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Ferromagnet : any material that 
exhibits spontaneous magnetization (a 
net magnetic moment in the absence 
of an external magnetic field) that can 
be reversed by the application of an 
external magnetic field.

Ferroelectricity : is a property of certain 
materials which possess a spontaneous 
electric polarization that can be reversed by 
the application of an external electric field.
Ferroelectrics – also piezo and pyroelectrics.

Deformation with applied field

Ferromagnets and Ferroelectrics
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Multiferroics combine the properties of 
ferroelectrics and ferromagnets.

If we manage to create multiferroics that are 
simultaneously ferromagnetic and 
ferroelectric (and coupled) then there is a 
magnetic response to an electric field, or, vice 
versa.

Ideal material for spintronic applications

No current flow = low power consumption.

Intrinsic or multilayer composites?

Hybrid Magnetoelectrics

Physics 2, 20 (2009) Illustration: Alan Stonebraker

Nat Commun 2, 553 (2011)

http://stonebrakerdesignworks.com/
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Single Phase Magnetoelectrics

Z-type hexaferrite Sr3Co2Fe24O41

Nat. Mat. 9, 797 (2010) Science 299, 1719–1722 (2003)

Thin film BiFeO3
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Magnetostriction is the change of a material's 
physical dimensions in response to changes in 
its magnetization. The inverse magnetostrictive
effect characterizes the change of domain 
magnetization when a stress is applied to a 
material.

Remember:  The piezoelectric effect is 
understood as the linear electromechanical 
interaction between the mechanical stress and 
the electrical state

Can we make use of materials with these properties?

l = Dl/l = s

Dl = sl ≈ Edijl

l

Magnetostriction
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Fe has a relatively low magnetostriction  λ=20ppm

FeGa alloys formed by quench cooling the melt are known to have λ=400ppm for Ga 
concentrations 17% – 28%

Epitaxial thin films grown on GaAs have l bulk samples

Create a hybrid magnetoelectric by forming a laminate structure with PZT (or FE)

Hybrid Structure

Magnetostriction
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MBE growth at 0°C
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Non-volatile voltage control
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Biaxial EA – “Voltage” allows us to switch between one of the two

Non-volatile voltage control

Applied Physics Letters 101, 072402 (2012)

𝜌𝑥𝑥 = 𝜌𝑎𝑣 + ∆𝜌𝑐𝑜𝑠2𝜙

𝜌𝑥𝑦 = ∆𝜌𝑠𝑖𝑛2𝜙
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Therefore the absorption of a magnetic field of frequency o can be pictured as the 
excitation of a precession mode of the magnetisation `gyroscope'.

FMR is a method to measure magnetic properties by detecting the precessional motion 
of the magnetization in a ferromagnetic sample

reso H =

Zeeman splitting in FM materials leads to Zeeman frequencies  that are typically in 
the microwave region :   = 17.6MHzOe-1

Ferromagnetic resonance
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Sci. Reports 3:2220 (2013)

Ferromagnetic resonance
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Sci. Reports 3:2220 (2013) , Sci. Reports 9, 3156 (2019)
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Appl. Phys. Lett. 102, 032405 (2013)

Electrical control of reversal processes
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What happens when we reduce the size?

Magnetic Nanostructures
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[1] E. Bauer, 
     Rep. Prog. Phys , 89557  (1994) 
[2] L.H. Veneklasen, 
     Ultramicroscopy , 76 (1991) 36

• Spin dependent probe of Fermi level occupation. Element specific measurement

• Potential for resolving spin and orbital moments with the XMCD sum rules.

• Measures projection of M onto photon propagation vector

XMCD - PEEM
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Vortex domain walls

A vortex domain wall is a spin texture

The structure is determined by competing energy terms:

• Exchange energy
• Shape anisotropy
• Magnetocrystalline anisotropy
• Inverse magnetostriction
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Omari et al., Phys. Rev. Appl. 2, 044001 (2014) Pushp et al., Nature Physics 9, 505 (2013)

Vortex domain walls
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Omari et al., Appl. Phys. Lett. 107, 222403 (2015)

Vortex domain walls

Omari et al., Phys. Rev. Appl. 2, 044001 (2014)
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Applied Physics Letters 105, 062405 (2014)
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XMCD - PEEM

