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Overview

• Micromagnetics 


• Formulation and approximations


• Energetic terms and magnetostatics Magnetisation dynamics


• Foundations and approximations


• Atomistic spin models 


• Monte Carlo methods 


• Spin Dynamics


• Landau-Lifshitz-Bloch micromagnetics (this afternoon)
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Micromagnetics

source: mumax



Why do we need magnetic simulations?



Demagnetization factors for different shapes
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Why do we need magnetic simulations?

Jay Shah et al, Nature Communications 9 1173 (2018)6



Why do we need magnetic simulations?
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• Most magnetic problems are not solvable analytically 


• Complex shapes (cube or finite geometric shapes)

• Complex structures (polygranular materials, multilayers, devices) 


• Magnetization dynamics


• Thermal effects


• Metastable phases (Skyrmions)



Numerical micromagnetics

• Treat magnetisation as a continuum approximation 

• Average over the local atomic moments to give an average moment 
density (magnetization) that is assumed to be continuous


• Then consider a small volume of space (1 nm)3 - (10 nm)3 where the 
magnetization (and all atomic moments) are assumed to point along the 
same direction

8

<M>



Analytical micromagnetics

• An analytical branch of 
micromagnetics, treating 
magnetism on a small 
(micrometre) length scale

• Mathematically messy but 
elegant

• When we talk about 
micromagnetics, we usually 
mean numerical 
micromagnetics
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• This gives the fundamental unit of micromagnetics: the micromagnetic cell


• The magnetisation is resolved to a single point magnetic moment 

• Generally a good approximation for simple magnets (local moment 
variations are weak) at low temperatures (T < Tc/2)

The micromagnetic cell

Cell size a
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• A typical problem is then divided (discretised) into multiple micromagnetic 
cells


• Can now generally treat any micromagnetic problem by solving system of 
equations describing magnetic interactions 

Micromagnetic problems
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• Micromagnetics considers fundamental magnetic interactions


• Magnetostatic interactions (zero current)


• Exchange energy


• Anisotropy energy


• Zeeman energy


• Total energy is a summation over all micromagnetic cells


• Taking the derivative with respect to the local cell moment m, we can 
express this as a local magnetic field acting on the local moment

Micromagnetic energy terms

Etot = Edemag + Eexchange + Eanisotropy + EZeeman

where  is the fourth-order elasticity tensor. Here the elastic response is assumed to be isotropic
(based on the two Lamé constants λ and µ). Taking into account the constant length of m, we obtain the invariant-
based representation

This energy term contributes to magnetostriction.

The purpose of dynamic micromagnetics is to predict the time evolution of the magnetic configuration of a sample
subject to some non-steady conditions such as the application of a field pulse or an AC field. This is done by solving
the Landau-Lifshitz-Gilbert equation, which is a partial differential equation describing the evolution of the
magnetization in term of the local effective field acting on it.

The effective field is the local field felt by the magnetization. It can be described informally as the derivative of the
magnetic energy density with respect to the orientation of the magnetization, as in:

where dE/dV is the energy density. In variational terms, a change dm of the magnetization and the associated change
dE of the magnetic energy are related by:

It should be noted that, since m is a unit vector, dm is always perpendicular to m. Then the above definition leaves
unspecified the component of Heff that is parallel to m. This is usually not a problem, as this component has no effect
on the magnetization dynamics.

From the expression of the different contributions to the magnetic energy, the effective field can be found to be:

This is the equation of motion of the magnetization. It describes a Larmor precession of the magnetization around the
effective field, with an additional damping term arising from the coupling of the magnetic system to the environment.
The equation can be written in the so-called Gilbert form (or implicit form) as:

where γ is the electron gyromagnetic ratio and α the Gilbert damping constant.

Dynamic micromagnetics

Effective field

Landau-Lifshitz-Gilbert equation



Magnetostatics

• As each micromagnetic cell is a source of magnetic field, each one interacts 
with every other micromagnetic cell in the simulation via magnetic stray fields


• This is expressed as an integral over the volume magnetization of all other cells


• In implementation terms this is done by considering surface charges on cells 
and calculating the integral over the surface of the cell


• The magnetostatic calculation is expensive since it scales with the square of 
the number of cells (O ~ N2)


• Typically this is solved using a Fast Fourier Transform, which scales with O ~ N 
log N
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and calculating the integral over the surface of the cell.
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the number of cells (O ~ N2)


• Typically this is solved using a Fast Fourier Transform, which scales with O ~ N 
log N

Magnetostatics

The Zeeman energy favors alignment of the magnetization parallel to the applied field.

The demagnetizing field is the magnetic field created by the magnetic sample upon
itself. The associated energy is:

where Hd is the demagnetizing field. This field depends on the magnetic
configuration itself, and it can be found by solving:

where −∇·M is sometimes called magnetic charge density. The solution of these
equations (c.f. magnetostatics) is:

where r is the vector going from the current integration point to the point where
Hd is being calculated.

It is worth noting that the magnetic charge density can be infinite at the edges of the sample, due to M changing
discontinuously from a finite value inside to zero outside of the sample. This is usually dealt with by using suitable
boundary conditions on the edge of the sample.

The energy of the demagnetizing field favors magnetic configurations that minimize magnetic charges. In particular,
on the edges of the sample, the magnetization tends to run parallel to the surface. In most cases it is not possible to
minimize this energy term at the same time as the others. The static equilibrium then is a compromise that minimizes
the total magnetic energy, although it may not minimize individually any particular term.

The magnetoelastic energy describes the energy storage due to elastic lattice distortions. It may be neglected if
magnetoelastic coupled effects are neglected. There exists a preferred local distortion of the crystalline solid
associated with the magnetization director m, . For a simple model, one can assume this strain to be isochoric and
fully isotropic in the lateral direction, yielding the deviatoric ansatz

where the material parameter E > 0 is the magnetostrictive constant. Clearly, E is the strain induced by the
magnetization in the direction m. With this ansatz at hand, we consider the elastic energy density to be a function of
the elastic, stress-producing strains . A quadratic form for the magnetoelastic energy is

Energy of the demagnetizing field

Example of micromagnetic
configuration. Compared to
a uniform state, the flux
closure structure lowers the
energy of the demagnetizing
field, at the expense of
some exchange energy.

Magnetoelastic Energy



Fourier transforms for interactions

• Given a regular cubic grid and some interaction that is translationally 
invariant the interactions can be calculated in Fourier space (useful for 
crystals)
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Fourier Transforms for interactions

• Given a regular cubic grid and some interaction that is translationally invariant 
the interactions can be calculated in Fourier space (useful for crystals)

F(x) = m(x) f(x) → DFT [F(x)] = DFT [m(x)] DFT [f (x)]

F(x) = m(x) f(x) → DFT [F(x)] = DFT [m(x)] DFT [f (x)]



Fast Fourier transform

• DFT still an O(N) operation - not particularly helpful!


• But Fast Fourier Transform (FFT) has O(N log N) scaling


• Can reformulate the DFT as


          where Wnk is a periodic function that repeats for different 
combinations of n and k.


• Taking advantage of this symmetry through a Decimation in time 
method vastly reduces the number of operations that need to be 
performed (O(N log2 N)) (Cooley-Tukey algorithm and others)
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• http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
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• Continuum formulation of the Heisenberg exchange: neighbouring cells 
tend to prefer parallel alignment


• Effective exchange energy between cells from average of atomic 
exchange interactions Jij over interaction length a (atomic spacing)


• Micromagnetic exchange field given by Laplacian

Exchange interactions

other hand. MUMAX combines both with the huge computational
power of GPU hardware.

2.1. Effective field terms

In the present version of MUMAX, the effective field can have
five different contributions: the magnetostatic field, the exchange
field, the applied field, the anisotropy field and the thermal field.
In what follows we present these terms and comment on their
optimized implementation.

2.1.1. Magnetostatic field
The magnetostatic field Hms accounts for the long-range

interaction throughout the complete sample

HmsðrÞ ¼$
1

4p

Z

V
rr 1
jr$r0j

%Mðr0Þ dr0: ð2Þ

Since the magnetostatic field in one FD cell depends on the
magnetization in all other FD cells, the calculation of Hms is the most
time-consuming part of a micromagnetic simulation. The chosen
method for this calculation is thus decisive for the performance of the
simulator. Therefore, we opted for a fast Fourier transform (FFT)
based method. In this case, the convolution structure of (2) is
exploited. By applying the convolution theorem, the convolution is
accelerated by first Fourier transforming the magnetization, then
multiplying this result with the Fourier-transform of the convolution
kernel and finally inverse transforming this product to obtain the
magnetostatic field. The overall complexity of this method is
OðNlogNÞ, as it is dominated by the FFTs.

Methods with even lower complexity exist as well. The fast
multipole method, e.g., only has complexity OðNÞ, but with such a
large pre-factor that in most cases the FFT method remains much
faster [7].

A consequence of the FFT method is that the magnetic
moments must lie on a regular grid. This means that a finite
difference (FD) spatial discretization has to be used: space is
divided into equal cuboid cells. This method is thus most suited
for rectangular geometries. Other shapes have to be approxi-
mated in a staircase-like fashion. However, thanks to the speedup
offered by MUMAX’s, smaller cells may be used to improve this
without excessive performance penalties.

The possibility of adding periodic boundary conditions in one
or more directions is also included in the software. This is done by
adding a sufficiently large number of periodic images to the
convolution kernel. The application of periodic boundary condi-
tions has a positive influence on the computational time since the
magnetization data does not need to be zero padded in the
periodic directions, which roughly halves the time spend on FFTs
for every periodic direction.

2.1.2. Exchange field
The exchange interaction contributes to the effective field in

the form of a Laplacian of the magnetization:

Hexch ¼
2A
m0Ms
r2m, ð3Þ

with A the exchange stiffness. In discretized form, this can be
expressed as a linear combination of the magnetization of a cell
and a number of its neighbors. MUMAX uses a six-neighbor
scheme, similar to [8]. In the case of 2D simulations (only one
FD cell in the z-direction), this method automatically reduces to a
four-neighbor scheme.

The exchange field calculation is included in the magnetostatic
field routines by simply adding the kernel describing the
exchange interaction to the magnetostatic kernel. In this way,
the exchange calculation is essentially free, as only one joint

convolution product is needed to simultaneously evaluate both
the magnetostatic and exchange fields. Moreover, by introducing
the exchange contribution in the magnetostatic field kernel
periodic boundary conditions are directly accounted for if
applicable.

2.1.3. Other effective field terms
Next to the above mentioned interaction terms and the

applied field contribution, MUMAX provides the ability to include
magnetocrystalline anisotropy. Currently, uniaxial and cubic
anisotropies are available. The considered anisotropy energies are

fani ¼ Kusin2y ð4Þ

and

faniðrÞ ¼ K1½a2
1ðrÞa2

2ðrÞþa2
2ðrÞa2

3ðrÞþa2
1ðrÞa2

3ðrÞ(
þK2½a2

1ðrÞa2
2ðrÞa2

3ðrÞ( ð5Þ

for uniaxial and cubical anisotropies respectively. Here, Ku and
ðK1,K2Þ are the uniaxial and cubical anisotropies constants, y is the
angle between the local magnetization and uniaxial anisotropy
axis and ai (i¼1,2,3) are the direction cosines between the local
magnetization and the cubic easy magnetization axes.

