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Definitions and relations
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Ferromagnetic spin chain: magnon
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Spin waves
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Spin dynamics
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Spin dynamics
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Coherent dynamics: spin waves

Spin wave: collective motion

of magnetic moments
Landau-Lifshitz torque equation

dynamic magnetization
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Coherent dynamics: spin waves

Spin wave: collective motion

of magnetic moments

𝝀

Landau-Lifshitz torque equation

dynamic magnetization
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Coherent dynamics: spin-wave decay

Landau-Lifshitz-Gilbert torque equation with damping 

dynamic magnetization
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Spin waves

Two types of energy contributions 

▪ exchange energy: 

generated by twist of neighbored spins

▪ dipolar energy: 

generated by magnetic poles in long-wavelength spin waves
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Dispersion of electromagnetic wave

vph = 2p f / k

vgr = 2p ¶f

¶k
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Dispersion of electromagnetic wave

vgr

vph

For electromagnetic wave:

vph = vgr
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Dipolar spin waves
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Control of spin wave propagation

Wavevector k:

 kparallel defined by input frequency and dispersion
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Dispersion curves for spin waves

For spin waves:

ph grv v
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Dispersion curves for spin waves

vgr

vph

For BVMSWs:

group and phase velocities 

have different signs

vgr < 0

vgr < 0, vph > 0
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Backward volume magnetostatic spin wave
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Magnetostatic surface spin wave
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Excitation of dipolar spin waves

Alternating magnetic field

Input microwave signal

B0
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Backward volume magnetostatic spin waves (BVMSW)

YIG

Excitation of BVMSW
measured with 

Brillouin light scattering microscopy

)cos(~ kxmx

Dynamic magnetization profile

B0

d
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Magnetostatic surface spin waves (MSSW)

Excitation of MSSW
measured with 

Brillouin light scattering microscopy

)exp(~ kxmx −

Dynamic magnetization profile

B0

MSSW
B0
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Magnetostatic surface spin wave



Burkard Hillebrands 2024 European School on Magnetism, York, UK August  28, 2024 27

BVMSW transmission characteristics

Dependence of the transmitted power 

on frequency
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Spin-wave waveguide

H0 – magnetic field

M0 – saturation magnetization

d – film thickness

w – waveguide width

n – transverse mode order

Frequency: f (k) =g H0 + 4pM0

1- exp - (np / w)2 + k2 d{ }
(np / w)2 + k2 d
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Ni81Fe19 waveguide

kx: propagating spin wave

ky: lateral standing spin wave with mode order n

Material: Ni81Fe19
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Ni81Fe19 waveguide

Material: Ni81Fe19

kx: propagating spin wave

ky: lateral standing spin wave with mode order n
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Wave superposition

Modes
n=1 & 3

n=1 & 2
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Influence of a skew

Max

Min

Reference waveguide
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Influence of a skew

Max

Min

Reference waveguide

Waveguide with skew (1 µm)

▪ Changing interference patterns (n=1&3 to n=1&2)

▪ Edge mode: asymmetric source
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Supporting numerical simulations

Max

Min

n=1 & 3

n=1 & 2

Excitation of the second width mode

?
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Supporting numerical simulations

Max

Min

n=1 & 3

n=1 & 2

Excitation of the second width mode

Edge mode
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Spin waves in a thin magnetic film
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Exchange modes
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P. Grünberg et al., JMMM 28, 319 (1982) 
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Propagation at oblique in-plane angle

Permalloy film (15nm) 

Hext = 500 Oe

dipole-dipole interaction

  and 

exchange interaction
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Magnetization dynamics

Confinement to magnetic objects: 

quantized eigen modes („standing spin waves“)

➔ Find dynamic ground state, i.e., eigenmode spectrum

Problems: 

▪ correct boundary conditions

▪ modes in inhomogeneously magnetized structures

x
z

y
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Patterned magnetic films

Au / Ni81Fe19 (220nm) / SiO2 / Si 

preparation: e-beam evaporation in UHV  

coercivity: Hc = 1-2 Oe 

patterning: x-ray lithography (LURE, France) 

Wires: Dots:
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Lateral quantum size effect

x
z

yStanding lateral modes:

Standing lateral modes

▪ propagating dipolar modes (Damon-Eshbach modes) 
perpendicular to wires: "standing lateral modes”

▪ quantization condition due to the lateral edges:  
w = n λspin wave/2;        

qn = 2π/λspin wave = nπ/w;   n = 1,2,3,...

