

Surface and Interface Magnetism

Stefan Blügel

Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA

Member of the Helmholtz Association

EMA-ESM-SIM | York | 2024-08-27

SURFACE MAGNETISM: **THREE FUNDAMENTAL QUESTIONS**

Typical Energies: ≈1 eV

Magnetic Moments

Magnetism: Yes or No?

Intra-atomic Exchange

≈0.0005 eV

Magnetic Order

Ferro ⇔ Antiferro

Magnetic Orientation

In-plane ⇔ Out-of-plane

Inter-atomic Exchange

Spin-Orbit + Dipole-Dip

BREAK OF INVERSION SYMMETRY

E. Dzyaloshinskii, J. Exptl. Theoret. Phys. (U.S.S.R.) **19**, 960 (1964) ; I. E. Dzyaloshinskii, J. Exptl. Theoret. Phys. (U.S.S.R.) **20**, 665 (1965). T. Moriya, PRL **4**, 228 (1960) ; T. Moriya, PR **120**, 91 (1960)

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

Reminder bulk

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

REMINDER 1: MAGNETIC MATERIALS

Almost all magnetic materials contain 3d or 4f metal ions
 We have many more antiferromagnets than ferromagnets

Example:

- Metallic magnetism: 3d metal compounds and 4f intermetallics
- Ionic magnetism: transition metal and 4f metal oxides
- Covalent magnetism: 2D van der Waals materials

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

REMINDER 2: BULK MAGNETISM

- Itinerant magnets (metals)
- Collinear magnetic structure
 (quantization axis the same at each atom)

bcc-Cr: M= 0.59 $m_B \cos(1 - d) \frac{p}{a} na$

bcc-Fe: M= 2.12 *m*_B

fcc-Ni: M= 0.55 *m*_B

SPIN DEPENDENT ELECTRONIC STRUCTURE

Some basics of surfaces and interfaces

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

SURFACE MAGNETISM: **THREE FUNDAMENTAL QUESTIONS**

Typical Energies: ≈1 eV

Magnetic Moments

Magnetism: Yes or No?

Intra-atomic Exchange

≈0.0005 eV

Magnetic Order

Ferro ⇔ Antiferro

Magnetic Orientation

In-plane ⇔ Out-of-plane

Inter-atomic Exchange

Spin-Orbit + Dipole-Dip

TYPICAL GROUND STATE ENERGIES

E(eV/atom)

- Cohesive energy 5.5
- Local moment formation 1.0
- Alloy formation 0.5
- Magnetic order 0.2
- Structural relaxation 0.05
- Magnetic anisotropy
 0.0005

[Of course: Thermal excitation, dynamics,....]

MAGNETISM OF ATOMS

TRANSITION-METALS AND RARE EARTHS

"almost all" atoms are "magnetic" (open shell atoms)

* Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
+ Actinide	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

MAGNETISM IN REDUCED DIMENSION: ATOM VS BULK

"New Magnets" in reduced dimensions

s.bluegel@fz-juelich.de 28. August 2024

Page 13

(i) Evaluation of Stoner Model for bulk materials

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

Stoner Model for Ferromagnetism

Stoner criterion: /i n(E_F) ³ 1 (for d-electrons)

• Density of states:
$$n(E_F) \sim \frac{1}{W} \sim \frac{1}{t_d} \left[niW = 5 \right]$$

Stoner Model for Ferromagnetism

Forschungszentrum

Page 16

Bandwidths of metals

(ii) Magnetism in reduced dimension

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

Ferromagnetic surfaces & thin films

Role of Coordination Number

s.bluegel@fz-juelich.de 28

28. August 2024 Page 20

ÜLICH

Forschungszentrum

SYSTEMS IN REDUCED DIMENSIONS

Reduced Dim.: Restrict hopping |I|Restrict exchange interaction $|J_{||}$

- two-dimensional films
- one-dimensional chains
- zero-dimensional cluster, molecules and atoms

Example: Fe on Ag(100)

MAGNETIC 2D VAN DER WAALS MATERIALS

What is new:

- Covalent (i.e. directional) bond between spin-polarized 3d or 4f orbital and 4p or 5p chalcogenide atom
- p-orbital have a strong spin-orbit interaction => orbital texture
- Low-point symmetry → various anisotropies : 1. Magnetic Anisotropy
 - 2. Dzyaloshinskii-Moriya Interaction

Forschungszentrum

3. Kitaev Interaction

s.bluegel@fz-juelich.de 28.

