

Condensed Matter and Materials Physics Group

Magnetism for Energy Efficient Devices

S. A. Cavill, University of York

Ferromagnets and Ferroelectrics

Ferromagnet : any material that exhibits spontaneous magnetization (a net magnetic moment in the absence of an external magnetic field) that can be reversed by the application of an external magnetic field.

Condensed Matter and Materials Physics Group

Applied Electric Field

Ferroelectricity : is a property of certain materials which possess a spontaneous electric polarization that can be reversed by the application of an external electric field. Ferroelectrics – also piezo and pyroelectrics.

Deformation with applied field

Hybrid Magnetoelectrics

Condensed Matter and Materials Physics Group

Multiferroics combine the properties of ferroelectrics and ferromagnets.

If we manage to create multiferroics that are simultaneously ferromagnetic and ferroelectric (and coupled) then there is a magnetic response to an electric field, or, vice versa.

Ideal material for spintronic applications

No current flow = low power consumption.

Intrinsic or multilayer composites?

Single Phase Magnetoelectrics

Z-type hexaferrite Sr₃Co₂Fe₂₄O₄₁

UNIVERSITY Of Vork

Condensed Matter and Materials Physics Group

Thin film BiFeO₃

Nat. Mat. 9, 797 (2010)

Science 299, 1719–1722 (2003)

Magnetostriction

Magnetostriction is the change of a material's physical dimensions in response to changes in its magnetization. The inverse magnetostrictive effect characterizes the change of domain magnetization when a stress is applied to a material.

Remember: The piezoelectric effect is understood as the linear electromechanical interaction between the mechanical stress and the electrical state

Condensed Matter and Materials Physics Group

Can we make use of materials with these properties?

Magnetostriction

Condensed Matter and Materials Physics Group

Hybrid Structure

Fe has a relatively low magnetostriction λ =20ppm

FeGa alloys formed by quench cooling the melt are known to have $\lambda{=}400ppm$ for Ga concentrations 17%-28%

Epitaxial thin films grown on GaAs have λ ~ bulk samples

Create a hybrid magnetoelectric by forming a laminate structure with PZT (or FE)

Non-volatile voltage control

Non-volatile voltage control

Ferromagnetic resonance

H_{eff}

M x dM/dt

M x H

UNIVERSITY UNIVERSITY

FMR is a method to measure magnetic properties by detecting the precessional motion of the magnetization in a ferromagnetic sample

Condensed Matter and Materials Physics Group

Zeeman splitting in FM materials leads to Zeeman frequencies that are typically in the microwave region : $\gamma = 17.6$ MHzOe⁻¹

$$D_o = \gamma H_{res}$$

Therefore the absorption of a magnetic field of frequency ω_o can be pictured as the excitation of a precession mode of the magnetisation `gyroscope'.

Ferromagnetic resonance

Ferromagnetic resonance

Electrical control of reversal processes

Condensed Matter and Materials Physics Group

Appl. Phys. Lett. 102, 032405 (2013)

Magnetic Nanostructures

Condensed Matter and Materials Physics Group

What happens when we reduce the size?

XMCD - PEEM

- Spin dependent probe of Fermi level occupation. Element specific measurement
- Potential for resolving spin and orbital moments with the XMCD sum rules.
- Measures projection of M onto photon propagation vector

XMCD - PEEM

Vortex domain walls

Condensed Matter and Materials Physics Group

A vortex domain wall is a spin texture

The structure is determined by competing energy terms:

- Exchange energy
- Shape anisotropy
- Magnetocrystalline anisotropy
- Inverse magnetostriction

Vortex domain walls

Condensed Matter and Materials Physics Group

Pushp et al., Nature Physics 9, 505 (2013)

Omari et al., Phys. Rev. Appl. 2, 044001 (2014)

Vortex domain walls

XMCD - PEEM

Condensed Matter and Materials Physics Group

Voltage induced strain modification of flux closure domains

XMCD - PEEM

Condensed Matter and Materials Physics Group

Ni on BTO

Ni on PMN-PT

Device

Polarization

Condensed Matter and Materials Physics Group

$$\varepsilon_{xx} - \varepsilon_{yy} \approx 10^{-3}$$

 $E_{ME} \approx 10 k J m^{-3}$

-0

XMCD - PEEM

Voltage induced switching of vortex chirality

Diameter = $7.7\mu m$ Width = 1 μ m Thickness = 20nm

Condensed Matter and Materials Physics Group

Sci Rep **7**, 7613 (2017)

X-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM)

UNIVERSITY UNIVERSITY

Condensed Matter and Materials Physics Group

.