▪ boundary conditions (open – pinned) 

- take dynamic stray fields into account

▪ calculation of frequencies by inserting qn into 

Damon-Eshbach equation of motion
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Boundary conditions for dynamic magnetization 

Precessing magnetization has dynamic out-of-plane component

 dynamic stray fields and thus dynamic surface torque on magnetization

M(t)

B0

M⊥ (t)

Hdemag(t)
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Mode profiles

low-index modes (λ >> ξD) „pinned“ 

high-index modes (λ  ξD) „unpinned“   
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Frequencies of the quantized modes
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C. Mathieu et al., PRL 81, 3968 (1998)
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dipolar interaction exchange interaction

Landau-Lifshitz equation

Magnon spectrum of in-plane magnetized YIG film

2k

Thickness modes having a non-uniform 
harmonic distribution of dynamic 
magnetization along the film thickness

6 µm thick YIG film 

2k

Calculations based on: 

Kalinikos and Slavin, 
J. Phys. C: Solid State Phys 19, 7013 (1986)k
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▪ Room temperature ferrimagnet (TС = 560 K)

▪ Cubic crystal

▪ Low phonon damping

▪ Lattice constant 12.376 Å

▪ Unit cell – 80 atoms3” YIG wafer
SRC “Carat”
Lviv, Ukraine

YIG bulk crystal

Yttrium Iron Garnet (YIG, Y3Fe5O12)

Longest known spin-wave lifetime (up to 700 ns)

Cherepanov, Kolokolov, L’vov, 
The saga of YIG, Phys. Rep. 229, 81 (1993)



Burkard Hillebrands 2024 European School on Magnetism, York, UK August  28, 2024 47

Knowledge box: Magnon Bose-Einstein condensate (BEC)

▪ BEC is macroscopic quantum state
- Exists at bottom of the spin-wave spectrum 

with zero group velocity

▪ Fundamental scattering processes: four-magnon scattering
- Excess magnons cannot relax within 

system relaxation time
- Finite chemical potential μ

▪ Order parameter: coherency
- Repulsive intermodal interaction leads to spatial stability 

of magnon condensates

▪ Methods to generate BEC: parametric pumping, 
spin-transfer torque, rapid cooling
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Four-magnon scattering 

“magnon gas”



Burkard Hillebrands 2024 European School on Magnetism, York, UK August  28, 2024 48

Outlook: Magnon Bose–Einstein condensation

µ: chemical potential

Bose-Einstein distribution

B
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Magnons are bosons (s=1) and similar to other 

quasi-particles are described in thermal equilibrium 

by Bose-Einstein distribution with 

zero chemical potential 

min,T  = h

, 0T  =
External injection of magnons beyond the thermal 

equilibrium level (about 3%) increases the chemical 

potential to the bottom of magnon spectrum and 

leads to Bose-Einstein condensation scenario

even at room temperature

Demokritov et al., Bose–Einstein condensation of quasi-equilibrium 
magnons at room temperature under pumping, Nature 443, 430 (2006)

BEC of magnons – macroscopic quantum 

phenomena – spontaneously formed coherent wave 

in a chaotic magnon system
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Outlook: Magnon Bose–Einstein condensation

µ: chemical potential

Bose-Einstein distribution

B
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Magnons are bosons (s=1) and similar to other 

quasi-particles are described in thermal equilibrium 

by Bose-Einstein distribution with 

zero chemical potential 

External injection of magnons beyond the thermal 

equilibrium level (about 3%) increases the chemical 

potential to the bottom of magnon spectrum and 

leads to Bose-Einstein condensation scenario

even at room temperature

BEC of magnons – macroscopic quantum 

phenomena – spontaneously formed coherent wave 

in a chaotic magnon system

Numerical simulation of the condensation process 
of parametrically populated magnon gas in a YIG film

MuMax 3.0 numerical calculations

M. Mohseni et al., Commun. Phys. 5, 196 (2022)
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Summary: what we leaned in this lecture:

▪ Magnetization dynamics: torque equations & torque boundary conditions

▪ Energy contributions to spin-wave frequency and dispersion properties

▪ Backward volume magnetostatic spin waves

▪ Magnetostatic surface spin waves

▪ Quantized spin waves in confined structures

▪ Exchange spin waves

▪ Magnon Bose-Einstein condensation
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