V(100), Cr(100), Fe(100), Co(100), Ni(100)

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

Surfaces: Magnetic Moments

(DFT results)

	Μ [μ _B]	Cr (bcc)	Fe (bcc)	Co (hcp)	Ni (fcc)	
	(100)	2.55	2.88	1.85	0.68	
	Bulk	±0.60	2.13	1.62	0.61	
$\mathcal{M}^{(1)}$	$M^{Bulk} =$	4.25	1.35	1.14	1.12	

Surface Unit Cells

s.bluegel@fz-juelich.de

28. August 2024 Page 25

Surfaces: Magnetic Moments

	Cr	Fe	Со	Ni	
ινι [μ _B]	(bcc)	(bcc)	(hcp)	(fcc)	
(100)	2.55	2.88	1.85	0.68	
(110)		2.43		0.74	
(111) (0001)		2.48	1.70	0.63	
Bulk	±0.60	2.13	1.62	0.61	

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

Local Density of States (LDOS) of V(100)

Local Density of States bulk V

JÜLICH

Forschungszentrum

(100) SURFACES OF VRu, VRh, VPd ALLOYS

Local Density of States

CH

Forschungszentrum

28. August 2024

Page 28

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

(100) SURFACES OF VRu, VRh, VPd ALLOYS

Magnetic Moment

CH

EMA-ESM-SIM | York | 2024-08-27 Member of the Helmholtz Association

Ultrathin Films

Realization on Noble Metal substrates e.g. 3d on Ag(100)

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

2D-FERROMAGNETISM OF 3d-MONOLAYERS ON NOBEL METAL (100) SUBSTRATE

LDOS of Ferromagnetic 3d-metal/Ag(100)

S. Blügel, D. Drittler, R. Zeller, and P.H. Dederichs, Appl. Phys. A 49, 547 (1989)

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

Antiferromagnetism

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

2D-ANTIFERROMAGNETISM OF MONOLAYERS ON NM(100)

CH

SPIN-POLARIZED SCANNING TUNNELING MICROSCOPY EXPERIMENT

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

s.bluegel@fz-juelich.de

ich.de 28. August 2024

Page 36

G

 $\phi_{_{2\mathsf{D}}}$

JÜLICH

Forschungszentrum

NEAREST NEIGHBOR HEISENBERG MODEL

$$E = -rac{1}{2}\sum_{ij}oldsymbol{J}_{ij}oldsymbol{\mathsf{M}}_i\cdotoldsymbol{\mathsf{M}}_j$$

Nearest neighbor: $J_{ij} \approx J_1$

38) Page 37

Blügel, Weinert, Dederichs, PRL 60 (1988) s.bluegel@fz-juelich.de 28. August 2024 Pag

BEYOND NEAREST NEIGHBOR HEISENBERG MODEL

$$E = -rac{1}{2}\sum_{ij}oldsymbol{J}_{ij}oldsymbol{\mathsf{M}}_i\cdotoldsymbol{\mathsf{M}}_j$$

Next nearest neighbor: $J_{ij} \approx J_1$, J_2

O

O

BEYOND NEAREST NEIGHBOR HEISENBERG MODEL

$$E = -rac{1}{2}\sum_{ij}oldsymbol{J}_{ij}oldsymbol{\mathsf{M}}_i\cdotoldsymbol{\mathsf{M}}_j$$

Magnetic exchange frustration

N. D. Khanh *et al.,* Nature Nanotech. **15**, 444 (2020)

s.bluegel@fz-juelich.de 28.

e 28. August 2024

BEYOND HEISENBERG MODEL

Beyond Heisenberg:

e.g. biquadratic interaction:

$$egin{aligned} E_{ ext{biq}} &= -rac{1}{2}\sum_{ij}B_{ij}\left(\mathsf{M}_i\cdot\mathsf{M}_j
ight)^2 \ \mathbf{S}_n &\sim \left(\mathbf{S}_{(\pi,0)}e^{i(\pi,0)\mathbf{R}_n}+\mathbf{CC}
ight) + \left(\mathbf{S}_{(0,\pi)}e^{i(0,\pi)\mathbf{R}_n}
ight) \end{aligned}$$

P.Ferriani, I.Turek, S.Heinze, G.Bihlmayer, & S.Blügel, PRL (2007).