Furthermore, thermal effects are included by means of a
fluctuating thermal field:

Hth ¼ gðr,tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2akBT

gm0MsVdt

s

ð6Þ

which is added to the effective field Heff according to [9]. In (6), kB

is the Boltzmann constant, V is the volume of a FD cell, dt is the
used time step and gðr,tÞ is a stochastic vector whose components
are Gaussian random numbers, uncorrelated in space and time
with zero mean value and dispersion 1.

2.1.4. Spin-transfer torque
The spin-transfer torque interaction describes the influence of

electrical currents on the local magnetization. Possible applica-
tions are spin-transfer torque random-access memory [10] and
racetrack memory [11]. MUMAX incorporates the spin-transfer
torque description developed by Berger [12], refined by Zhang
and Li [13]

@M
@t
¼$

g
1þa2

M)Heff$
ag

Msð1þa2Þ
M) ðM)Heff Þ

$
bj

M2
s ð1þa2Þ

M) ðM) ðj %rÞMÞ

$
bj

Msð1þa2Þ
ðx$aÞM) ðj %rÞM: ð7Þ

Here, x is the degree of non-adiabicity and bj is the coupling
constant between the current density j and the magnetization:

bj ¼
PmB

eMsð1þx2Þ
, ð8Þ

with P the polarization of the current density, mB the Bohr
magneton and e the electron charge.

2.2. Time integration schemes

MUMAX provides a range of Runge–Kutta (RK) methods to
integrate the Landau–Lifshitz equation. Currently the user can
select between the following options:

* RK1: Euler’s method
* RK2: Heun’s method
* RK12: Heun–Euler (adaptive step)
* RK3: Kutta’s method

A. Vansteenkiste, B. Van de Wiele / Journal of Magnetism and Magnetic Materials 323 (2011) 2585–25912586

A =
∑ij Jij

2a
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• Preference for atomic magnetic 
moments to align with particular 
crystallographic directions 
(magnetocrystalline anisotropy)


• Purely quantum mechanical effect 
from spin-orbit coupling


• Gives a preference for magnetization 
to lie along particular spatial 
directions

Magnetic anisotropy

cubic

uniaxial

where  is the fourth-order elasticity tensor. Here the elastic response is assumed to be isotropic
(based on the two Lamé constants λ and µ). Taking into account the constant length of m, we obtain the invariant-
based representation

This energy term contributes to magnetostriction.

The purpose of dynamic micromagnetics is to predict the time evolution of the magnetic configuration of a sample
subject to some non-steady conditions such as the application of a field pulse or an AC field. This is done by solving
the Landau-Lifshitz-Gilbert equation, which is a partial differential equation describing the evolution of the
magnetization in term of the local effective field acting on it.

The effective field is the local field felt by the magnetization. It can be described informally as the derivative of the
magnetic energy density with respect to the orientation of the magnetization, as in:

where dE/dV is the energy density. In variational terms, a change dm of the magnetization and the associated change
dE of the magnetic energy are related by:

It should be noted that, since m is a unit vector, dm is always perpendicular to m. Then the above definition leaves
unspecified the component of Heff that is parallel to m. This is usually not a problem, as this component has no effect
on the magnetization dynamics.

From the expression of the different contributions to the magnetic energy, the effective field can be found to be:

This is the equation of motion of the magnetization. It describes a Larmor precession of the magnetization around the
effective field, with an additional damping term arising from the coupling of the magnetic system to the environment.
The equation can be written in the so-called Gilbert form (or implicit form) as:

where γ is the electron gyromagnetic ratio and α the Gilbert damping constant.

Dynamic micromagnetics

Effective field

Landau-Lifshitz-Gilbert equation

Hanis =
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• The cubic discretisation described previously is 
known as finite difference micromagnetics, due to 
the derivative of the energy over a finite length


• An alternative formulation is finite element 
micromagnetics


• Space is discretised into tetrahedra - much better 
approximation for curved geometries and complex 
shapes


• Much more complicated to implement and set up 
numerically


• Dipole fields typically calculated with Boundary 
Element/Finite element (BE/FE) method

Finite element micromagnetics

nmag

Josef Fidler and Thomas Schrefl 2000 J. Phys. D: Appl. Phys. 33 R135



Micromagnetic simulations

• Problem is defined in terms of set of interacting cells


• Have defined a local field acting on each cell


• Final step is to actually evolve the magnetic configuration
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Micromagnetic simulations
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This is the equation of motion of the magnetization. It describes a Larmor precession of the magnetization around the
effective field, with an additional damping term arising from the coupling of the magnetic system to the environment.
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where γ is the electron gyromagnetic ratio and α the Gilbert damping constant.
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Effective field
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Magnetisation dynamics

• Not all problems are limited to the ground-state magnetic configuration


• Many dynamic problems


• Magnetic recording and sensing


• Fast reversal dynamics 


• Microwave oscillators


• Domain wall/Skyrmion dynamics


• Need an equation of motion to describe time evolution of the 
magnetization of each cell
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Landau Lifshitz Gilbert equation

• Phenomenological equation of motion describing 
uniform magnetization dynamics


• Consists of two terms - precession and relaxation


• Some quantum mechanical origins: L’armour 
precession


• Relaxation term is much more complex and hides 
a multitude of complex physical phenomena 
(dissipation of angular momentum)
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We present MUMAX, a general-purpose micromagnetic simulation tool running on graphical processing
units (GPUs). MUMAX is designed for high-performance computations and specifically targets large
simulations. In that case speedups of over a factor 100 ! can be obtained compared to the CPU-based
OOMMF program developed at NIST. MUMAX aims to be general and broadly applicable. It solves the
classical Landau–Lifshitz equation taking into account the magnetostatic, exchange and anisotropy
interactions, thermal effects and spin-transfer torque. Periodic boundary conditions can optionally be
imposed. A spatial discretization using finite differences in two or three dimensions can be employed.
MUMAX is publicly available as open-source software. It can thus be freely used and extended by
community. Due to its high computational performance, MUMAX should open up the possibility of
running extensive simulations that would be nearly inaccessible with typical CPU-based simulators.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Micromagnetic simulations are indispensable tools in the field
of magnetism research. Hence, micromagnetic simulators like,
e.g., OOMMF [1], magpar [2] and Nmag [3] are widely used.
These tools solve the Landau–Lifshitz equation on regular CPU
hardware. Due to the required fine spatial and temporal discre-
tizations, such simulations can be very time consuming. Limited
computational resources therefore often limit the full capabilities
of the otherwise successful micromagnetic approach.

There is currently a growing interest in running numerical
calculations on graphical processing units (GPUs) instead of CPUs.
Although originally intended for purely graphical purposes, GPUs
turn out to be well suited for high-performance, general-purpose
calculations. Even relatively cheap GPUs can perform an enor-
mous amount of calculations in parallel. E.g., the nVIDIA GTX580
GPU used for this work costs less than $500 and delivers
1.5 trillion floating-point operations (Flops) per second, about
two orders of magnitude more than a typical CPU.

However, in order to employ this huge numerical power
programs need to be written specifically for GPU hardware, using
the programming languages and tools provided by the GPU
manufacturer, and the code also needs to handle many hard-
ware-specific technicalities. Additionally, the used algorithms
need to be expressed in a highly parallel manner, which is not
always easily possible.

Other groups have already implemented micromagnetic simula-
tions on GPU hardware and report considerable speedups compared
to a CPU-only implementation [4,5]. At the time of writing, however,
none of these implementations is freely available. MUMAX, on the
other hand, is available as open-source software and can be readily
used by anyone. Its performance also compares favorably to these
other implementations.

2. Methods

Since the micromagnetic theory describes the magnetization
as a continuum field Mðr,tÞ, the considered magnetic sample is
discretized in cuboidal finite difference (FD) cells with a uniform
magnetization. The time evolution of the magnetization in each
cell is given by the Landau–Lifshitz equation:

@Mðr,tÞ
@t

¼%
g

1þa2
Mðr,tÞ !Heff ðr,tÞ

%
ag

Msð1þa2Þ
Mðr,tÞ ! ðMðr,tÞ !Heff ðr,tÞÞ: ð1Þ

Here, Ms is the saturation magnetization, g the gyromagnetic ratio
and a the damping parameter. The continuum effective field Heff

has several contributions that depend on the magnetization,
the externally applied field and the material parameters of the
considered sample. When timestepping equation (1) the effective
field is evaluated several times per time step. Hence, the
efficiency of micromagnetic software depends on the efficient
evaluation of the different effective field terms at the one hand
and the application of efficient time stepping schemes on the
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• Phenomenological equation of motion 
describing uniform magnetization dynamics


• Consists of two terms - precession and 
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• Some quantum mechanical origins: Larmor 
precession


• Relaxation term is much more complex and 
hides a multitude of complex physical 
phenomena (dissipation of angular 
momentum)
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field is evaluated several times per time step. Hence, the
efficiency of micromagnetic software depends on the efficient
evaluation of the different effective field terms at the one hand
and the application of efficient time stepping schemes on the
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• Phenomenological equation of motion 
describing uniform magnetization dynamics


• Consists of two terms - precession and 
relaxation


• Some quantum mechanical origins: Larmor 
precession


• Relaxation term is much more complex and 
hides a multitude of complex physical 
phenomena (dissipation of angular 
momentum)
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• Micromagnetic standard problems

Typical simulations I
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• Domain wall dynamics

Typical simulations II
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• OOMMF - Object Oriented 
MicroMagnetic Framework - classic 
code with GUI


• muMAX - modern GPU code, much 
faster than OOMMF (~100x)


• MAGPAR - old finite element code, 
good but takes a week to find all the 
libraries to compile it


• nmag - finite difference/finite 
element code, development moved 
to a new code fidimag


• Several others available, some 
commercial

Codes for micromagnetics



Atomistic spin models



Often we need to consider problems where continuum 
micromagnetics is a poor approximation

• Multi-sublattice ferro, ferri and antiferromagnets 


• Realistic particles with surface effects 

• Elevated temperatures near Tc 

• Magnetic interfaces


• Crystal defects and disorder
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Often we need to consider problems where  
continuum micromagnetics is a poor approximation

Multi-sublattice ferro, ferri and antiferromagnets


Realistic particles with surface effects


Elevated temperatures near Tc


Magnetic interfaces


Crystal defects and disorder



Example: Nd2Fe14B permanent magnets
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Example: Nd2Fe14B permanent magnets

Micromagnetics Atomistic

2

Nd Fe B

FIG. 1. Visualization of the Nd2Fe14B unit cell. The unit cell con-
tains 68 atoms (8 Nd, 56 Fe and 4 B) with dimensions 8.8⇥ 8.8⇥
12.2 Å. (Color Online).

Bilbao crystal server13–15.
For both the Fe and Nd atoms, the magnetic moments in

the crystal vary slightly depending on the atomic site.12 How-
ever, the variations are small and so for simplicity we assume
uniform magnetic moments for Fe and Nd sites of 2.2 µB and
3.2 µB at 0 K respectively, giving a total magnetization per
formula unit of 37.2 µB.

