NON-CONFIDENTIAL

EUROPEAN SCHOOL OF MAGNETISM 2023

From Academia to Industry

Insights on the transition

David Salido-Monzú, Senior Scientist @ ABB Corporate Research & ETH Zürich

© Copyright 2023 ABB. All rights reserved. Document ID.: 20230910_ESM_DSM Rev.: 1.0

- Goals & Disclaimers
- Bio
- Research in Industry (an example)
- Research in Academia vs Industry
- The transition
- Conclusions

Introduction

Goals

- Coarse comparative analysis
- Demystifying research (and life) in industry
- Insights on the transition

Disclaimers

- Based on subjective personal experience...
- ...but augmented with external input

- ABB Research as example
 - Underrepresenting...
 - ...but hopefully meaningful
- Motivation for the talk: personal VS ABB PR
- Skewed towards demystifying industry

Background

Bio

- BSc and MSc in Electronics
 - University of Alcalá (Spain) & Mälardalens University (Sweden)
- PhD in Electronics (4 years)
 - "Distributed optical ranging for robot localization"
 - University of Alcalá (Spain)
 - Research visits: MPG (Germany), University of Havana (Cuba), & ETH Zurich (Switzerland)
- Postdoc + senior scientist (8 years)
 - ETH Zürich (Switzerland), Inst. of Geodesy and Photogrammetry
 - Optical metrology: laser ranging, remote spectroscopy, remote material probing...
 - From technical work to research coordination & supervision
- Senior scientist (1.5 years)
 - ABB Corporate Research (Switzerland), Sensing & Analytics
 - Sensing for automation, process control, and digitalization of switchgear

ABB Business Areas

Electrification

Switchgear, transformation, distribution, protection, cabling, sensing, control...

Process Automation

Integrated solutions incl. automation, electrification, control, services...

Motion

Drivers, motors, generation, automation...

Robotics & Discrete Automation

Flexible manufacturing, smart machines...

ABB Research

~300 highly qualified scientists and engineers
7 corporate research and technology centers around the world
Business aligned research with 7 core technologies
>200 technology projects and prestudies
>200 FFs and >200 publications

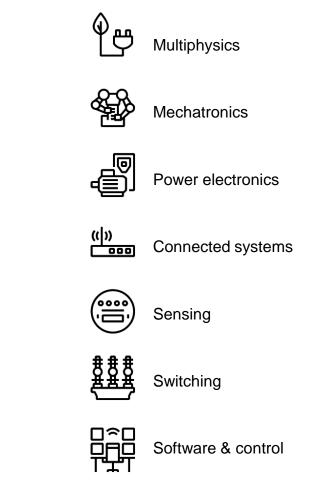
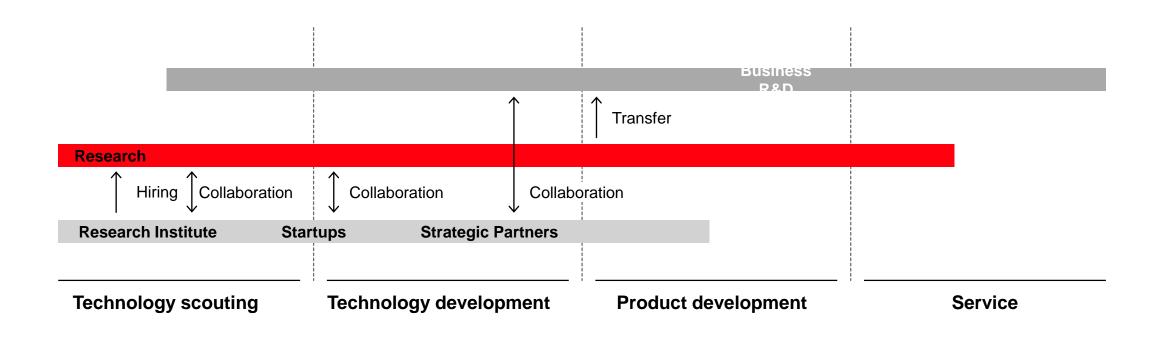


ABB Corporate Research Center Switzerland (CHCRC)

Inaugurated in 1973

104 Employees (74 PhDs)
23 nationalities
29 students
99 internal transfers '14-23'
19 professors '14-23'

50 labs: MV/LV switching Power electronics Thermal management Sensing Materials Gas and water analytics


