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Overview

e Micromagnetics
e Formulation and approximations
e Energetic terms and magnetostatics Magnetisation dynamics
e Foundations and approximations
e Atomistic spin models
e Monte Carlo methods
e Spin Dynamics

e | andau-Lifshitz-Bloch micromagnetics (this afternoon)






Why do we need magnetic simulations?
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Why do we need magnetic simulations?
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Jay Shah et al, Nature Communications 9 1173 (2018)



Why do we need magnetic simulations?

Most magnetic problems are not solvable analytically

Complex shapes (cube or finite geometric shapes)

Complex structures (polygranular materials, multilayers, devices)
Magnetization dynamics

Thermal effects

Metastable phases (Skyrmions)



Numerical micromagnetics

Treat magnetisation as a continuum approximation

Average over the local atomic moments to give an average moment
density (magnetization) that is assumed to be continuous

Then consider a small volume of space (1 nm)3 - (10 nm)3 where the
magnetization (and all atomic moments) are assumed to point along the
same direction



Analytical micromagnetics

An analytical branch of
micromagnetics, treating
magnetism on a small
(micrometre) length scale

Mathematically messy but
elegant

When we talk about
micromagnetics, we usually
mean numerical
micromagnetics




The micromagnetic cell

e This gives the fundamental unit of micromagnetics: the micromagnetic cell

e The magnetisation is resolved to a single point magnetic moment
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e Generally a good approximation for simple magnets (local moment
variations are weak) at low temperatures (T < T</2)
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Micromagnetic problems

e A typical problem is then divided (discretised) into multiple micromagnetic
cells
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e (Can now generally treat any micromagnetic problem by solving system of
equations describing magnetic interactions

11



Micromagnetic energy terms

Micromagnetics considers fundamental magnetic interactions
e Magnetostatic interactions (zero current)

e Exchange energy

* Anisotropy energy

e Zeeman energy

Total energy is a summation over all micromagnetic cells

Etot = Edemag T Eexchange T Eanisotropy T EZeeman

Taking the derivative with respect to the local cell moment m, we can
express this as a local magnetic field acting on the local moment

1 d%E
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Magnetostatics

As each micromagnetic cell is a source of magnetic field, each one interacts
with every other micromagnetic cell in the simulation via magnetic stray fields

This is expressed as an integral over the volume magnetization of all other cells
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In implementation terms this is done by considering surface charges on cells
and calculating the integral over the surface of the cell

The magnetostatic calculation is expensive since it scales with the square of
the number of cells (O ~ N2)

Typically this is solved using a Fast Fourier Transform, which scales with O ~ N
log N
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Fourier transforms for interactions
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e @Given a regular cubic grid and some interaction that is translationally
invariant the interactions can be calculated in Fourier space (useful for
crystals)

F(x) = m(x) fix) —» DFT [F(x)] = DFT [m(x)] DFT [f (X)]
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Fast Fourier transform

e DFT still an O(N) operation - not particularly helpful!

e But Fast Fourier Transform (FFT) has O(N log N) scaling
e (Can reformulate the DFT as

N —1
Fln] =) flEIW
k=0

where Wik is a periodic function that repeats for different
combinations of n and k.

 Taking advantage of this symmetry through a Decimation in time
method vastly reduces the number of operations that need to be
performed (O(N logz2 N)) (Cooley-Tukey algorithm and others)

e http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
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Exchange interactions

e Continuum formulation of the Heisenberg exchange: neighbouring cells
tend to prefer parallel alignment
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e [Effective exchange energy between cells from average of atomic
exchange interactions Jj over interaction length a (atomic spacing)

z Ij Jlj

A =
2a
e Micromagnetic exchange field given by Laplacian
2A o
Hexch — V'm

HoMs
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Magnetic anisotropy

e Preference for atomic magnetic
moments to align with particular
crystallographic directions
(magnetocrystalline anisotropy)

e Purely quantum mechanical effect
from spin-orbit coupling

e Gives a preference for magnetization
to lie along particular spatial
directions
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Finite element micromagnetics

The cubic discretisation described previously is
known as finite difference micromagnetics, due to
the derivative of the energy over a finite length

An alternative formulation is finite element
micromagnetics

Space is discretised into tetrahedra - much better
approximation for curved geometries and complex nmag
shapes

Much more complicated to implement and set up
numerically

Dipole fields typically calculated with Boundary
Element/Finite element (BE/FE) method