III. ATOMISTIC SPIN MODEL

Given the crystal structure of the Nd2Fe14B crystal, we now
formulate a Heisenberg spin Hamiltonian H which describes
the energetics of the system describing energy contributions16

for the Nd and Fe sublattices:

H = HNd +HFe (1)
HNd =�Â

i,d
JNdFeSi ·Sd

�Â
i

Ek,Nd
i �µNd Â

i
Happ ·Si (2)

HFe =�Â
n ,d

JFe(r)Sn ·Sd �Â
n , j

JNdFeSn ·S j

�Â
n

Ek,Fe
n �µFe Â

n
Happ ·Sn (3)

where S are unit vectors describing the direction of the mag-
netic moments at each atomic site, i, j label Nd sites with mo-

ment µNd, n ,d label Fe sites with moment µFe and Happ is the
externally applied magnetic field vector. JNdFe is the Fe-Nd
nearest neighbor exchange energy and JFe(r) is the Fe-Fe ex-
change between Fe sites separated by interatomic distance r.
Ek,Nd

i and Ek,Fe
n describe the local anisotropy on the Nd and Fe

sites respectively, but due to the complexity of these functions
their details are presented later. Full details of the final model
parameters are detailed in Tab. I. The calculations have been
carried out using the VAMPIRE software package16,17. The
equilibrium temperature dependent properties of the system
are calculated using a Monte Carlo metropolis algorithm16 us-
ing the Hinzke-Nowak combinational algorithm18. The simu-
lated system consists of 10⇥10⇥7 unit cells (approximately
8 nm3) with periodic boundary conditions applied to eliminate
surface effects.

The equilibrium properties of the system are obtained by
performing 10,000 Monte Carlo steps at each temperature be-
fore calculating average magnetic properties over a further
20,000 steps. When calculating temperature dependent prop-
erties the final spin configuration from the previous temper-
ature calculation is used to reduce the number of time steps
required to reach thermal equilibrium at the new temperature.

IV. EXCHANGE INTERACTIONS

The exchange interactions in rare-earth transition-metal in-
termetallic compounds are primarily responsible of the mag-
netic ordering of the system, being 2-3 orders of magnitude
larger than the magnetocrystalline anisotropy. Given the large
Fe content of R2Fe14B alloys, one would expect a compar-
atively high Curie point, but in reality Curie temperatures
are much reduced compared to bulk Fe. Givord et al19 sug-
gested that this may be due to a sign change in the near-
est neighbor Fe-Fe exchange interaction, although recent ab-
initio calculations20 have suggested that reduced density is
primarily responsible for the reduction in the exchange in-
teractions due to less overlap of the atomic orbitals. With-
out more detailed ab-initio information about the exchange
interactions in Nd2Fe14B it is difficult to make definitive state-
ments about the exchange interactions between atomic sites.
In general it is known that exchange interactions are relatively
long ranged and depend strongly on interatomic separation.
Given that the Fe is the dominant atomic species in Nd2Fe14B,
it is expected that the magnetization is dominated by the Fe
sublattice.

Fe exchange interactions

Typically the first approach in parameterizing the classical
spin models is to calculate an effective pairwise nearest neigh-
bor exchange interaction, derived from the Curie temperature
of the system using a molecular field approximation16. For
Nd2Fe14B this approach is complicated by the complex crys-
tal structure which makes a global nearest neighbor distance a
poorly defined quantity, leading to different numbers of inter-
actions for different atomic sites within the same interatomic



The atomistic model treats each atom as  
possessing a localized magnetic ‘spin’ 

S = ± ½

LzS

|S| = µB 
28
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We can write a generalised spin Hamiltonian for a magnetic system as 

consisting of the Heisenberg exchange energy, anisotropy and applied field 
terms.

Classical spin Hamiltonian: The Heisenberg model

Chapter 11

Monte Carlo simulations of classical spin
systems

To address the shortcomings of the Ising model, fully classical Heisenberg spin models were
developed in the 1970’s. The key difference is that, unlike Ising models with a single quantisa-
tion axis, the atomic spins are allowed to point in any direction in 3D space. The physical basis
of the atomistic spin model is the localization of unpaired electrons to atomic sites, leading to
an effective local atomistic magnetic moment. The degree of localization of electrons has his-
torically been a contentious issue in 3d metals, due to the magnetism originating in the outer
electrons which are notionally loosely bound to the atoms. Electronic structure calculations of
the electron density show that in reality, even in ‘itinerant’ ferromagnets, the spin polarization is
well-localized to the atomic sites. Of course in reality these spins are still Quantum Mechanical
entities, and so we can think of the spin direction as a local quantization axis, around which the
spin precesses. Thus, in a classical spin model, the spin direction is the expectation value of the
spin along its local quantization axis.

11.1 The classical spin Hamiltonian
The extended Heisenberg spin model encapsulates the essential physics of a magnetic material
at the atomic level, where the energetics of a system of interacting atomic moments is given
by a spin Hamiltonian (which neglects non-magnetic effects such the as potential and kinetic
energies of the atoms). The spin Hamiltonian H typically has the form

H = Hexc +Hani +Happ (11.1)

denoting terms for the exchange interaction, magnetic anisotropy, and externally applied mag-
netic fields respectively. The dominant term in the spin Hamiltonian is the Heisenberg exchange
energy, which arises due to the symmetry of the electron wavefunction and the Pauli exclusion
principle which governs the orientation of electronic spins in overlapping electron orbitals. Due
to its electrostatic origin, the associated energies of the exchange interaction are around 1–2 eV,
which is typically 1000 times larger than the next largest contribution and gives rise to mag-
netic ordering temperatures in the range 300–1300 K. The exchange energy for a system of
interacting atomic moments is given by the expression

Hexc =�Â
i< j

Ji jSi ·S j (11.2)
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As for the Ising model, the exchange energy is now expressed between two 
interacting spins by the dot product of their spin directions and summing over all 
pairs 

where  is the isotropic exchange energy and  are unit vectors describing the 
directions of spins i and j respectively.  

Jij Si,j

Heisenberg exchange
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II. THE ATOMISTIC SPIN MODEL

Magnetism on the atomic scale presents two natural
limits: the discrete limit of continuum micromagnetics
and the classical limit for the quantum mechanical elec-
tron spin. The essential model of atomic scale magnetism
was devised by Heisenberg in 1928? for molecular hy-
drogen. The so-named Heisenberg model describes the
atomic scale exchange interaction with a local moment
theory, considering the interaction between two electron
spins on neighbouring atomic sites. By applying the
Heitler-London approximation? for the linear combina-
tion of electron orbitals, Heisenberg developed a model
which describes the energy of neighbouring atoms with
spin, given by:

< H >= �JijS̃i · S̃j (1)

where S̃i and S̃j are the quantum mechanical spins on
atomic sites i and j respectively, and Jij is the interaction
energy arising from the probability of the two electrons
exchanging atomic sites. The quantum mechanical na-
ture of the electron spins leads to quantization of the elec-
tron energy, which for a single spin was demonstrated by
the Stern-Gerlach experiment? . In the above case, how-
ever, the quantum e↵ects are far more complex due to the
coupling of the electronic spin moments. In the limit of
infinite spin angular momentum, the quantisation e↵ects
vanish, and the spin moments have continuous degrees of
freedom. Such spins are said to be classical, leading to
the classical Heisenberg spin model. It should be pointed
out that there is a fundamental assumption within the
Heisenberg model, namely that the electrons are closely
bound to the atomic sites. In general this is not the case
for most magnetic materials, since the magnetic interac-
tions usually arise from unpaired outer electrons, which
in metals are loosely bound. The band theory of fer-
romagnetism proposed by Stoner? successfully explains
why the usual magnetic atoms possess non-integer spin
moments by describing the exchange splitting of the spin-
up and spin-down energy bands. However, the band the-
ory reveals little about the fundamental magnetic prop-
erties due to its complexity, and so an assumption that
on some, very short, timescale the local moment approx-
imation is valid is not unreasonable, provided that it
is acknowledged that in fact electrons are not confined
to the atomic sites over longer timescales. Collectively
this leads to an e↵ective Heisenberg classical spin model,
where the spins have some non-integer, time-averaged,
value of the spin moment which is assumed constant.
Discussion, Hubbard model

A. The Classical Spin Hamiltonian

The Heisenberg spin model incorporates all the pos-
sible magnetic interactions into a single convenient for-

malism which can be used to investigate a myriad of
magnetic phenomena at the natural atomic scale. The
principal component of the model is the formation of the
spin Hamiltonian, describing the fundamental energetics
of any magnetic system. Such a Hamiltonian is formed
from a summation of contributions, each of which de-
scribes an interaction between an atomic spin moment
and neighbouring moments or external magnetic fields.
The spin Hamiltonian typically takes the form:

H = Hexc +Hani +Happ (2)

The dominant contribution to the spin Hamiltonian for
the vast majority of magnetic materials comes from the
exchange or Weiss field, which attempts to align the
atomic spin moments. The Weiss field in fact originates
from the quantum mechanical exchange interaction, aris-
ing from the probability of an electron moving from one
atomic site to another. The exchange interaction, as it is
called, leads to very strong alignment of spin moments to
their neighbours in ferromagnetic metals. The total ex-
change energy for each atom, i, is described by the sum
over all neighbouring atomic spin moments:

Hexc =
X

i<j

JijSi · Sj (3)

where Jij is the exchange interaction between the sites i
and j, Si is the local spin moment and Sj are the spin
moments of neighbouring atoms. The spin moments are
expressed here as unit vectors Si = µi/|µi|. In the sim-
plest case the exchange interaction is single valued, and
the interaction is only between nearest neighbours. In
this case a negative value of Jij results in a ferromagnetic
interaction between spins and attempts to align the spins,
while a positive value results in an anti-ferromagnetic
interaction between spins, which attempts to align the
spins anti-parallel. In more complex materials, the ex-
change interaction forms a tensor with components:

Jij =

2

4
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

3

5 (4)

which is capable of describing anisotropic exchange in-
teractions, such as two-ion anisotropy (Oleg) and the
Dzyaloshinskii-Moriya interaction (o↵-diagonal compo-
nents of the exchange tensor). Additionally the exchange
interaction can extend to several atomic spacings, rep-
resenting hundreds of atomic interactions. Such com-
plex interactions generally result from Density Functional
Theory parameterisation of magnetic materials, where
the electronic interactions can extend far away from the
local spin.

After the exchange interaction, the most important pa-
rameter in a magnetic system is generally the magneto-
crystalline anisotropy, namely the preference for spin mo-
ments to align with particular crystallographic axes, aris-
ing from the e↵ect of the local crystal environment on

3

the spin-orbit coupling of the electrons. The anisotropy
of a material determines its long term magnetic stability,
which can result in dynamic behaviour over the timescale
of nanoseconds to millions of years. The simplest form of
anisotropy is single ion uniaxial, where the magnetic mo-
ments prefer to align along a single axis, e, often called
the easy axis. Such an anisotropy exists where the crys-
tal lattice is distorted along a single axis, as in materials
such as hexagonal Cobalt and L10 FePt. The uniaxial
single ion anisotropy energy is given by:

H
uni
ani = �ku

X

i

(Si · e)
2 (5)

where Ku is the anisotropy energy per atom. Mate-
rials with a cubic crystal structure, such as Iron and
Nickel, have a di↵erent form of anisotropy known as cu-
bic anisotropy. Cubic anisotropy is a much weaker e↵ect
than in uniaxial anisotropy, and has three principal di-
rections which energetically are easy, hard and very hard
magnetisation directions respectively. This is defined in
terms of the value of the directional cosines of the spin
moment relative to the cartesian axes, such that, to first
order, the anisotropy energy density of a single spin is
given by

H
cub
ani =

kc

2

X

i

�
S
4
x + S

4
y + S

4
z

�
(6)

where Kc is the cubic anisotropy energy per atom, and
Sx,Sy, and Sz are the x,y, and z components of the spin
moment Si respectively.