CHCRC Focus Areas

Power Electronics Energy storage Time [ms] **Sustainability** ╨ă┆ ĸăĹ ABB Purp -150 -100 -50 0 50 100 150 H [A/m] **Intelligent Systems** Switching ← past future →

Career paths

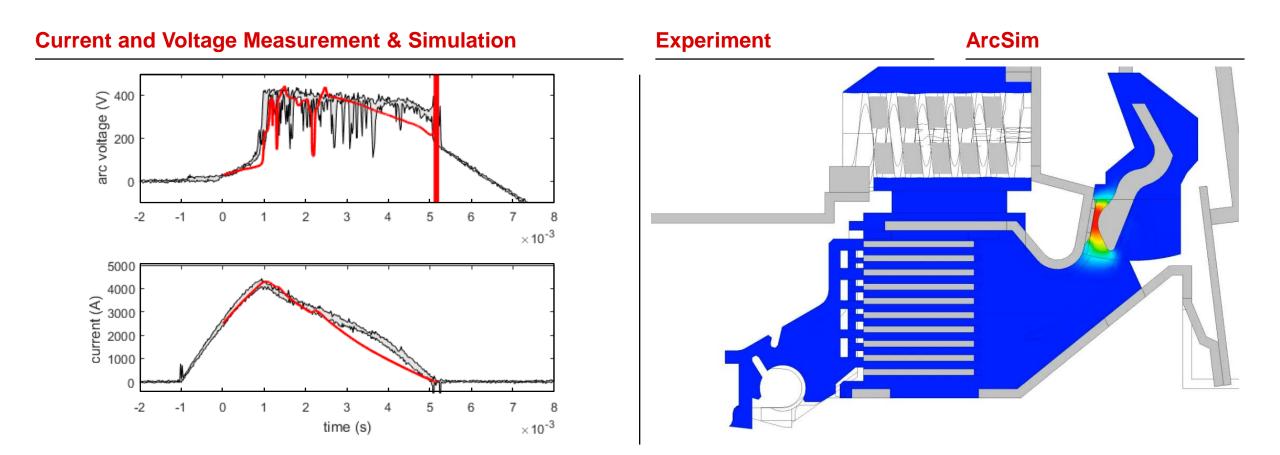
cientific path	Other (relevant) paths	Promotions
Scientist	Similar progressions on:	 Clear regulations on competence assessment for promotions
Senior Scientist	R&D engineering	No-competitive promotions
Principal Scientist	Team/dept. management	Assessed competences:Technical & scientific proficiency
Senior Principal Scientist	Project/product management	Business context and customer centricityInnovation and creativity
Corporate Research Fellow		 Projects, processes, and tools Quality and continuous improvement Teamwork, collaboration, and visibility Knowledge management Intellectual property (IP) management

Research processes

Research processes

Project organization

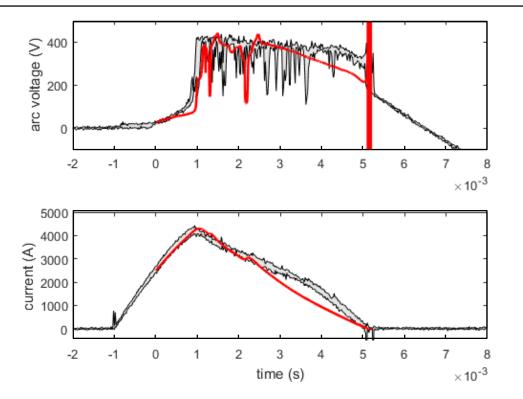
- Drivers & project proposals
 - [80%] Need from business units (not covered by eng. R&D)
 - [20%] Internal proposals for next-to-next technologies