Josef Fidler and Thomas Sghrefl 2000 J. Phys. D: Appl. Phys. 33 R135



Micromagnetic simulations

e Problem is defined in terms of set of interacting cells
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e Have defined a local field acting on each cell

e Final step is to actually evolve the magnetic configuration
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Magnetisation dynamics

Not all problems are limited to the ground-state magnetic configuration
Many dynamic problems

e Magnetic recording and sensing

 Fast reversal dynamics

 Microwave oscillators

e Domain wall/Skyrmion dynamics

Need an equation of motion to describe time evolution of the
magnetization of each cell
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Landau Lifshitz Gilbert equation

Phenomenological equation of motion describing
uniform magnetization dynamics

OM(r,t) g
ot — 1 —|—OCZ M(ra t) X Heff(r, t)
__ %
M.( +a2)M(r, t) x (M(r,t) x Hp(r,1)).

Consists of two terms - precession and relaxation
Heff

Some quantum mechanical origins: L’armour

.  [Mx[MxHes]]
precession =

~) h

Relaxation term is much more complex and hides
a multitude of complex physical phenomena
(dissipation of angular momentum)
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Typical simulations |

Micromagnetic standard problems
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Typical simulations |l

e Domain wall dynamics
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Codes for micromagnetics

OOMMEF - Object Oriented
MicroMagnetic Framework - classic
code with GUI

MuMAX - modern GPU code, much
faster than OOMMEF (~100x)

MAGPAR - old finite element code,
good but takes a week to find all the
libraries to compile it

nmag - finite difference/finite
element code, development moved
to a new code fidimag

Several others available, some
commercial
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Atomistic spin models




Often we need to consider problems where continuum
micromagnetics is a poor approximation

Multi-sublattice ferro, ferri and antiferromagnets

Realistic particles with surface effects

Elevated temperatures near Tc

Magnetic interfaces

Crystal defects and disorder
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Example: Nd2Fe14B permanent magnets

S T

<=

Micromagnetics
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Atomistic



The atomistic model treats each atom as
possessing a localized magnetic ‘spin’

5

S| = g
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Classical spin Hamiltonian: The Heisenberg model

We can write a generalised spin Hamiltonian for a magnetic system as

T = jfexc T c%ﬂani T c%ﬂapp

consisting of the Heisenberg exchange energy, anisotropy and applied field
terms.
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Heisenberg exchange

As for the Ising model, the exchange energy is now expressed between two
interacting spins by the dot product of their spin directions and summing over all
pairs

K oo = — ZJZ-J-SZ- - Sj = — Z]ijcos 0,

i<j i<j

where J;; is the isotropic exchange energy and §, ; are unit vectors describing the
directions of spins i and j respectively.



Heisenberg exchange: sign effects

Hoe=— ) 1SS,

i<j

For the exchange interactions it is important to note the significance of the sign of
the exchange constant.

J;i; >0 J;; <0

0888 $¢89¢

Ferromagnetism Antiferromagnetism
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Heisenberg exchange: distance dependence

Data e
3 Guide to the eye

Exchange energy (mRyd)

1 1.5 2 2.5
Interatomic distance (a)

Due to the strong distance dependence of the exchange interaction, it is often
truncated to include nearest neighbours only. This significantly reduces the
computational effort while being a good approximation for many materials of
Interest.
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Classical spin Hamiltonian: Uniaxial anisotropy

Magnetic anisotropy gives a preference for spins to point along particular crystal

directions

The simplest form is uniaxial anisotropy, where the spins prefer to line along a single

axis e, where the energy is given by

HW = — kuz (Si : e,-)2 = kuz sin” @ + const

Nl 7

directions
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Classical spin Hamiltonian: Cubic anisotropy

Most cubic crystals have cubic anisotropy where the spin prefers to align along
particular crystal directions where the energy is given by
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Externally applied fields

1 Bapp

H app =~ Z #S; - Bypp



Integration methods




Monte Carlo methods for
classical spin models



Monte Carlo methods for classical spin models

In classical spin models we can evolve the system thermodynamically using Monte
Carlo Metropolis, computing the energy difference from the initial S, and trial S;
states

AE =E(S]) —E(S;)

where the move is then accepted with probability

AE
P =exp kT

The Monte Carlo algorithm needs to ensure detailed balance and ergodicity (all
states are accessible), which can be achieved by the appropriate choice of trial move.
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Random move

The most obvious choice of trial move is to pick a
random direction in 3D space for the spin. These
needs to be done in a way which does not bias any
particular direction.