Most magnetic problems also involve interactions be-
tween the system and external applied fields, Happlied.
External fields can arise in many ways, for example a
nearby magnetic material, or as an e↵ective field from an
electric current. In all cases the applied field energy is
simply given by:

Happ = �

X

i

µsSi ·Happ. (7)

An important consideration when modeling magnetic
materials is the e↵ect of the de-magnetising or dipolar
field. However, for isolated nanoparticles with spherical
geometries the de-magnetising field is largely isotropic
and much weaker than other contributions, and so can
generally be neglected. This is fortunate as its calculation
is computationally costly. Although the de-magnetising
field arises due to the atomistic magnetic moments, its
e↵ect is not significant over atomic lengthscales, and so
can be safely neglected. For thin films and multi-granular
materials the e↵ect of the demagnetisation field becomes
significant, inducing domain states in su�ciently large
films, or complex inter-grain interactions in the case of
granular systems. For systems where this is important,
the dipolar interactions are calculated with a micromag-
netic approximation, by creating magnetic cells, each
consisting of several atoms. These cells then interact with

the usual dipolar interaction, and its implementation in
the code is described in detail under computational meth-
ods.

A note on magnetic units

The subject of magnetic units is controversial due to
the existence of multiple competing standards and histor-
ical origins. Starting from the atomic level however the
dimensionality of units is relatively transparent. Atomic
moments are usually accounted for in multiples of the
Bohr magneton (µB), the magnetic moment of an isolated
electron, with units of Joules/Tesla. Given a number of
atoms of moment µ in a volume, the moment per unit
volume is in units of J/T/m3, which is identical to the
SI unit of A/m. However, the dimensionality (moment
per unit volume) of the unit A/m is not as transparent
as JT�1m�3, and so the latter form is used herein.

Applied magnetic fields are defined in Tesla, which
comes naturally from the derivative of the Hamiltonian
with respect to the local moment. The unit of Tesla for
applied field is also beneficial for hysteresis loops, since
the area enclosed a typical M-H loop is then given as an
energy density (Joules/m3). A list of key magnetic pa-
rameters and their units are shown in Tab. ??, and a list
of relevant atomic constants and their units are shown in
Tab. ??.

TABLE I. Table of key variables and their units

Varible Symbol Unit
Atomic magnetic moment µs Joules/Tesla [JT�1]
Unit cell size a Angstroms [Å]
Exchange energy Jij Joules/link [J]
Anisotropy energy ku Joules/atom [J]
Applied Field H Tesla [T]
Temperature T Kelvin [K]
Time t Seconds [s]

TABLE II. Table of key parameters and their values

Parameter Symbol Value
Bohr Magneton µB 9.2740 ⇥10�24 JT�1

Gyromagnetic Ratio � 1.76 ⇥1011 T�1s�1

Permeability of Free Space µ0 4⇡ ⇥ 10�7 T2J�1m3

Boltzmann Constant kB 1.3807⇥ 10�23 JK�1
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II. THE ATOMISTIC SPIN MODEL

Magnetism on the atomic scale presents two natural
limits: the discrete limit of continuum micromagnetics
and the classical limit for the quantum mechanical elec-
tron spin. The essential model of atomic scale magnetism
was devised by Heisenberg in 1928? for molecular hy-
drogen. The so-named Heisenberg model describes the
atomic scale exchange interaction with a local moment
theory, considering the interaction between two electron
spins on neighbouring atomic sites. By applying the
Heitler-London approximation? for the linear combina-
tion of electron orbitals, Heisenberg developed a model
which describes the energy of neighbouring atoms with
spin, given by:

< H >= �JijS̃i · S̃j (1)

where S̃i and S̃j are the quantum mechanical spins on
atomic sites i and j respectively, and Jij is the interaction
energy arising from the probability of the two electrons
exchanging atomic sites. The quantum mechanical na-
ture of the electron spins leads to quantization of the elec-
tron energy, which for a single spin was demonstrated by
the Stern-Gerlach experiment? . In the above case, how-
ever, the quantum e↵ects are far more complex due to the
coupling of the electronic spin moments. In the limit of
infinite spin angular momentum, the quantisation e↵ects
vanish, and the spin moments have continuous degrees of
freedom. Such spins are said to be classical, leading to
the classical Heisenberg spin model. It should be pointed
out that there is a fundamental assumption within the
Heisenberg model, namely that the electrons are closely
bound to the atomic sites. In general this is not the case
for most magnetic materials, since the magnetic interac-
tions usually arise from unpaired outer electrons, which
in metals are loosely bound. The band theory of fer-
romagnetism proposed by Stoner? successfully explains
why the usual magnetic atoms possess non-integer spin
moments by describing the exchange splitting of the spin-
up and spin-down energy bands. However, the band the-
ory reveals little about the fundamental magnetic prop-
erties due to its complexity, and so an assumption that
on some, very short, timescale the local moment approx-
imation is valid is not unreasonable, provided that it
is acknowledged that in fact electrons are not confined
to the atomic sites over longer timescales. Collectively
this leads to an e↵ective Heisenberg classical spin model,
where the spins have some non-integer, time-averaged,
value of the spin moment which is assumed constant.
Discussion, Hubbard model

A. The Classical Spin Hamiltonian

The Heisenberg spin model incorporates all the pos-
sible magnetic interactions into a single convenient for-

malism which can be used to investigate a myriad of
magnetic phenomena at the natural atomic scale. The
principal component of the model is the formation of the
spin Hamiltonian, describing the fundamental energetics
of any magnetic system. Such a Hamiltonian is formed
from a summation of contributions, each of which de-
scribes an interaction between an atomic spin moment
and neighbouring moments or external magnetic fields.
The spin Hamiltonian typically takes the form:

H = Hexc +Hani +Happ (2)

The dominant contribution to the spin Hamiltonian for
the vast majority of magnetic materials comes from the
exchange or Weiss field, which attempts to align the
atomic spin moments. The Weiss field in fact originates
from the quantum mechanical exchange interaction, aris-
ing from the probability of an electron moving from one
atomic site to another. The exchange interaction, as it is
called, leads to very strong alignment of spin moments to
their neighbours in ferromagnetic metals. The total ex-
change energy for each atom, i, is described by the sum
over all neighbouring atomic spin moments:

Hexc =
X

i<j

JijSi · Sj (3)

where Jij is the exchange interaction between the sites i
and j, Si is the local spin moment and Sj are the spin
moments of neighbouring atoms. The spin moments are
expressed here as unit vectors Si = µi/|µi|. In the sim-
plest case the exchange interaction is single valued, and
the interaction is only between nearest neighbours. In
this case a negative value of Jij results in a ferromagnetic
interaction between spins and attempts to align the spins,
while a positive value results in an anti-ferromagnetic
interaction between spins, which attempts to align the
spins anti-parallel. In more complex materials, the ex-
change interaction forms a tensor with components:

Jij =

2

4
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

3

5 (4)

which is capable of describing anisotropic exchange in-
teractions, such as two-ion anisotropy (Oleg) and the
Dzyaloshinskii-Moriya interaction (o↵-diagonal compo-
nents of the exchange tensor). Additionally the exchange
interaction can extend to several atomic spacings, rep-
resenting hundreds of atomic interactions. Such com-
plex interactions generally result from Density Functional
Theory parameterisation of magnetic materials, where
the electronic interactions can extend far away from the
local spin.

After the exchange interaction, the most important pa-
rameter in a magnetic system is generally the magneto-
crystalline anisotropy, namely the preference for spin mo-
ments to align with particular crystallographic axes, aris-
ing from the e↵ect of the local crystal environment on

ℋexc = − ∑
i<j

JijSi ⋅ Sj = − ∑
i<j

Jij cos θij

Si Sj
Jij



Heisenberg exchange: sign effects

For the exchange interactions it is important to note the significance of the sign of 
the exchange constant. 
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ℋexc = − ∑
i<j

JijSi ⋅ Sj

Jij > 0 Jij < 0

Ferromagnetism Antiferromagnetism



Heisenberg exchange: distance dependence

Due to the strong distance dependence of the exchange interaction, it is often 
truncated to include nearest neighbours only. This significantly reduces the 
computational effort while being a good approximation for many materials of 
interest.
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Classical spin Hamiltonian: Uniaxial anisotropy

Magnetic anisotropy gives a preference for  spins to point along particular crystal 
directions 

The simplest form is uniaxial anisotropy, where the spins prefer to line along a single 
axis , where the energy is given bye

33

ℋcub
ani = − ku ∑

i
(Si ⋅ ei)2 = ku ∑

i

sin2 θ + const



Classical spin Hamiltonian: Cubic anisotropy

Most cubic crystals have cubic anisotropy where the spin prefers to align along 
particular crystal directions where the energy is given by
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ℋcub
ani =

kc

2 ∑
i

S4
x + S4

y + S4
z

kc > 0 kc < 0



Externally applied fields

Bapp

ℋapp = − ∑
i

μiSi ⋅ Bapp



Integration methods



Monte Carlo methods for  
classical spin models



38

In classical spin models we can evolve the system thermodynamically using Monte 
Carlo Metropolis, computing the energy difference from the initial  and trial  
states 

where the move is then accepted with probability   

The Monte Carlo algorithm needs to ensure detailed balance and ergodicity (all 
states are accessible), which can be achieved by the appropriate choice of trial move. 

Si S′￼i

Monte Carlo methods for classical spin models 

ΔE = E (S′￼i) − E (Si)

where Si is the spin direction on each atomic site.
In a similar way to the specific heat calculation for Molecular Dynamics, we can define fluc-

tuation formulae for the magnetic specific heat and magnetic susceptibility, due to fluctuations
in the energy and magnetisation respectively. The magnetic specific heat is then given by

Cm =
1

kBT 2

�
hE2i�hEi2� (11.6)

where E is the total energy of the system.
The magnetic susceptibility c is a measure of the response of the system to an externally ap-

plied magnetic field, and is determined experimentally from the derivative of the magnetization
M with respect to the magnetic field strength B given by

ccc :=
dM
dB

. (11.7)

In most magnetic materials the susceptibility is highly anisotropic (due to the magnetocrys-
talline or shape anisotropy) and also field dependent and so in general Equation. 11.7 is non-
linear and also hysteretic (i.e. the measurement depends on the history of the sample and its
exposure to magnetic fields and temperature). To simplify this problem the susceptibility is
usually given in the limit of zero magnetic field, the so called initial susceptibility. Here the
susceptibility at many different field strengths is measured, and then extrapolated back to the
limit of B = 0. In a simulation we can do the same as the experimental procedure, performing
a series of simulations at different field strengths, and then fitting a linear line to extract the
limiting value of susceptibility. Alternatively we can express the susceptibility as a fluctuation
formula given by

ca =
Âi µi

kBT
�
hm2

ai�hmai2� (11.8)

where ma is a magnetization component and a = x,y,z,m are the cartesian (x,y,z) and isotropic
m directions. The vector directions give the spatial dependence of the magnetic susceptibility
due to anisotropy, while the longitudinal component is defined in a coordinate system along the
direction of the magnetisation m and computes fluctuations in the length only |m|.