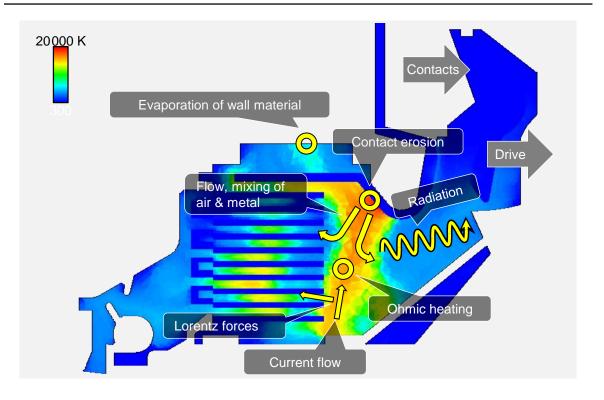

Projects

- 2-4 scientists, often multidisciplinary, lead by team member
- Ca. 1 year
- Outcomes as knowledge transfer + IP or publication
- Project management
 - Gate model (for both agile and waterfall projects)
 - 5 milestones per project (agreement on goals and requirements, plan, approach, validation, transfer)
 - Go/steer/stop on each gate

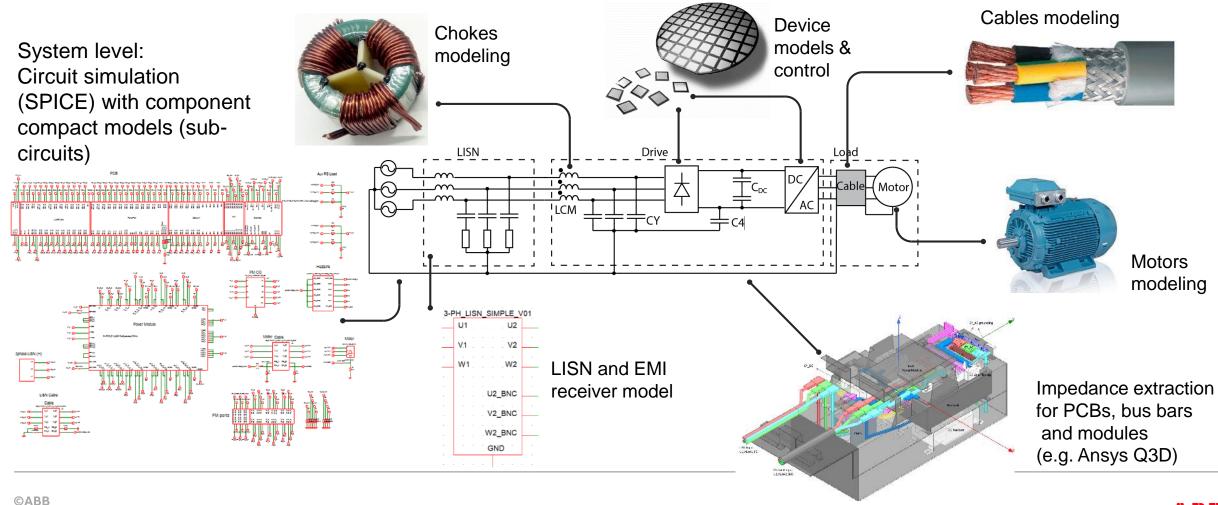
Some typical aspects

- As a scientist, 90% is scientific work:
 - Knowledge build-up
 - Experiments, simulations, coding,....
 - Documentation: Presentations, reports, papers,...
- We work in teams
 - Others are dependent on the results
 - Deadlines have to be kept, for own work and for full project
 - 40h weeks
- Things do not always work out
 - Projects are stopped, work-packages scrapped, "failing fast" is important and a result showing something is not working
 - Sometimes urgent task forces in different topics