Picking three uniform random numbers along x,y,z and
normalising introduces a bias into the number of
vectors generated along the cube edges

Sampling with a Normal distribution T, |, in the same
way ensures a uniform distribution on a random

sphere.

Although correct, the random method has the
disadvantage that most trial moves will be rejected at
low temperatures, and so this is not a very efficient
algorithm.
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Gaussian random move

At low temperatures, spin moves near the current direction
are likely to be favourable

We can modify the new spin position to be close by
adding a small shift to the existing spin direction using the
same method as random sampling and normalising the
resulting spin length

S/ . Sl Bl GGF
L |Si T GGF|

tHinzke D4aond Nowak U Comput. Phys. Commun. 121 334 (1999)



Sampling

A plot of the sampling for uniform and Gaussian moves shows the distributed trial
moves with respect to the starting spin direction along z

a b
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Adaptive moves

While efficient at moderate temperatures, the
Hinzke-Nowak method suffers from poor 1.0 | kBT/J: 1: 43

60

acceptance at low temperatures . R | | - . L

0.8 T ................... _50
One possible solution is an adaptive algorithm, | | | |
based on a modified Gaussian move, that aims 0.6}
to maintain an acceptance rate of 0.5 v

0.4¢
The Gaussian width is dynamically adapted 0.2l
according to '
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Where R is the acceptance rate and fis a

multiplying factor applied to the width o. If
R=0.5, then the multiplying factoris 1 to
maintain the same acceptance rate

JD Alz4a2te—Cardona et al J. Phys.: Condens. Matter 31 095802 (2019)



Comparison of algorithms

Compute the time for each algorithm to reach thermal equilibrium magnetization as a
function of temperature
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Temperature dependent
magnetization for different particle sizes

e (Calculate m(T) curves for
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Atomistic spin dynamics



Landau Lifshitz Gilbert (LLG) equation

S; X B;

8Si . Vi
- A7) Si x B; + A;S; x (S; X B;)
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Magnetic field (equivalent to the force)

As with molecular dynamics, the magnetic field presses the forces on the
local magnetic moments, and comes from the negative derivative of the

spin Hamiltonian with respect to the local spin moment S,

1 0.7
Ui 9S;

Here the magnetic spin moment y; acts in a similar manner to the mass in
a molecular dynamics simulation - the larger the moment the slower the
dynamics
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Langevin Dynamics for spin models
So far the dynamics of the spins in the LLG equation are deterministic

Need a way to simulate the effects of thermal fluctuations of the spins: a

heat bath

® I'=100K
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Langevin thermostat

The Langevin thermostat assumes the spins are embedded in a medium of
particles (photons, electrons, phonons) which emulate Brownian motion
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Langevin Dynamics

The LLG equation is dissipative - it removes energy from the system via the
second relaxation term

8S,- - Yi
o A7) S; x B; + A4;S; X (S; X B;)

We can add “fluctuations” to represent the effects of the heat bath

The fluctuation and dissipation terms must balance in thermal equilibrium
and can be formally proven by solving the Fokker-Plank equation using the
fluctuation-dissipation theorem (balance of terms)
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Stochastic Landau-Lifshitz-Gilbert equation

Thermal effects are modelled with Langevin Dynamics, where the system
is embedded in a heat bath and random thermal motions arise from
collisions with microscopic particles (electrons) in the bath

Effective field

1 0 Bi
B; = ()

Ui 9S;

Statistical properties of the noise

G = (50 0) =288t —1) 22

No spatial correlation §;;
< ia(t)> =0 No time correlation 6,

Mean fluctuation over time is zero
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VAMPIRE

vampire.york.ac.uk

Review article
R F L Evans et al, J. Phys.: Condens. Matter 26 (2014) 103202



Imulations
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Other codes for atomist
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Summary

Covered the essential elements of
micromagnetic simulations and their

formulation

Introduced atomistic spin models, their

fundamentals
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Magnetostatics in atomistic spin models

Magnetostatics a weak effect at short distances, particularly at the atomic
scale

We therefore use a micromagnetic approach to the demagnetizing field:
macrocell approximation

Local moments are summed into a cell and the continuum approximation
applied

Interaction between cells encapsulated in a dipole tensor, built from
atomistic dipole-dipole interactions, dipole field at large ranges
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