During a phase transition both the magnetic specific heat Cm and isotropic magnetic suscep-
tibility cm are divergent and show large peaks. This is useful in determining the critical tem-
perature, or Curie temperature, more precisely, especially since the order parameter displays a
significant finite size effect, where apparent order is seen above the Curie temperature.

11.3 Monte Carlo methods for classical spin models
The Monte Carlo Metropolis algorithm provides a natural way to simulate temperature effects
where dynamics are not required due to the rapid convergence to equilibrium and relative ease
of implementation. The Monte Carlo metropolis algorithm for a classical spin system proceeds
as follows. First a random spin i is picked and its initial spin direction Si is changed randomly
to a new trial position S0

i, a so-called trial move. The change in energy DE = E(Si)0 �E(Si)
between the old and new positions is then evaluated, and the trial move is then accepted with
probability

P = exp
✓
� DE

kBT

◆
(11.9)
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The most obvious choice of trial move is to pick a 
random direction in 3D space for the spin. These 
needs to be done in a way which does not bias any 
particular direction.  

Picking three uniform random numbers along x,y,z and 
normalising introduces a bias into the number of 
vectors generated along the cube edges 

Sampling with a Normal distribution  in the same 
way ensures a uniform distribution on a random 
sphere.  

Although correct, the random method has the 
disadvantage that most trial moves will be rejected at 
low temperatures, and so this is not a very efficient 
algorithm.

Γx,y,z

Random move 

by comparison with a uniform random number in the range 0–1. Probabilities greater than
1, corresponding with a reduction in energy, are accepted unconditionally. This procedure is
then repeated until N trial moves have been attempted, where N is the number of spins in the
complete system. Each set of N trial moves comprises a single Monte Carlo step.

The nature of the trial move is important due to two requirements of any Monte Carlo
algorithm: ergodicity and reversibility. Ergodicity expresses the requirement that all possible
states of the system are accessible, while reversibility requires that the transition probability
Pn!m between two states n,m is invariant, explicitly

P(Si ! S0
i) = P(Si ! S0

i). (11.10)

From equation 11.9 reversibility is obvious since the probability of a spin change depends
only on the initial and final energy. Ergodicity is easy to satisfy by moving the selected spin to
a random position on the unit sphere (all states are accessible), however this has an undesirable
consequence at low temperatures since large deviations of spins from the collinear direction are
highly improbable due to the strength of the exchange interaction. Thus at low temperatures
a series of trial moves on the unit sphere will lead to most moves being rejected. Ideally a
move acceptance rate of around 50% is desired, since very high and very low rates require
significantly more Monte Carlo steps to reach a state representative of true thermal equilibrium.
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Figure 3. Schematic showing the three principal Monte Carlo
moves: (a) spin flip; (b) Gaussian; and (c) random.

requires that the transition probability between two states is
invariant, explicitly P(Si ! S0

i ) = P(S0
i ! Si ). From equa-

tion (22) reversibility is obvious since the probability of a
spin change depends only on the initial and final energy.
Ergodicity is easy to satisfy by moving the selected spin
to a random position on the unit sphere, however this has
an undesirable consequence at low temperatures since large
deviations of spins from the collinear direction are highly
improbable due to the strength of the exchange interaction.
Thus at low temperatures a series of trial moves on the unit
sphere will lead to most moves being rejected. Ideally a move
acceptance rate of around 50% is desired, since very high and
very low rates require significantly more Monte Carlo steps to
reach a state representative of true thermal equilibrium.

One of the most efficient Monte Carlo algorithms for clas-
sical spin models was developed by Hinzke and Nowak [123],
involving a combinational approach using a mixture of dif-
ferent trial moves. The principal advantage of this method
is the efficient sampling of all available phase space while
maintaining a reasonable trial move acceptance rate. The
Hinzke–Nowak method utilizes three distinct types of move:
spin flip, Gaussian and random, as illustrated schematically in
figure 3.

The spin flip move simply reverses the direction of the
spin such that S0

i = �Si to explicitly allow the nucleation of a
switching event. The spin flip move is identical to a move in
Ising spin models. It should be noted that spin flip moves do not
by themselves satisfy ergodicity in the classical spin model,
since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other
ergodic trial moves this is quite permissible. The Gaussian trial
move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position
according to the expression

S0
i =

Si + �g0

|Si + �g0|
(23)

where 0 is a Gaussian distributed random number and �g is the
width of a cone around the initial spin Si . After generating the
trial position S0

i the position is normalized to yield a spin of unit
length. The choice of a Gaussian distribution is deliberate since
after normalization the trial moves have a uniform sampling
over the cone. The width of the cone is generally chosen to be
temperature dependent and of the form

�g =
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Figure 4. Visualization of Monte Carlo sampling on the unit sphere
for (a) random and (b) Gaussian sampling algorithms at T = 10 K.
The dots indicate the trial moves. The random algorithm shows a
uniform distribution on the unit sphere, and no preferential biasing
along the axes. The Gaussian trial moves are clustered around the
initial spin position, along the z-axis.

The Gaussian trial move thus favours small angular changes
in the spin direction at low temperatures, giving a good
acceptance probability for most temperatures.

The final random trial move picks a random point on the
unit sphere according to

S0
i =

0

|0|
(25)

which ensures ergodicity for the complete algorithm and
ensures efficient sampling of the phase space at high tem-
peratures. For each trial step one of these three trial moves is
picked randomly, which in general leads to good algorithmic
properties.

To verify that the random sampling and Gaussian trial
moves give the expected behaviour, a plot of the calculated
trial moves on the unit sphere for the different algorithms is
shown in figure 4. The important points are that the random
trial move is uniform on the unit sphere, and that the Gaussian
trial move is close to the initial spin direction, along the z-axis
in this case.

At this point it is worthwhile considering the relative
efficiencies of Monte Carlo and spin dynamics for calcu-
lating equilibrium properties. Figure 5 shows the simulated
temperature-dependent magnetization for a test system using
both LLG spin dynamics and Monte Carlo methods. Agree-
ment between the two methods is good, but the spin dynamics
simulation takes around twenty times longer to compute due to
the requirements of a low time step and slower convergence to
equilibrium. However, Monte Carlo algorithms are notoriously
difficult to parallelize, and so for larger systems LLG spin
dynamic simulations are generally more efficient than Monte
Carlo methods.

5. Test simulations

Having outlined the important theoretical and computational
methods for the atomistic simulation of magnetic materials,
we now proceed to detail the tests we have refined to ensure
the correct implementation of the main components of the
model. Such tests are particularly helpful to those wishing to
implement these methods. Similar tests developed for micro-
magnetic packages [124] have proven an essential benchmark
for the implementation of improved algorithms and codes with
different capabilities but the same core functionality.
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Figure 11.1: Schematic showing the three principal Monte Carlo moves: (a) spin flip; (b) Gaus-
sian; and (c) random.

One of the most efficient Monte Carlo algorithms for classical spin models was developed
by Hinzke and Nowak, involving a combinational approach using a mixture of different trial
moves. The principal advantage of this method is the efficient sampling of all available phase
space while maintaining a reasonable trial move acceptance rate. The Hinzke–Nowak method
utilizes three distinct types of move: spin flip, Gaussian and random, as illustrated schematically
in figure 11.1. The spin flip move simply reverses the direction of the spin such that S0

i = �Si
to explicitly allow the nucleation of a switching event. The spin flip move is identical to a
move in Ising spin models. It should be noted that spin flip moves do not by themselves satisfy
ergodicity in the classical spin model, since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other ergodic trial moves this is quite
permissible. The Gaussian trial move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position according to the expression

S0
i =

Si +sGGGG
|Si +sGGGG| (11.11)
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At low temperatures, spin moves near the current direction 
are likely to be favourable 

We can modify the new spin position to be close by 
adding a small shift to the existing spin direction using the 
same method as random sampling and normalising the 
resulting spin length 

Gaussian random move

by comparison with a uniform random number in the range 0–1. Probabilities greater than
1, corresponding with a reduction in energy, are accepted unconditionally. This procedure is
then repeated until N trial moves have been attempted, where N is the number of spins in the
complete system. Each set of N trial moves comprises a single Monte Carlo step.

The nature of the trial move is important due to two requirements of any Monte Carlo
algorithm: ergodicity and reversibility. Ergodicity expresses the requirement that all possible
states of the system are accessible, while reversibility requires that the transition probability
Pn!m between two states n,m is invariant, explicitly

P(Si ! S0
i) = P(Si ! S0

i). (11.10)

From equation 11.9 reversibility is obvious since the probability of a spin change depends
only on the initial and final energy. Ergodicity is easy to satisfy by moving the selected spin to
a random position on the unit sphere (all states are accessible), however this has an undesirable
consequence at low temperatures since large deviations of spins from the collinear direction are
highly improbable due to the strength of the exchange interaction. Thus at low temperatures
a series of trial moves on the unit sphere will lead to most moves being rejected. Ideally a
move acceptance rate of around 50% is desired, since very high and very low rates require
significantly more Monte Carlo steps to reach a state representative of true thermal equilibrium.
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Figure 3. Schematic showing the three principal Monte Carlo
moves: (a) spin flip; (b) Gaussian; and (c) random.

requires that the transition probability between two states is
invariant, explicitly P(Si ! S0

i ) = P(S0
i ! Si ). From equa-

tion (22) reversibility is obvious since the probability of a
spin change depends only on the initial and final energy.
Ergodicity is easy to satisfy by moving the selected spin
to a random position on the unit sphere, however this has
an undesirable consequence at low temperatures since large
deviations of spins from the collinear direction are highly
improbable due to the strength of the exchange interaction.
Thus at low temperatures a series of trial moves on the unit
sphere will lead to most moves being rejected. Ideally a move
acceptance rate of around 50% is desired, since very high and
very low rates require significantly more Monte Carlo steps to
reach a state representative of true thermal equilibrium.

One of the most efficient Monte Carlo algorithms for clas-
sical spin models was developed by Hinzke and Nowak [123],
involving a combinational approach using a mixture of dif-
ferent trial moves. The principal advantage of this method
is the efficient sampling of all available phase space while
maintaining a reasonable trial move acceptance rate. The
Hinzke–Nowak method utilizes three distinct types of move:
spin flip, Gaussian and random, as illustrated schematically in
figure 3.

The spin flip move simply reverses the direction of the
spin such that S0

i = �Si to explicitly allow the nucleation of a
switching event. The spin flip move is identical to a move in
Ising spin models. It should be noted that spin flip moves do not
by themselves satisfy ergodicity in the classical spin model,
since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other
ergodic trial moves this is quite permissible. The Gaussian trial
move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position
according to the expression

S0
i =

Si + �g0

|Si + �g0|
(23)

where 0 is a Gaussian distributed random number and �g is the
width of a cone around the initial spin Si . After generating the
trial position S0

i the position is normalized to yield a spin of unit
length. The choice of a Gaussian distribution is deliberate since
after normalization the trial moves have a uniform sampling
over the cone. The width of the cone is generally chosen to be
temperature dependent and of the form
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Figure 4. Visualization of Monte Carlo sampling on the unit sphere
for (a) random and (b) Gaussian sampling algorithms at T = 10 K.
The dots indicate the trial moves. The random algorithm shows a
uniform distribution on the unit sphere, and no preferential biasing
along the axes. The Gaussian trial moves are clustered around the
initial spin position, along the z-axis.