Object Oriented Micro-magnetic Framework (OOMMF)

Х

Condensed Matter and Materials Physics Group

Sci Rep 7, 7613 (2017)

Object Oriented Micro-magnetic Framework (OOMMF)

Х

Condensed Matter and Materials Physics Group

Sci Rep 7, 7613 (2017)

Condensed Matter and Materials Physics Group

Object Oriented Micro-magnetic Framework (OOMMF)

Sci Rep **7**, 7613 (2017)

Control of chirality in race track

Condensed Matter and Materials Physics Group

Sci Rep 7, 7613 (2017

Memory Device

Dynamics

Condensed Matter and Materials Physics Group

Image courtesy of DOE/Brookhaven National Laboratory

Micromagnetic Parameters

Condensed Matter and Materials Physics Group

OOMMF

FeGa disc

10 nm thick2.2 μm diameter

```
\begin{split} & K_c = 18 \text{ kJm}^{-3} \text{ [100],[010]} \\ & K_u = 12 \text{ kJm}^{-3} \text{ [110]} \\ & K_s = 0 - 10 \text{ kJm}^{-3} \text{ [010]} \\ & h_{\text{pulse}} = 70 \text{ ps, 80 Oe along [010]} \end{split}
```

Magnetization Dynamics

 $K_s = 0 \text{ kJm}^{-3}$

Condensed Matter and Materials Physics Group

 f_1 = 1.38 GHz – spin wave modes f_2 = 60 MHz – vortex gyrotropic mode

Magnetization Dynamics

 $K_{s} = 10 \text{ kJm}^{-3}$

Condensed Matter and Materials Physics Group

f₁= 1.2GHz – spin wave mode(s) f₂ = 25 MHz – vortex gyrotropic mode

Modification of vortex core orbit

Condensed Matter and Materials Physics Group

X (nm)

Strain Induced Magnetization Dynamics

Condensed Matter and Materials Physics Group

Landau – Liftshitz – Bloch (LLB)

$$\dot{\boldsymbol{m}}_{i} = -\gamma \boldsymbol{m}_{i} \times \boldsymbol{H}_{i}^{eff} + \frac{\gamma \alpha_{\parallel}}{m^{2}} \left(\boldsymbol{m} \cdot \boldsymbol{H}_{i}^{eff} \right) \boldsymbol{m} - \frac{\gamma \alpha_{\perp}}{m^{2}} \boldsymbol{m}_{i} \times \boldsymbol{m}_{i} \times \boldsymbol{H}_{i}^{eff}$$

$$H^{eff} = -M_{S}\boldsymbol{B} \cdot \boldsymbol{m} - K^{u}_{1,(110)}(\boldsymbol{M} \cdot \hat{\boldsymbol{n}}_{1})^{2} - K^{u}_{1,ep}(\boldsymbol{M} \cdot \hat{\boldsymbol{n}}_{2})^{2} + K^{c}_{1}\left(M_{x}^{2}M_{y}^{2} + M_{y}^{2}M_{z}^{2} + M_{z}^{2}M_{x}^{2}\right)^{2} - \frac{3}{2}\lambda\varepsilon(y)Y(\boldsymbol{M} \cdot \hat{\boldsymbol{n}}_{s})^{2} + \frac{M_{S}}{8\tilde{\chi}_{\parallel}m_{e}^{2}}(m^{2} - m_{e}^{2})^{2}$$

Allows us to produce time varying effective fields – either from the Zeeman term, Strain term or both

Strain Induced Magnetization Dynamics

Strain [010], H [100]

Strain Induced Magnetization Dynamics

Strain along [010], Field angle relative to [100]

B = 0.3T

Largest amplitude when ϕ along a hard axis

Condensed Matter and Materials Physics Group

Can we apply the same methodology to confined geometries - Landau flux closure state?

Vortex Core Dynamics

Condensed Matter and Materials Physics Group

H – field is unidirectional, so

Ground State

Vortex Core Dynamics

Condensed Matter and Materials Physics Group

 ϵ – field is uniaxial, so

Ground State

Applied Strain

Vortex Core Dynamics

Condensed Matter and Materials Physics Group

Solution

Introduce a time varying strain gradient: Measure position of the vortex core as a function of time.

Strain Induced Vortex Core Displacement

Condensed Matter and Materials Physics Group

40

Strain Induced Vortex Core Displacement

Condensed Matter and Materials Physics Group

Radius of vortex core orbit proportional to the strain gradient

Acknowledgments

Condensed Matter and Materials Physics Group

T. Ostler
I. Azaceta
C. Reardon
R. Chantrell

A. Rushforth S. Bowe R. Beardsley D. E. Parkes R. Campion

P. A. Warburton I. Isakov

S. S. Dhesi F. Maccherozzi

Thankyou for your attention