Ni on BTO

M. Ghidini et al. Adv. Mater. 27, 1460 2015

Ni on PMN-PT

M. Buzzi et al. PRL 111, 027204 (2013)
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Wu et al., J. Appl. Phys. 109, 124101 (2011)

Nickel

PMN-PT
Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32
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X-ray magnetic circular dichroism –

photoelectron emission microscopy 

(XMCD-PEEM)

Diameter = 7.7μm

Width = 1 μm

Thickness = 20nm

XMCD - PEEM
Voltage induced switching of vortex chirality

Sci Rep 7, 7613 (2017)
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Object Oriented Micro-magnetic Framework (OOMMF)

Micromagnetics

Sci Rep 7, 7613 (2017)
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Sci Rep 7, 7613 (2017)
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Sci Rep 7, 7613 (2017)
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t=0ns;   Ks=0kJm-3

t=2ns;   Ks=10kJm-3

t=15ns;   Ks=0kJm-3

Ni wire

PMN-PT (001)

Voltage 

electrodes

Control of chirality in race track

Sci Rep 7, 7613 (2017
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Bottom chirality = Top chirality Low resistance

Bottom chirality ≠ Top chirality High resistance

Memory Device
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Image courtesy of DOE/Brookhaven National Laboratory

Dynamics
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FeGa disc

10 nm thick
2.2 m diameter

Kc = 18 kJm-3 [100],[010]
Ku = 12 kJm-3 [110]
Ks = 0 – 10 kJm-3 [010]
hpulse = 70 ps, 80 Oe along [010]

OOMMF

Micromagnetic Parameters
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f1= 1.38 GHz – spin wave modes
f2 = 60 MHz – vortex gyrotropic mode

Magnetization Dynamics
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f1= 1.2GHz – spin wave mode(s)
f2 = 25 MHz – vortex gyrotropic mode

Magnetization Dynamics
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Modification of vortex core orbit
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ሶ𝒎𝑖 = −𝛾𝒎𝑖 × 𝑯𝑖
𝑒𝑓𝑓

+
𝛾𝛼∥
𝑚2 𝒎 ∙ 𝑯𝑖

𝑒𝑓𝑓
𝒎−

𝛾𝛼⊥
𝑚2 𝒎𝑖 × 𝒎𝑖 × 𝑯𝑖

𝑒𝑓𝑓

Landau – Liftshitz – Bloch (LLB) 

Allows us to produce time varying effective fields – either from the Zeeman term, Strain term or both

𝐻𝑒𝑓𝑓 = −𝑀𝑆𝑩 ∙ 𝒎 − 𝐾1, 110
𝑢 𝑴 ∙ ෝ𝒏𝟏
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Strain Induced Magnetization Dynamics
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Strain Induced Magnetization Dynamics



Condensed Matter and Materials Physics GroupB = 0.3TStrain along [010], Field angle relative to [100] 

Largest amplitude when  along a hard axis

Strain Induced Magnetization Dynamics
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Can we apply the same methodology to confined geometries  - Landau 
flux closure state?

Vortex Core Dynamics
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Ground State

H – field is unidirectional, so

core displacement is 
possible…..

Vortex Core Dynamics



Condensed Matter and Materials Physics Group

Applied StrainGround State

e – field is uniaxial, so

core displacement is not 
possible…..

Vortex Core Dynamics
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Vortex Core Dynamics



Condensed Matter and Materials Physics Group

500nm
Solution

Introduce a time varying strain gradient:
Measure position of the vortex core as a function of time.

Strain Induced Vortex Core Dynamics
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Strain Induced Vortex Core Displacement

I Azaceta et al 2019 J. Phys. D: Appl. Phys. 52 454004 
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Strain Induced Vortex Core Displacement

I Azaceta et al 2019 J. Phys. D: Appl. Phys. 52 454004 



Condensed Matter and Materials Physics Group

Strain Induced Vortex Core Dynamics
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Strain Induced Vortex Core Dynamics

Radius of vortex core orbit proportional
to the strain gradient
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Strain Induced Vortex Core Dynamics
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Strain Induced Vortex Core Dynamics
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