The Gaussian trial move thus favours small angular changes
in the spin direction at low temperatures, giving a good
acceptance probability for most temperatures.

The final random trial move picks a random point on the
unit sphere according to

S0
i =

0

|0|
(25)

which ensures ergodicity for the complete algorithm and
ensures efficient sampling of the phase space at high tem-
peratures. For each trial step one of these three trial moves is
picked randomly, which in general leads to good algorithmic
properties.

To verify that the random sampling and Gaussian trial
moves give the expected behaviour, a plot of the calculated
trial moves on the unit sphere for the different algorithms is
shown in figure 4. The important points are that the random
trial move is uniform on the unit sphere, and that the Gaussian
trial move is close to the initial spin direction, along the z-axis
in this case.

At this point it is worthwhile considering the relative
efficiencies of Monte Carlo and spin dynamics for calcu-
lating equilibrium properties. Figure 5 shows the simulated
temperature-dependent magnetization for a test system using
both LLG spin dynamics and Monte Carlo methods. Agree-
ment between the two methods is good, but the spin dynamics
simulation takes around twenty times longer to compute due to
the requirements of a low time step and slower convergence to
equilibrium. However, Monte Carlo algorithms are notoriously
difficult to parallelize, and so for larger systems LLG spin
dynamic simulations are generally more efficient than Monte
Carlo methods.

5. Test simulations

Having outlined the important theoretical and computational
methods for the atomistic simulation of magnetic materials,
we now proceed to detail the tests we have refined to ensure
the correct implementation of the main components of the
model. Such tests are particularly helpful to those wishing to
implement these methods. Similar tests developed for micro-
magnetic packages [124] have proven an essential benchmark
for the implementation of improved algorithms and codes with
different capabilities but the same core functionality.
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Figure 11.1: Schematic showing the three principal Monte Carlo moves: (a) spin flip; (b) Gaus-
sian; and (c) random.

One of the most efficient Monte Carlo algorithms for classical spin models was developed
by Hinzke and Nowak, involving a combinational approach using a mixture of different trial
moves. The principal advantage of this method is the efficient sampling of all available phase
space while maintaining a reasonable trial move acceptance rate. The Hinzke–Nowak method
utilizes three distinct types of move: spin flip, Gaussian and random, as illustrated schematically
in figure 11.1. The spin flip move simply reverses the direction of the spin such that S0

i = �Si
to explicitly allow the nucleation of a switching event. The spin flip move is identical to a
move in Ising spin models. It should be noted that spin flip moves do not by themselves satisfy
ergodicity in the classical spin model, since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other ergodic trial moves this is quite
permissible. The Gaussian trial move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position according to the expression

S0
i =

Si +sGGGG
|Si +sGGGG| (11.11)
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by comparison with a uniform random number in the range 0–1. Probabilities greater than
1, corresponding with a reduction in energy, are accepted unconditionally. This procedure is
then repeated until N trial moves have been attempted, where N is the number of spins in the
complete system. Each set of N trial moves comprises a single Monte Carlo step.

The nature of the trial move is important due to two requirements of any Monte Carlo
algorithm: ergodicity and reversibility. Ergodicity expresses the requirement that all possible
states of the system are accessible, while reversibility requires that the transition probability
Pn!m between two states n,m is invariant, explicitly

P(Si ! S0
i) = P(Si ! S0

i). (11.10)

From equation 11.9 reversibility is obvious since the probability of a spin change depends
only on the initial and final energy. Ergodicity is easy to satisfy by moving the selected spin to
a random position on the unit sphere (all states are accessible), however this has an undesirable
consequence at low temperatures since large deviations of spins from the collinear direction are
highly improbable due to the strength of the exchange interaction. Thus at low temperatures
a series of trial moves on the unit sphere will lead to most moves being rejected. Ideally a
move acceptance rate of around 50% is desired, since very high and very low rates require
significantly more Monte Carlo steps to reach a state representative of true thermal equilibrium.
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Figure 3. Schematic showing the three principal Monte Carlo
moves: (a) spin flip; (b) Gaussian; and (c) random.

requires that the transition probability between two states is
invariant, explicitly P(Si ! S0

i ) = P(S0
i ! Si ). From equa-

tion (22) reversibility is obvious since the probability of a
spin change depends only on the initial and final energy.
Ergodicity is easy to satisfy by moving the selected spin
to a random position on the unit sphere, however this has
an undesirable consequence at low temperatures since large
deviations of spins from the collinear direction are highly
improbable due to the strength of the exchange interaction.
Thus at low temperatures a series of trial moves on the unit
sphere will lead to most moves being rejected. Ideally a move
acceptance rate of around 50% is desired, since very high and
very low rates require significantly more Monte Carlo steps to
reach a state representative of true thermal equilibrium.

One of the most efficient Monte Carlo algorithms for clas-
sical spin models was developed by Hinzke and Nowak [123],
involving a combinational approach using a mixture of dif-
ferent trial moves. The principal advantage of this method
is the efficient sampling of all available phase space while
maintaining a reasonable trial move acceptance rate. The
Hinzke–Nowak method utilizes three distinct types of move:
spin flip, Gaussian and random, as illustrated schematically in
figure 3.

The spin flip move simply reverses the direction of the
spin such that S0

i = �Si to explicitly allow the nucleation of a
switching event. The spin flip move is identical to a move in
Ising spin models. It should be noted that spin flip moves do not
by themselves satisfy ergodicity in the classical spin model,
since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other
ergodic trial moves this is quite permissible. The Gaussian trial
move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position
according to the expression

S0
i =

Si + �g0

|Si + �g0|
(23)

where 0 is a Gaussian distributed random number and �g is the
width of a cone around the initial spin Si . After generating the
trial position S0

i the position is normalized to yield a spin of unit
length. The choice of a Gaussian distribution is deliberate since
after normalization the trial moves have a uniform sampling
over the cone. The width of the cone is generally chosen to be
temperature dependent and of the form
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Figure 4. Visualization of Monte Carlo sampling on the unit sphere
for (a) random and (b) Gaussian sampling algorithms at T = 10 K.
The dots indicate the trial moves. The random algorithm shows a
uniform distribution on the unit sphere, and no preferential biasing
along the axes. The Gaussian trial moves are clustered around the
initial spin position, along the z-axis.

The Gaussian trial move thus favours small angular changes
in the spin direction at low temperatures, giving a good
acceptance probability for most temperatures.

The final random trial move picks a random point on the
unit sphere according to

S0
i =

0

|0|
(25)

which ensures ergodicity for the complete algorithm and
ensures efficient sampling of the phase space at high tem-
peratures. For each trial step one of these three trial moves is
picked randomly, which in general leads to good algorithmic
properties.

To verify that the random sampling and Gaussian trial
moves give the expected behaviour, a plot of the calculated
trial moves on the unit sphere for the different algorithms is
shown in figure 4. The important points are that the random
trial move is uniform on the unit sphere, and that the Gaussian
trial move is close to the initial spin direction, along the z-axis
in this case.

At this point it is worthwhile considering the relative
efficiencies of Monte Carlo and spin dynamics for calcu-
lating equilibrium properties. Figure 5 shows the simulated
temperature-dependent magnetization for a test system using
both LLG spin dynamics and Monte Carlo methods. Agree-
ment between the two methods is good, but the spin dynamics
simulation takes around twenty times longer to compute due to
the requirements of a low time step and slower convergence to
equilibrium. However, Monte Carlo algorithms are notoriously
difficult to parallelize, and so for larger systems LLG spin
dynamic simulations are generally more efficient than Monte
Carlo methods.

5. Test simulations

Having outlined the important theoretical and computational
methods for the atomistic simulation of magnetic materials,
we now proceed to detail the tests we have refined to ensure
the correct implementation of the main components of the
model. Such tests are particularly helpful to those wishing to
implement these methods. Similar tests developed for micro-
magnetic packages [124] have proven an essential benchmark
for the implementation of improved algorithms and codes with
different capabilities but the same core functionality.

10

Figure 11.1: Schematic showing the three principal Monte Carlo moves: (a) spin flip; (b) Gaus-
sian; and (c) random.

One of the most efficient Monte Carlo algorithms for classical spin models was developed
by Hinzke and Nowak, involving a combinational approach using a mixture of different trial
moves. The principal advantage of this method is the efficient sampling of all available phase
space while maintaining a reasonable trial move acceptance rate. The Hinzke–Nowak method
utilizes three distinct types of move: spin flip, Gaussian and random, as illustrated schematically
in figure 11.1. The spin flip move simply reverses the direction of the spin such that S0

i = �Si
to explicitly allow the nucleation of a switching event. The spin flip move is identical to a
move in Ising spin models. It should be noted that spin flip moves do not by themselves satisfy
ergodicity in the classical spin model, since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other ergodic trial moves this is quite
permissible. The Gaussian trial move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position according to the expression

S0
i =

Si +sGGGG
|Si +sGGGG| (11.11)
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A plot of the sampling for uniform and Gaussian moves shows the distributed trial 
moves with respect to the starting spin direction along z 

Sampling 

where GGG is a Gaussian distributed random number and sG is the width of a cone around the
initial spin Si. After generating the trial position S0

i the position is normalized to yield a spin
of unit length. The choice of a Gaussian distribution is deliberate since after normalization the
trial moves have a uniform sampling over the cone. The Gaussian trial move thus favours small
angular changes in the spin direction at low temperatures, giving a good acceptance probability
for most temperatures.J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

Figure 3. Schematic showing the three principal Monte Carlo
moves: (a) spin flip; (b) Gaussian; and (c) random.

requires that the transition probability between two states is
invariant, explicitly P(Si ! S0

i ) = P(S0
i ! Si ). From equa-

tion (22) reversibility is obvious since the probability of a
spin change depends only on the initial and final energy.
Ergodicity is easy to satisfy by moving the selected spin
to a random position on the unit sphere, however this has
an undesirable consequence at low temperatures since large
deviations of spins from the collinear direction are highly
improbable due to the strength of the exchange interaction.
Thus at low temperatures a series of trial moves on the unit
sphere will lead to most moves being rejected. Ideally a move
acceptance rate of around 50% is desired, since very high and
very low rates require significantly more Monte Carlo steps to
reach a state representative of true thermal equilibrium.

One of the most efficient Monte Carlo algorithms for clas-
sical spin models was developed by Hinzke and Nowak [123],
involving a combinational approach using a mixture of dif-
ferent trial moves. The principal advantage of this method
is the efficient sampling of all available phase space while
maintaining a reasonable trial move acceptance rate. The
Hinzke–Nowak method utilizes three distinct types of move:
spin flip, Gaussian and random, as illustrated schematically in
figure 3.

The spin flip move simply reverses the direction of the
spin such that S0

i = �Si to explicitly allow the nucleation of a
switching event. The spin flip move is identical to a move in
Ising spin models. It should be noted that spin flip moves do not
by themselves satisfy ergodicity in the classical spin model,
since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other
ergodic trial moves this is quite permissible. The Gaussian trial
move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position
according to the expression

S0
i =

Si + �g0

|Si + �g0|
(23)

where 0 is a Gaussian distributed random number and �g is the
width of a cone around the initial spin Si . After generating the
trial position S0

i the position is normalized to yield a spin of unit
length. The choice of a Gaussian distribution is deliberate since
after normalization the trial moves have a uniform sampling
over the cone. The width of the cone is generally chosen to be
temperature dependent and of the form
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Figure 4. Visualization of Monte Carlo sampling on the unit sphere
for (a) random and (b) Gaussian sampling algorithms at T = 10 K.
The dots indicate the trial moves. The random algorithm shows a
uniform distribution on the unit sphere, and no preferential biasing
along the axes. The Gaussian trial moves are clustered around the
initial spin position, along the z-axis.

