy

Magnetostatic surface spin waves (MSSW)

Excitation of MSSW measured with Brillouin light scattering microscopy

Magnetostatic surface spin wave

BVMSW transmission characteristics

Technische Universität Kaiserslautern

Spin-wave waveguide

Frequency:
$$f(k) = g_{\sqrt{H_0 + 4\rho M_0}} \frac{1 - \exp\left\{-\sqrt{(n\rho/w)^2 + k^2}d\right\}}{\sqrt{(n\rho/w)^2 + k^2}d}$$

- H_0 magnetic field
- M_0 saturation magnetization
- film thickness d
- w waveguide width
- transverse mode order n

Ni₈₁Fe₁₉ waveguide

k_x: propagating spin wave

k_v: lateral standing spin wave with mode order n

Ni₈₁Fe₁₉ waveguide

k_x: propagating spin wave

k_v: lateral standing spin wave with mode order n

Wave superposition

$$I(x, y) = \left| A_1 e^{-i(k_1 x)} \cos(n_1 \frac{p}{w} y) + A_2 e^{-i(k_2 x)} \cos(n_2 \frac{p}{w} y) + \dots \right|^2$$

Influence of a skew

Reference waveguide

Influence of a skew

Reference waveguide

Waveguide with skew $(1 \mu m)$

- Changing interference patterns (n=1&3 to n=1&2)
- Edge mode: asymmetric source

Supporting numerical simulations

Supporting numerical simulations

Spin waves in a thin magnetic film

Exchange modes

Small wavelength: exchange interaction

$$\vec{B}_{\text{exch}} = \frac{2J_{\text{ex}}}{M_{\text{s}}^2} \vec{\nabla}^2 \vec{M} = \frac{D}{M_{\text{s}}} \vec{\nabla}^2 \vec{M}$$

must be considered.

Resonance condition for wavevector component perpendicular to film:

$$q_{\perp} = n \frac{\pi}{d}; \quad n = \pm 1, \pm 2, \pm 3..$$

approximative calculation of exchange modes:

(outside crossing regimes with Damon-Eshbach modes)

$$\left(\frac{\omega}{\gamma}\right)^2 = \left(B_0 + Dq^2\right)\left(B_0 + \mu_0 M_s + Dq^2\right)$$

with: $D = 2J_{ex} / M_{s}$

P. Grünberg et al., JMMM 28, 319 (1982)

Propagation at oblique in-plane angle

dipole-dipole interaction and exchange interaction

Permalloy film (15nm) H_{ext} = 500 Oe

Magnetization dynamics

Confinement to magnetic objects:

→ Find dynamic ground state, i.e., eigenmode spectrum

Problems:

- correct boundary conditions
- modes in inhomogeneously magnetized structures

Patterned magnetic films

Au / Ni₈₁Fe₁₉ (220nm) / SiO₂ / Si preparation: e-beam evaporation in UHV coercivity: $H_c = 1-2$ Oe patterning: x-ray lithography (LURE, France)

Wires:

Lateral quantum size effect

- propagating dipolar modes (Damon-Eshbach modes) perpendicular to wires: "standing lateral modes"
- quantization condition due to the lateral edges:

 $w = n \lambda_{\text{spin wave}}/2;$ $q_{\text{n}} = 2\pi/\lambda_{\text{spin wave}} = n\pi/w; \quad n = 1,2,3,...$

- boundary conditions (open pinned)
 - take dynamic stray fields into account
- calculation of frequencies by inserting q_n into Damon-Eshbach equation of motion

Boundary conditions for dynamic magnetization

Precessing magnetization has dynamic out-of-plane component \Rightarrow dynamic stray fields and thus dynamic surface torque on magnetization

Mode profiles

New dynamic dipole boundary condition for non-elliptical elements:

$$\frac{\partial \dot{m}}{\partial \hat{n}} + \frac{1}{\xi_{\rm D}} \dot{m} = 0$$
$$\xi_{\rm D} = \frac{t}{2\pi} \left(1 + 2\ln\frac{w}{t} \right)$$

- Takes dynamic stray fields into account
- "Stray field induced pinning"

low-index modes ($\lambda >> \xi_D$) "pinned" high-index modes ($\lambda \approx \xi_D$) "unpinned"

Frequencies of the quantized modes

C. Mathieu et al., PRL 81, 3968 (1998)

Magnon spectrum of in-plane magnetized YIG film

 $k PH_{o}$

1.5

1.0

harmonic distribution of dynamic magnetization along the film thickness

6 μm thick YIG film

Calculations based on: Kalinikos and Slavin, J. Phys. C: Solid State Phys **19**, 7013 (1986)

-0.5

0

Wavenumber $k(\times 10^5 \text{ rad/cm})$

0.5

-1.0

 $\propto k^2$

-1.5

Yttrium Iron Garnet (YIG, Y₃Fe₅O₁₂)

- Room temperature ferrimagnet ($T_c = 560 \text{ K}$)
- Cubic crystal
- Low phonon damping

Cherepanov, Kolokolov, L'vov, *The saga of YIG*, Phys. Rep. **229**, 81 (1993)

- Lattice constant 12.376 Å
- Unit cell 80 atoms

Longest known spin-wave lifetime (up to 700 ns)

3" YIG wafer SRC "Carat" Lviv, Ukraine

BEC is macroscopic quantum state

Rheinland-Pfälzische Technische Universität

Kaiserslautern Landau

RP

- Exists at bottom of the spin-wave spectrum with zero group velocity
- Fundamental scattering processes: four-magnon scattering
 - Excess magnons cannot relax within system relaxation time
 - Finite chemical potential $\boldsymbol{\mu}$
- Order parameter: coherency
 - Repulsive intermodal interaction leads to spatial stability of magnon condensates
- Methods to generate BEC: parametric pumping, spin-transfer torque, rapid cooling

Outlook: Magnon Bose–Einstein condensation

μ: chemical potential

External injection of magnons beyond the thermal equilibrium level (about 3%) increases the chemical potential to the bottom of magnon spectrum and leads to Bose-Einstein condensation scenario even at room temperature

BEC of magnons – macroscopic quantum phenomena – spontaneously formed coherent wave in a chaotic magnon system

Demokritov *et al., Bose–Einstein condensation of quasi-equilibrium* magnons at room temperature under pumping, Nature **443**, 430 (2006)

Outlook: Magnon Bose–Einstein condensation

Bose-Einstein distribution

 μ : chemical potential

External injection of magnons beyond the thermal equilibrium level (about 3%) increases the chemical potential to the bottom of magnon spectrum and leads to Bose-Einstein condensation scenario even at room temperature

BEC of magnons – macroscopic quantum phenomena – spontaneously formed coherent wave in a chaotic magnon system Numerical simulation of the condensation process of parametrically populated magnon gas in a YIG film

MuMax 3.0 numerical calculations

M. Mohseni et al., Commun. Phys. 5, 196 (2022)

Summary: what we leaned in this lecture:

- Magnetization dynamics: torque equations & torque boundary conditions
- Energy contributions to spin-wave frequency and dispersion properties
- Backward volume magnetostatic spin waves
- Magnetostatic surface spin waves
- Quantized spin waves in confined structures
- Exchange spin waves
- Magnon Bose-Einstein condensation