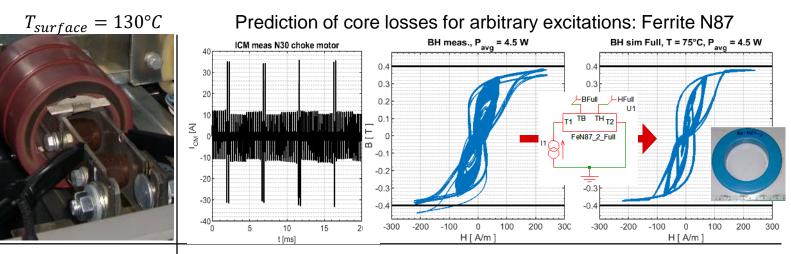

Project examples - Low Voltage arc simulation

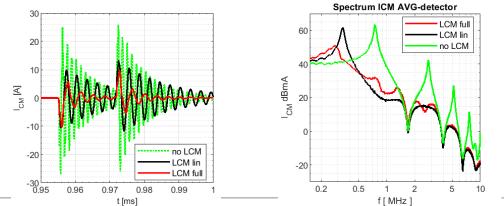

ABI

Project examples - Low Voltage arc simulation

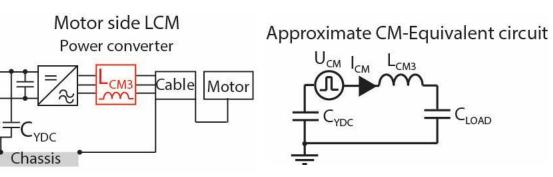

Current and Voltage Measurement & Simulation

Quantities accessible through ArcSim


Project examples - EMC-Modeling of power converters


ABB

Project examples - EMC-Modeling of power converters


- Spice circuits of cores including saturation, hysteresis & eddy currents
- CM-chokes overheated due to core losses
- Need of circuit model to predict filter performance and core losses
- Strong nonlinearity of **ungapped core**, CM current waveform uncontrolled
- Accurate **model** based on physical model

Improved filter performance due to nonlinearity : Ferrite N87

BH characteristics of CM choke on motor cable

©ABB

Research in Academia vs Industry

Some typical differences

Academia	Key differences	Industry
 Make new science Focus on covering knowledge gaps Long-term meaningful Vague outcomes As deep as necessary 	Research focus	 Make science useful Focus on acquiring and applying knowledge Often useful = profitable Short-term results Clear materialized outcomes
 (Mostly) Individual work Personal, intrinsic motivators Independent Less technical and emotional support 	Work dynamics	 (Mostly) Teamwork Extrinsic motivators Many dependencies Team support & energy, joint success
 Long & (often) coarsely managed Up to Prof. & individual skills Prone to feeling unfinished/stagnant 	Project management	 Short & (often) strictly managed Structured & dynamic Progress control, fail fast

Research in Academia vs Industry

Some typical differences

Academia	Key differences	Industry
 Small groups Ad-hoc or inexistent processes Flexibility vs support 	Structure	 (Often) big organization Established processes Support vs barriers to execution
 (Often) single line manager Clear responsibilities but hard to escalate More arbitrary 	Leadership	 Distributed & (often) hierarchic Different stakeholders for different tasks More control of capabilities
 Uncertain until tenure, few fitting options More flexible schedule, tasks, and topics 	Career & life balance	 Stable, time counts, more options More rigid schedule, tasks, and topics
- Life in campus is fun	Environment	- Finish and go home
- Known expert in international community	Visibility	 In-house expert with little external visibility

Research in Academia vs Industry

Typical preconceptions towards industry

• Working for the dark side

- It is all indeed driven by business
- Most sustainability & inclusivity PR is questionable
- External competition but internal collaboration

No proper science

- The majority of PhDs are in industry
- The vast majority are not failed professors
- Highly-qualified experts without external visibility
- No freedom
 - Given and clearly defined goals...
 - ...but freedom to select the approach (convince the receivers)
- No resources
 - Largely different for large company VS startup, but generally sufficient

The transition

Realizing & translating your acquired skills for industry positions

Exploration & search process

- Identify what you enjoy the most and are good at
 - Technical work, coordination, support, communication, outreach...
- Think broader: your capabilities go well beyond your PhD field of expertise
- Consider the diversity of roles beyond pure research
 - Applied R&D, tech. lead, project management, consulting...
- Scout options to materialize the opportunities...
- ...and try out!

© ABB

Profile adaptation (CV & interview)

- Translate your skillset to the receiver's expectations
 - Transferable knowledge: Broader field of expertise
 - Learning capacity
 - Transferable soft skills: Project and time management, independence, inherent motivation, interdisciplinary communication, teamwork...

Counter typical biases toward academic experience

- Strong motivation for teamwork and collaboration
- Curiosity to work in an applied direction
- Ability to get into new topics fast and efficiently
- Show what you have done as a proxy to what you can do

• The majority of options after graduating are not in academia

- Industrial research + other paths
- Big pros and cons (weight strongly subjective)

• There are many opportunities

- Unfortunately not everywhere...
- ... but less geographically restricted for industry

Trust the process and set up experiments to explore options!