The Gaussian trial move thus favours small angular changes
in the spin direction at low temperatures, giving a good
acceptance probability for most temperatures.

The final random trial move picks a random point on the
unit sphere according to

S0
i =

0

|0|
(25)

which ensures ergodicity for the complete algorithm and
ensures efficient sampling of the phase space at high tem-
peratures. For each trial step one of these three trial moves is
picked randomly, which in general leads to good algorithmic
properties.

To verify that the random sampling and Gaussian trial
moves give the expected behaviour, a plot of the calculated
trial moves on the unit sphere for the different algorithms is
shown in figure 4. The important points are that the random
trial move is uniform on the unit sphere, and that the Gaussian
trial move is close to the initial spin direction, along the z-axis
in this case.

At this point it is worthwhile considering the relative
efficiencies of Monte Carlo and spin dynamics for calcu-
lating equilibrium properties. Figure 5 shows the simulated
temperature-dependent magnetization for a test system using
both LLG spin dynamics and Monte Carlo methods. Agree-
ment between the two methods is good, but the spin dynamics
simulation takes around twenty times longer to compute due to
the requirements of a low time step and slower convergence to
equilibrium. However, Monte Carlo algorithms are notoriously
difficult to parallelize, and so for larger systems LLG spin
dynamic simulations are generally more efficient than Monte
Carlo methods.

5. Test simulations

Having outlined the important theoretical and computational
methods for the atomistic simulation of magnetic materials,
we now proceed to detail the tests we have refined to ensure
the correct implementation of the main components of the
model. Such tests are particularly helpful to those wishing to
implement these methods. Similar tests developed for micro-
magnetic packages [124] have proven an essential benchmark
for the implementation of improved algorithms and codes with
different capabilities but the same core functionality.
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Figure 11.2: Visualization of Monte Carlo sampling on the unit sphere for (a) random and (b)
Gaussian sampling algorithms at T = 10 K. The dots indicate the trial moves. The random
algorithm shows a uniform distribution on the unit sphere, and no preferential biasing along the
axes. The Gaussian trial moves are clustered around the initial spin position, along the z-axis.

The final random trial move picks a random point on the unit sphere according to

S0
i =

GGG
|GGG| (11.12)

which ensures ergodicity for the complete algorithm and ensures efficient sampling of the phase
space at high temperatures. For each trial step one of these three trial moves is picked randomly,
which in general leads to good algorithmic properties. To verify that the random sampling and
Gaussian trial moves give the expected behaviour, a plot of the calculated trial moves on the
unit sphere for the different algorithms is shown in figure 11.2. The important points are that
the random trial move is uniform on the unit sphere, and that the Gaussian trial move is close to
the initial spin direction, along the z-axis in this case.

Adaptive Monte Carlo algorithm
While the Hinzke-Nowak approach is much more efficient than a na ive random sampling trial
move, it still has an uneven acceptance rate for different temperatures, in particular very low
temperatures where only very small moves are accepted with a reasonable probability. This
in general can be resolved using an adaptive algorithm, where the form of the trial move is
changed based on the average acceptance probability. The acceptance probability is often said
to be optimal around 50% where you are making a large number of moves (to sample phase
space adequately) with also attempting larger moves (the rejected ones) on the boundary of the
current thermodynamic distribution.

When using the Gaussian move, the acceptance rate can be adjusted by varying the value of
s . Figure 2(a) shows the acceptance rate (R) as a function of s at low temperature for kv = 1.0.
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While efficient at moderate temperatures, the 
Hinzke-Nowak method suffers from poor 
acceptance at low temperatures 

One possible solution is an adaptive algorithm, 
based on a modified Gaussian move, that aims 
to maintain an acceptance rate of 0.5 

The Gaussian width is dynamically adapted 
according to  

Where R is the acceptance rate and f is a 
multiplying factor applied to the width . If 
R=0.5, then the multiplying factor is 1 to 
maintain the same acceptance rate

σ

Adaptive moves 
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of σopt for different anisotropy values. As expected, at higher 
temperatures it is necessary to use a higher cone width in 
order to keep an acceptance rate of 50%. However, above Tc, it 
is not possible to keep this acceptance rate because almost all 
the new states are accepted independently of the cone width 
value, then the acceptance rate is always higher than 50%.

As σ increases, the Gaussian move tends to a random 
move as shown in figure 3, where the distribution of the polar 
angle (θ), the azimuthal angle (φ) and the cosine of the polar 
angle (cos(θ)) of spins generated using the Gaussian move 
(see equation (5)) are shown. Such as in the case of a random 
move, the mean value of θ tends to 90◦ and the mean value of 
cos(θ) tends to 0, while the mean value of φ is always close 
to 180◦.

2.3. Adaptive algorithm for the Gaussian move

Because σopt is characteristic of every system at a given 
temper ature and given Hamiltonian parameters, to find a gen-
eral equation  for σopt that works in any system would be a 
very complex task. Therefore, we have developed an adaptive 
algorithm for the Gaussian move that changes the cone width 
adaptively to keep an acceptance rate close to 50%.

The adaptive move is developed as follows: at each temper-
ature, the simulation starts using a high cone width (σ = 60) in 
the first Monte Carlo step (MCS). From then on, every MCS, 
the cone width is recalculated by multiplying the current cone 
width by a factor obtained according to the acceptance rate in 
the previous MCS. The selection of the factor is made such 
that the cone width approaches values close to the optimum 
cone width. From results as those shown in figure 2(a), it is 
possible to observe that a good approximation for the factor 

( f ) as a function of the acceptance rate at all temperatures is 
of the form

f =
0.5

1 − R
. (6)

Therefore, when the acceptance rate R = 50%, the cone 
width is multiplied by 1, and when the acceptance rate is high 
(low) the cone width is multiplied by a large (small) factor 
approaching the optimum cone width. Figure  4 shows the 
time dependence of the acceptance rate and the cone width 
using the adaptive move at different temperatures when the 
system is initially ordered (all the spin moments pointing in 
the z direction) and disordered (all the spin moments pointing 
in a random direction). Independently of the spin moments’ 
initial state, the acceptance rate converges to a specific value. 
At kBT/J = 0.1, because the simulation starts with a high 
cone width, the acceptance rate is initially very low when the 
system is initially ordered (see figure 4(a)). Then, the adaptive 
move keeps decreasing the cone width to a very low value, 
according to the equation (6), increasing the acceptance rate 
which stabilizes close to 50% within few MCS. On the other 
hand, when the system is initially disordered (see figure 4(d)), 
the acceptance rate is initially higher because large angular 
changes in the direction of the spin moments are taking 
place to order the system. Then, the acceptance rate starts to 
decrease because smaller angular changes are required as the 
system is being ordered. However, once the the cone width 
has decreased enough, the acceptance rate starts to increase 
approaching a value close to 50%. Figures 4(b) and (e) show the 
time dependence of the acceptance rate at a high temperature 
below Tc (kBT/J = 1.48). In these cases, the adaptive move 
requires more MCS to reach equilibrium and the cone width 

Figure 3. Distribution of the (a) polar angle, azimuthal angle and (b) cosine of the polar angle of spins generated using the Gaussian move. 
For cone width values between 0 and 100, 10 000 spins were generated and the mean of their polar angles, azimuthal angles and cosine of 
the polar angles was calculated. For cone width values higher than 60 (shaded region), it is reasonable to assume that the distributions are 
already stabilized.
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stabilizes at a higher value than the previous cases. Above 
Tc (kBT/J = 2.0), when the system is initially ordered (see 
figure 4(c)), the acceptance rate is low because the exchange 
energy prevents the acceptance of large angular changes in the 
direction of the spin moments. For this reason, the cone width 
initially decreases in order to increase the acceptance rate. As 
mentioned before, at temperatures above Tc, it is not possible 
to reach an acceptance rate of 50%. Then, the acceptance rate 
keeps increasing past 50% and, consequently, the adaptive 
move starts to increase the cone width, trying to decrease the 
acceptance rate. When the system is initially disordered (see 
figure 4(f)), the acceptance rate is initially high and stabilizes 
at a lower value. Independently of the spin moments initial 
state, the cone width keeps increasing indefinitely when the 
acceptance rate stabilizes above 50%. Therefore, we reset the 
cone width to 60 every time it reaches higher values because, 
at this value, the Gaussian move works as the random move 
(see figure 3) and employing a higher value would produce the 
same results. For this reason, it is expected that the adaptive 
move has the same efficiency as the random move at temper-
atures above Tc, where the cone width stabilizes at 60.

3. Results and discussion

In order to assess the performance of the adaptive move, we 
have made four tests comparing its efficiency with that of 
other common trial moves: the spin flip, random, small step 
and Gaussian moves. Also, we considered a combinational 
move which includes three of the aforementioned trial moves. 
As implemented by Hinzke and Nowak [5], we considered 

the small step move with a fixed opening angle of 30◦ and the 
combinational move as a combination of the spin flip, small 
step and random moves. In the combinational move, one of 
the three trial moves is selected from a set, composed by three 
random, one small step and one spin flip moves, at each MCS. 
All the tests were carried out in systems with low and high 
anisotropy values.

Before making any of the tests, it is important to guarantee 
that the computed thermal averages are the same indepen-
dently of the trial move employed. Figure 5 shows the thermal 
dependence of the magnetization and the energy using the dif-
ferent trial moves for low and high anisotropy values. Results 
of Landau–Lifshitz–Gilbert (LLG) spin dynamics simula-
tions are also shown because in one of the tests the efficiency 
of the adaptive move is compared to that of spin dynamics. 
At high anisotropy (kv/J = 1.0), the spin moments remain 
more ordered as temperature increases than at low anisotropy 
(kv/J = 0.001), which increases the critical temperature (see 
figure  5(a)). This behavior also generates an important dif-
ference in the energy between both systems, specially at low 
temperatures (see figure 5(b)). For both high and low aniso-
tropy values, all the trial moves produced the same results, 
indicating that all of them can correctly sample the phase 
space and relax the system to equilibrium.

3.1. Convergence to equilibrium and integrated  
relaxation times

When computing averages of the thermal properties of a 
system, it is necessary to ensure that the system is already in 

(a) (b)

Ordered

Disordered

(c)

(d) (e) (f)

Figure 4. Time dependence of the acceptance rate and the cone width at (a), (d) kBT/J = 0.1, (b), (e) 1.48 and (c), (f) 2.0 for kv/J = 0.001 
when the system is initially (a)–(c) ordered and (d)–(f) disordered.
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Compute the time for each algorithm to reach thermal equilibrium magnetization as a 
function of temperature

Comparison of algorithms
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(a) (b)

(c) (d)

Figure 6. Time dependence of the magnetization and the energy at kBT/J = 0.1 and 1.48 for (a), (b) kv/J = 0.001 and (c), (d) kv/J = 1.0. 
The convergence to equilibrium of these thermal averages is different for each trial move, specially at low temperatures. The adaptive move 
is efficient both at low and high temperatures.