Spin spirals

M

+ CC)

s.bluegel@fz-juelich.de 28. Aug

28. August 2024

ATOMIC SCALE MAGNETIC SKYRMION LATTICE FE ON IR(111)

Beyond Heisenberg interaction

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer and S. Blügel, Nat. Phys. **7**, 713 (2011)

$$H = -\sum_{ij} J_{ij} (\mathbf{S}_i \cdot \mathbf{S}_j)$$
 exchange interaction

$$-\sum_{ij} \mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$$
 DM interaction

$$- \sum_{ijkl} K_{ijkl} \begin{bmatrix} (\mathbf{S}_{i} \cdot \mathbf{S}_{j}) (\mathbf{S}_{k} \cdot \mathbf{S}_{l}) \\ + (\mathbf{S}_{i} \cdot \mathbf{S}_{l}) (\mathbf{S}_{j} \cdot \mathbf{S}_{k}) \\ - (\mathbf{S}_{i} \cdot \mathbf{S}_{k}) (\mathbf{S}_{j} \cdot \mathbf{S}_{l}) \end{bmatrix}$$

$$- (\mathbf{S}_{i} \cdot \mathbf{S}_{k}) (\mathbf{S}_{j} \cdot \mathbf{S}_{l})]$$

$$- \sum_{ijkl} B_{ij} (\mathbf{S}_{i} \cdot \mathbf{S}_{j})^{2}$$
 biquadratic interaction

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

ATOMIC SCALE MAGNETIC SKYRMION LATTICE FE ON IR(111)

Beyond Heisenberg interaction

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer and S. Blügel, Nat. Phys. **7**, 713 (2011)

SP-STM Topo Image

4-spin interaction

Page 42

PROPOSED EXCHANGE INTERACTIONS OF LAST YEARS

Biquadratic Exchange: $H_{4-\text{spin}; 2-\text{sites}} = -\sum_{i} B_{ij} (\mathbf{S}_i \cdot \mathbf{S}_j)^2$ Example

Example: bcc Fe

• Four-Spin Three-Site Interaction:
Example: Fe/Rh(111)
$$H_{4\text{-spin}; 3\text{-sites}} = -\sum_{ijk} Y_{ijk} (\mathbf{S}_i \cdot \mathbf{S}_j) (\mathbf{S}_i \cdot \mathbf{S}_k)$$

Al-Zubi *et al.*, Phys. Status Solidi B **248**, 2242 (2011) A. Krönlein *et al*, PRL **120**, 207202 (2018)

- Four-Spin Four-Site ("Ring-Exchange") Interaction: $H_{4\text{-spin}; 4\text{-sites}} = -\sum_{ijkl} K_{ijkl} [(\mathbf{S}_i \cdot \mathbf{S}_j) (\mathbf{S}_k \cdot \mathbf{S}_l) + (\mathbf{S}_i \cdot \mathbf{S}_l) (\mathbf{S}_j \cdot \mathbf{S}_k) - (\mathbf{S}_i \cdot \mathbf{S}_k) (\mathbf{S}_j \cdot \mathbf{S}_l)]$ Example: Mn/Cu(111), Fe/Ir(111), 2Mn/W(110), Mn/Re(0001) Ph. Kurz *et al.*, PRL **86**, 1106 (2001)
 - S. Heinze et al., Nature Physics 7, 713 (2011)
 - Y. Yoshida *et al.,* PRL **108**, 087205 (2012)
 - J. Spethmann, et al , PRL 124, 227203 (2020)

Page 4

$$H_{6\text{-spin; 6-sites}} = -\frac{1}{2} \sum_{ijki'j'k'} \left[\mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k) \right] \boldsymbol{\tau}_{ijk}^{\dagger} \underline{\boldsymbol{\varkappa}}_{ii'}^{\text{CC}} \boldsymbol{\tau}_{i'j'k'} \left[\mathbf{S}_{i'} \cdot (\mathbf{S}_{j'} \times \mathbf{S}_{k'}) \right]_{\text{S. Grytsiuk, et al. Nat. Comm. 11}}$$
Example: B20 MnGe

Topological Chiral-Chiral Interaction (CCI):

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

Magnetic Anisotropy

Magnetic Orientation

In-plane ⇔ Out-of-plane

Spin-Orbit + Dipole-Dip

$$H = \sum_{i} \frac{K_{i}(\vec{m}_{i} \vec{e}_{i})^{2}}{r_{i,j}^{3}} [\cdots]$$

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

UNQUENCHING THE ORBITAL MOMENT BY SPIN-ORBIT INTERACTION

The spin-orbit interaction is in the wave function!

