

2024 European School on Magnetism

Oxford Instruments

A Career in Superconducting Magnets

Steven Ball

Senior Development Engineer

Introduction to Oxford Instruments

Superconducting magnets at Oxford Instruments

A Career in Superconducting Magnets

Introduction to Oxford Instruments

Founded in 1959 by Sir Martin and Lady Audrey Wood as the first commercial spin-out from Oxford University

Global Footprint

Our solutions. Your results.

Enabling a greener, healthier and more connected advanced society.

×\$		P	(the		
Advanced Materials	Energy and Environment	Healthcare and Life Science	Quantum Technology	Semiconductors and IT	Research and Fundamental Science
 Boosting understanding of material performance Supporting development of new materials Enabling sustainable manufacturing 	 Enabling development of next- generation batteries Supporting transition from fossil fuels Facilitating food and water safety Helping prevent pollution 	 Accelerating improved treatments & vaccines Aiding development of personalised medicine & therapies Reduced development timelines & costs 	 Supporting evolving commercial market Facilitating progress across a range of sectors, including pharma, logistics and finance 	 Enabling faster and more sophisticated devices & computers Facilitating growing bandwidth demand Supporting surging data use & universal connectivity 	 Enabling world-class research and innovation by leading universities Facilitating breakthroughs in astronomy and space research

Business units

Advanced Technologies

Dilution refrigerator

and superconducting magnet systems for quantum technology research

Imaging and Analysis

NanoAnalysis

Tools for SEM, TEM and FIB to characterise and manipulate samples at the nanometre scale

Andor

Scientific cameras, microscopy systems and spectrographs for academia and industry

Plasma Technology

Etch and deposition processing equipment and solutions

Asylum Research

Atomic force

microscopes (AFM)

Magnetic Resonance

Benchtop NMR spectrometers and analysers for research and quality control

X-Ray Technology

X-ray tubes and X-ray sources for analytical, medical imaging and industry NDT

WITec

Confocal Raman imaging microscopes for chemical and structural characterisation

Microscopy image

Oxford Instruments NanoScience

- We design, supply and support market-leading research tools that enable quantum technologies, quantum materials discovery, and device development in the physical sciences
- Our tools support research down to the atomic scale through creation of high performance, cryogen free, low temperature and magnetic environments – with ever-increasing levels of experimental and measurement readiness

Superconducting magnets at Oxford Instruments

Superconductivity

- Central field
- Solenoid or split pair?
- Bore size
- Split
- Ramp rate
- Homogeneity
- Stability
- Cooling liquid helium or 'dry'?

- Conductor choice
- Stress/strain
- Quench
- AC loss

Current practical superconductors for magnets

Where each of the different superconductors are used

Electromechanical stress

Some occasional magnet stress issues may have occurred in the early days

All this was way back in the last century though!

Complex fibre and resin composites

High tensile reinforcement materials

Superconducting quench

Propagation of resistance through the superconducting coil

1 MJ = 0.27 kWh... Quench time is approx. 1 s so power = **1 MW**

Decreasing quench energy by increasing energy density

Utilising Higher J_c & Bronze route Nb₃Sn.

20 tesla @ T=4.2 K	19 tesla @ T=4.2 K
Stored Energy 16 MJ	Stored Energy 5.7 MJ
Magnet volume 320 litre	Magnet volume 130 litre

Reliable and repeatable magnets at these higher energy densities require advanced engineering, especially in terms of high field quench.

Utilising Higher J_c Nb₃Sn today.

Wet or Dry - how will you be cooling your magnet?

The traditional way – liquid helium

Cryofree[™] / 'Dry' magnets

Wet or Dry? Cryofree[™] magnets

A brief career history at Oxford Instruments

Oxford University Physics Masters project

ST25 Tokamak Project

ITER project

"Can a smaller, high current-density, spherical tokamak, utilizing HTS materials lead to more rapid development of technology for fusion energy?"

ST25				
R/a	25/12.5 cm			
B _t	0.1 T			
I _{pl}	5 kA			
Pulse	1-5s Cu / ss HTS			

ST25

tabletop tokamak

ST25 Tokamak Project

My first installation as magnet Engineer GOLEM project First test of HTS coils on a tokamak

SOFT 2014 – San Sebastian

First Application of High Temperature The Business of Science® Superconducting (HTS) TF Coils on a Tokamak

Steven Ball¹, Alan Sykes², Antti Jokinen¹, Robin Brzakalik¹, Steve Chappell¹, Ziad Melhem¹, Mikhail Gryaznevich², David Kingham², David Hawksworth¹, Andy Twin¹, Gideon Hammond², Steve Daughtry², Paul Apte³, Billy Huang²

ST25-HTS complete system

0.1 Tesla Central field on plasma

Magnetic refrigeration

Adiabatic nuclear demagnetisation cooling, or 'demag' in OI magnet speak

...is a heat cycle...

...analogous to ...

Vapor cycle refrigeration

Vapor cycle refrigeration Rafa3lindo - CC BY-SA 4.0

Multi-magnet system for nuclear demag cooling

I was System Engineer for this highly customised magnet – several firsts for OI magnets

Complete system, successfully installed in 2021 in customer lab

PhD - Heat transfer modelling for quench

My part-time PhD (Maths) with Brunel University (EPSRC/OI funding) started in 2022

HTS quench modelling with Fourier series to allow parallelisation of solution.

$-\nabla^2 u(x,y) = f(x,y)$				
$f(x,y) = \sum_{n=-\infty}^{\infty} f_n(y)e^{inx} \qquad u(x,y) = \sum_{n=-\infty}^{\infty} u_n(y)e^{inx}$				
$-\sum_{n=-\infty}^{\infty} \frac{\partial^2 u_n}{\partial y^2} e^{inx} + \sum_{n=-\infty}^{\infty} n^2 u_n e^{inx} = \sum_{n=-\infty}^{\infty} f_n e^{inx}$				
$-\frac{\partial^2 u_n}{\partial y^2} + n^2 u_n = f_n$				
$f_n = \frac{1}{2\pi} \int_0^{2\pi} f(x, y) e^{-inx} dx$				

0

Thank You!

https://www.oxinst.com/careers/

inclusive • trusted • innovative & progressive • wholehearted