(a) (b)

Figure 7. Integrated relaxation time as a function of temperature for (a) kv/J = 0.001 and (b) 1.0. The integrated relaxation times vary 
greatly with temperature. The combinational and the adaptive move are the only ones which present low integrated relaxation times at both 
low and high temperatures. Dashed vertical lines represents the critical temperatures.

J. Phys.: Condens. Matter 31 (2019) 095802



Temperature dependent  
magnetization for different particle sizes
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5.3. Curie temperature

Tests such as the Stoner–Wohlfarth hysteresis or Boltzmann
distribution are helpful in verifying the mechanical implemen-
tation of an algorithm for a single spin, but interacting systems
of spins present a significant challenge in that no analytical
solutions exist. Hence it is necessary to calculate some well-
defined macroscopic property which ensures the correct imple-
mentation of interactions in a system. The Curie temperature
Tc of a nanoparticle is primarily determined by the strength of
the exchange interaction between spins and so makes an ideal
test of the exchange interaction. As discussed previously the
bulk Curie temperature is related to the exchange coupling by
the mean-field expression given in equation (9). However, for
nanoparticles with a reduction in coordination number at the
surface and a finite number of spins, the Curie temperature and
criticality of the temperature-dependent magnetization will
vary significantly with varying size [57].

To investigate the effects of finite size and reduction in
surface coordination on the Curie temperature, the equilibrium
magnetization for different sizes of truncated octahedron
nanoparticles was calculated as a function of temperature. The
Hamiltonian for the simulated system is

H = �

X

i 6= j

Ji j Si · S j (28)

where Ji j = 5.6 ⇥ 10�21 J/link, and the crystal structure is
face-centred-cubic, which is believed to be representative
of Cobalt nanoparticles. Given the relative strength of the
exchange interaction, anisotropy generally has a negligible
impact on the Curie temperature of a material, and so the
omission of anisotropy from the Hamiltonian is purely for
simplicity. The system is simulated using the Monte Carlo
method with 10 000 equilibration and 20 000 averaging steps.
The system is heated sequentially in 10 K steps, with the
final state of the previous temperature taken as the starting
point of the next temperature to minimize the number of steps
required to reach thermal equilibrium. The mean temperature-
dependent magnetization for different particle sizes is plotted
in figure 8.

From equation (9) the expected Curie temperature is
1282 K, which is in agreement with the results for the 10 nm
diameter nanoparticle. For smaller particle sizes the magnetic
behaviour close to the Curie temperature loses its criticality,
making Tc difficult to determine. Traditionally the Curie point
is taken as the maximum of the gradient dm/dT [57], however
this significantly underestimates the actual temperature at
which magnetic order is lost (which is, by definition, the Curie
temperature). Other estimates of the Curie point such as the
divergence in the susceptibility are probably a better estimate
for finite systems, but this is beyond the scope of the present
article. Another effect visible for very small particle sizes is
the appearance of a magnetization above the Curie point, an
effect first reported by Binder [126]. This arises from local
moment correlations which exist above Tc. It is an effect only
observable in nanoparticles where the system size is close to
the magnetic correlation length.

Figure 8. Calculated temperature-dependent magnetization and
Curie temperature for truncated octahedron nanoparticles with
different size. A visualization of a 3 nm diameter particle is inset.

5.4. Demagnetizing fields

For systems larger than the single domain limit [33] and
systems which have one dimension significantly different
from another, the demagnetizing field can have a dominant
effect on the macroscopic magnetic properties. In micromag-
netic formalisms implemented in software packages such as
OOMMF [37], MAGPAR [38] and NMAG [39], the calculation of
the demagnetization fields is calculated accurately due to
the routine simulation of large systems where such fields
dominate. Due to the long-ranged interaction the calculation
of the demagnetization field generally dominates the compute
time and so computational methods such as the fast-Fourier-
transform [127, 128] and multipole expansion [129] have been
developed to accelerate their calculation.

In large-scale atomistic calculations, it is generally suffi-
cient to adopt a micromagnetic discretization for the demag-
netization fields, since they only have a significant effect on
nanometre length scales [7]. Additionally due to the generally
slow variation of magnetization, the timescales associated
with the changes in the demagnetization field are typically
much longer than the time step for atomistic spins. Here we
present a modified finite difference scheme for calculating the
demagnetization fields, described as follows.

The complete system is first discretized into macrocells
with a fixed cell size, each consisting of a number of atoms,
as shown in figure 9(a). The cell size is freely adjustable
from atomistic resolution to multiple unit cells depending on
the accuracy required. The position of each macrocell pmc is
determined from the magnetic ‘centre of mass’ given by the
expression

p
↵
mc =

P
n

i
µi p

↵
iP

n

i
µi

(29)

where n is the number of atoms in the macrocell, µi is the
local (site-dependent) atomic spin moment and ↵ represents
the spatial dimension x, y, z. For a magnetic material with the
same magnetic moment at each site, equation (29) corrects for
partial occupation of a macrocell by using the mean atomic
position as the origin of the macrocell dipole, as shown in
figure 9(b). For a sample consisting of two materials with
different atomic moments, the ‘magnetic centre of mass’ is

12

• Calculate m(T) curves for 
different particle sizes of Co


• Includes the effect of missing 
exchange bonds on the 
particle surface


• Curie temperature and 
criticality depends on size
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Landau Lifshitz Gilbert (LLG) equation
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As with molecular dynamics, the magnetic field presses the forces on the 
local magnetic moments, and comes from the negative derivative of the 
spin Hamiltonian with respect to the local spin moment  

Here the magnetic spin moment  acts in a similar manner to the mass in 
a molecular dynamics simulation - the larger the moment the slower the 
dynamics

Si

μi

Magnetic field (equivalent to the force)
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So far the dynamics of the spins in the LLG equation are deterministic 

Need a way to simulate the effects of thermal fluctuations of the spins: a 
heat bath

Langevin Dynamics for spin models

T = 100 K
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The Langevin thermostat assumes the spins are embedded in a medium of 
particles (photons, electrons, phonons) which emulate Brownian motion  

Langevin thermostat
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The LLG equation is dissipative - it removes energy from the system via the 
second relaxation term 

We can add “fluctuations” to represent the effects of the heat bath 

The fluctuation and dissipation terms must balance in thermal equilibrium 
and can be formally proven by solving the Fokker-Plank equation using the 
fluctuation-dissipation theorem (balance of terms)

Langevin Dynamics
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Thermal effects are modelled with Langevin Dynamics, where the system 
is embedded in a heat bath and random thermal motions arise from 
collisions with microscopic particles (electrons) in the bath

Stochastic Landau-Lifshitz-Gilbert equation
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Statistical properties of the noise

No spatial correlation  
No time correlation  

Mean fluctuation over time is zero 
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Other codes for atomistic simulations

• UppASD - good for linking to first 
principles simulations, spin wave 
spectra etc


• SPIRIT - online interactive tool     
https://spirit-code.github.io
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Summary

• Covered the essential elements of 
micromagnetic simulations and their 
formulation 


• Introduced atomistic spin models, their 
fundamentals
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Magnetostatics in atomistic spin models

• Magnetostatics a weak effect at short distances, particularly at the atomic 
scale


• We therefore use a micromagnetic approach to the demagnetizing field: 
macrocell approximation


• Local moments are summed into a cell and the continuum approximation 
applied


• Interaction between cells encapsulated in a dipole tensor, built from 
atomistic dipole-dipole interactions, dipole field at large ranges
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Figure 9. (a) Visualization of the macrocell approach used to
calculate the demagnetization field, with the system discretized into
cubic macrocells. Each macrocell consists of several atoms, shown
schematically as cones. (b) Schematic of the macrocell
discretization at the curved surface of a material, indicated by the
dashed line. The mean position of the atoms within the macrocell
defines the centre of mass where the effective macrocell dipole is
located. (c) Schematic of a macrocell consisting of two materials
with different atomic moments. Since the magnetization is
dominated by one material, the magnetic centre of mass moves
closer to the material with the higher atomic moments.

closer to the atoms with the higher atomic moments, as shown
in figure 9(c). This modified micromagnetic scheme gives
a good approximation of the demagnetization field without
having to use computationally costly atomistic resolution
calculation of the demagnetization field.

The total moment in each macrocell mmc is calculated
from the vector sum of the atomic moments within each cell,
given by

m
↵
mc =

nX

i

µi S
↵
i
. (30)

Depending on the particulars of the system, the macrocell
moments can vary significantly depending on position, com-
position and temperature. At elevated temperatures close to
the Curie point, the macrocell magnetization becomes small,
and so the effects of the demagnetizing field are much less
important. Similarly in compensated ferrimagnets consisting
of two competing sublattices the overall macrocell magnetiza-
tion can also be small again leading to a reduced influence of
the demagnetizing field.

The demagnetization field within each macrocell p is
given by

H
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V
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(31)
where r is the separation between dipoles p and q , r̂ is a unit
vector in the direction p ! q , and V

p

mc is the volume of the
macrocell p. The first term in equation (31) is the usual dipole
term arising from all other macrocells in the system, while the
second term is the self-demagnetization field of the macrocell,
taken here as having a demagnetization factor 1/3. Strictly
this is applicable only for the field at the centre of a cube.
However, the non-uniformity of the field inside a uniformly
magnetized cube is not large and the assumption of a uniform
demagnetization field is a reasonable approximation. The self-
demagnetization term is often neglected in the literature, but
in fact is essential when calculating the field inside a magnetic
material. Once the demagnetization field is calculated for each
macrocell, this is applied uniformly to all atoms as an effective
field within the macrocell. It should be noted however that
the macrocell size cannot be larger than the smallest sample
dimension, otherwise significant errors in the calculation of
the demagnetizing field will be incurred.

The volume of the macrocell Vmc is an effective volume
determined from the number of atoms in each cell and given
by

Vmc = n
a
mcVatom = n

a
mc

Vuc

na
uc

(32)

where n
a
mc is the number of atoms in the macrocell, n

a
uc is the

number of atoms in the unit cell and Vuc is the volume of the
unit cell. The macrocell volume is necessary to determine the
magnetization (moment per volume) in the macrocell. For unit
cells much smaller than the system size, equation (32) is a good
approximation, however for a large unit cell with significant
free space, for example a nanoparticle in vacuum, the free
space contributes to the effective volume which reduces the
effective macrocell volume.

5.4.1. Demagnetizing field of a platelet. To verify the im-
plementation of the demagnetization field calculation it is
necessary to compare the calculated fields with some analytic
solution. Due to the complexity of demagnetization fields
analytical solutions are only available for simple geometric
shapes such cubes and cylinders [130], however for an infinite
perpendicularly magnetized platelet the demagnetization field
approaches the magnetic saturation �µ0 Ms. To test this limit
we have calculated the demagnetizing field of a 20 nm ⇥

20 nm ⇥ 1 nm platelet as shown in figure 10. In the centre
of the film agreement with the analytic value is good, while at
the edges the demagnetization field is reduced as expected.

5.4.2. Performance characteristics. In micromagnetic simu-
lations, calculation of the demagnetization field usually dom-
inates the runtime of the code and generally it is preferable to
have as large a cell size as possible. For atomistic calculations
however, additional flexibility in the frequency of updates of
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