1st order perturbation theory:

$$|o\rangle^{(1)} = |o\rangle + \sum_{u} \frac{\langle u|\xi \vec{L} \cdot \vec{S}|o\rangle}{(\epsilon_u - \epsilon_o)} |o\rangle$$

Orbital moment:
$${}^{(1)}\langle o|\vec{L}|o\rangle^{(1)} \propto -\sum_{u(u\neq o)} \frac{\langle o|\vec{L}|u\rangle\langle u|\xi\vec{L}\cdot\vec{S}|o\rangle}{(\epsilon_u - \epsilon_o)}|o\rangle$$

 $|o\rangle, |u\rangle \in (|xy;\uparrow\rangle, |xz;\uparrow\rangle, |yz;\uparrow\rangle, |x^2 - y^2;\uparrow\rangle, |3z^2 - r^2;\uparrow\rangle$

 $|xy;\downarrow\rangle, |xz;\downarrow\rangle, |yz;\downarrow\rangle, |x^2 - y^2;\downarrow\rangle, |3z^2 - r^2;\downarrow\rangle$

MAE due to MCA: $E_{\rm MCA} \propto \langle H_{\rm SO} \rangle$ (2nd order perturbation)

For d-states

 $\rangle :=$ occupied, ground states

 $\rangle :=$ unoccupied, excited states

$$\propto \quad \frac{\xi \langle o | \vec{L} | o \rangle^{(1)} \langle \vec{S} \rangle}{-\sum_{u(u \neq o)} \frac{|\langle u | \xi \vec{L} \cdot \vec{S} | o \rangle|^2}{(\epsilon_u - \epsilon_o)}}$$

Member of the Helmholtz Asso

UNQUENCHING THE ORBITAL MOMENT BY SPIN-ORBIT INTERACTION

 $K_{\mathbf{n}}$

The spin-orbit interaction is in the wave function!

1st order perturbation theory:

Symmetry-dependence E.g. uniaxial symmetry

$$|o\rangle^{(1)} = |o\rangle - \sum_{u(u\neq o)} \frac{\langle u|\xi \vec{L} \cdot \vec{S}|o\rangle}{(\epsilon_u - \epsilon_o)} |o\rangle$$

$$E(\theta) = K_0 + \frac{K_1}{2} \sin^2 \theta + \frac{K_2}{4} \sin^4 \theta$$
2nd 4th

$$G_{\text{cryst}}^{V}(\hat{M}) = K_{1}(\alpha_{1}^{2} + \alpha_{2}^{2}) + K_{2}(\alpha_{1}^{2} + \alpha_{2}^{2})^{2}$$

$$(\alpha_{1}^{4}) \propto \widehat{M} \cdot \widehat{M} \cdot \widehat{M} \cdot \widehat{M}$$

$$\propto \langle \vec{K} \rangle^{4}$$

$$\propto \langle H_{\text{SO}} \rangle \propto -\sum_{u(u \neq o)} \frac{|\langle u|\xi \vec{L} \cdot \vec{S}|o\rangle|^{2n}}{|\langle \epsilon_{u} - \epsilon_{o}\rangle|^{(2n-1)}}$$

$$J \ddot{U} L C H_{\text{Forschungszentrum}}$$

28. August 2024

Page 46

MAE due to MCA:

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

s.bluegel@fz-juelich.de

FINITE CURIE TEMPERATURE IN 2D

Magnetization in d dimensions

- Spin stiffness $E(q)=Dq^2$
- Magnetization $M(T) M(0) \propto \int_{0}^{\infty} \frac{q^{d-1}}{e^{Dq^2/k_{\rm B}T} 1} dq$

Mermin-Wagner theorem:

The isotropic Heisenberg model with short-range interaction in one or two dimensions has no spontaneous magnetization at finite temperature.

small wave vectors

$$\frac{q^{d-1}}{e^{Dq^2/k_{\rm B}T}-1} \approx \frac{q^{d-1}}{Dq^2/k_{\rm B}T} \propto q^{d-3}$$

d = 3 : finite magnetization $d \le 2$: divergent

• Anisotropy (spin-orbit coupling) \Rightarrow energy gap in spin wave spectrum for q=0

Reorientation transition

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

SPIN REORIENTATION TRANSITIONS AS FUNCTION OF LAYER THICKNESS t

s.bluegel@fz-juelich.de 28. August 2024

Forschungszentrum

Page 50

SCHEMATIC DEPENDENCE OF ANISOTROPY ON X. Nie & S. Blügel, European Patent Nr. 1099217 **THICKNESS**

s.bluegel@fz-juelich.de

VOLTAGE CONTROL OF MAGNETIC ANISOTROPY

X. Nie & S. Blügel, European Patent Nr. 1099217

VOLTAGE CONTROL : 1 ML Fe ON Cu(100)

X. Nie & S. Blügel, European Patent Nr. 1099217

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

Dzyaloshinskii-Moriya Interaction (DMI)

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

DZYALOSHINSKII-MORIYA INTERACTION

E. Dzyaloshinskii, J. Exptl. Theoret. Phys. (U.S.S.R.) **19**, 960 (1964) ; I. E. Dzyaloshinskii, J. Exptl. Theoret. Phys. (U.S.S.R.) **20**, 665 (1965) T. Moriya, PRL **4**, 228 (1960) ; T. Moriya, PR **120**, 91 (1960)

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

CHIRALITY OF DZYALOSHINSKII-MORIYA INTERACTION

I. E. Dzialoshinskii, J. Exptl. Theoret. Phys. (U.S.S.R.) 5, 1259 (1957); J. Phys. and Chem. Sol. 4, 241 (1958)

DZYALOSHINSKII-MORIYA INTERACTION

$$\mathcal{H}_{\rm DM} = -\mathbf{D}_{12} \underbrace{(\mathbf{S}_1 \times \mathbf{S}_2)}_{\mathbf{C}}$$

• DMI in centro-symmetric systems: $\sum D_{ij} = 0$

I. E. Dzialoshinskii, J. Exptl. Theoret. Phys. (U.S.S.R.) $\overset{y}{5}$, 1259 (1957), J. Phys. and Chem. Sol. **4**, 241 (1958) (nowadays popular in 2D systems , sometimes also termed hidden DMI)

• DMI in **non-**centro-symmetric systems $\sum D_{ij} \neq 0$

J. Exptl. Theoret. Phys. (U.S.S.R.) **19**, 960 (1964); J. Exptl. Theoret. Phys. (U.S.S.R.) **20**, 665 (1965)

→ leads to ordered structure with spatial modulation

 $e_{\mathsf{DM}}(\underline{\mathsf{D}};\mathbf{m}) = \underline{\mathsf{D}} : (\nabla \mathbf{m} \times \mathbf{m})$

MAGNETIC INTERACTIONS

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

SPIN-SPIRALS IN MAGNETIC WIRES

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27

s.bluegel@fz-juelich.de 28. August 2024

JÜLICH

Forschungszentrum

Page 59

HOMOCHIRAL MAGNETIC SPIRAL: 1ML Mn on W(110)

Bode, Heide, von Bergmann, Ferriani, Heinze, Bihlmayer, Kubetzka, Pietzsch, Blügel, Wiesendanger, Nature **447**, 190 (2007) Magnetic Configuration:

homochiral magnetism

s.bluegel@fz-juelich.de 28

HOMOCHIRAL MAGNETIC SPIRAL: 1ML Mn on W(110)

Bode, Heide, von Bergmann, Ferriani, Heinze, Bihlmayer, Kubetzka, Pietzsch, Blügel, Wiesendanger, Nature 447, 190 (2007)

SUMMARY

- $S_i \in \mathbb{R}^3$; $S_i \propto m_i$ typically classical vector
- J_{ij} , D_{ij} i-j long range for metals ; n.N. for insulators
- Model parameters are changed at interfaces and surfaces:
 - Reduction of coordination number leads to larger moments
 - but smaller interatomic exchange and more complex magnetism
 - Larger moments increases the role of higher order Interactions
 - Lower symmetry leads to larger magnetocrystalline anisotropy dominating of dipol

Broken symmetry +SOC leads to Dzyaloshinskii-Moriya interaction Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27
Sublegel@fz-juelich.de 28. August 2024 Pa

MAGNETIC MULTILAYERS A very tunable materials platform

S S Large SOC

Choice of thickness

- Choice of layer composition
- Choice of growth conditions
- Choice of FM or AF coupling strength
- Possibility to modify DMI and PMA
- Possibility to use uncompensated structures
- Possibility to work with exchange bias field

W. Legrand et al, Nature Materials **19**, 34 (2020)

Thank you

Member of the Helmholtz Association EMA-ESM-SIM | York | 2024-08-27