Spin Transfer Torque

by Aurélien Manchon physiquemanchon.wixsite.com

The art of throwing spinning balls

The art of throwing spinning balls

J. C. Slonczewski, Journal of Magnetism and Magnetic Materials 159, L1 (1996)

The art of throwing spinning balls

Current-driven dynamics

 $\partial_t \boldsymbol{m} = -\gamma_0 \boldsymbol{m} \times \boldsymbol{H}_{eff} + \alpha \boldsymbol{m} \times \partial_t \boldsymbol{m} + \tau_{||} \boldsymbol{m} \times (\boldsymbol{p} \times \boldsymbol{m})$

 $\alpha \boldsymbol{m} \times \partial_t \boldsymbol{m} > \tau_{||} \boldsymbol{m} \times (\boldsymbol{p} \times \boldsymbol{m})$ $\alpha \boldsymbol{m} \times \partial_t \boldsymbol{m} < \tau_{||} \boldsymbol{m} \times (\boldsymbol{p} \times \boldsymbol{m})$ $\alpha \boldsymbol{m} \times \partial_t \boldsymbol{m} = \tau_{||} \boldsymbol{m} \times (\boldsymbol{p} \times \boldsymbol{m})$

M relaxes towards H_{eff}
 M switches towards -H_{eff}
 M precesses about H_{eff}

Sun, Journal of Magnetism and Magnetic Materials 202, 157 (1999)

Myers, Science 285, 867 (1999)

I. Spin Transfer Torque II. Current-driven dynamics III. Spin-orbitronics

I. Spin Transfer Torque and Spin Pumping a. Transfer of angular momentum b. Spin pumping

Principle of spin transfer torque

Spin dephasing and spin current absorption (Tutorial)

Quantum mechanical model

Wave function for a given spin $\boldsymbol{\sigma}$

$$\begin{split} \psi^{N}_{\sigma} &= \left[e^{ik_{x}x} + r_{\sigma}e^{-ik_{x}x} \right] e^{i\boldsymbol{\kappa}\cdot\boldsymbol{\rho}} \\ \psi^{F}_{\sigma} &= t_{\sigma}e^{i(k_{x}^{\sigma}x + \boldsymbol{\kappa}\cdot\boldsymbol{\rho})} \end{split}$$

Incoming electron with a given spin direction in (x,z) plane

$$\psi = \cos\frac{\theta}{2}\psi^N_{\uparrow}|\uparrow\rangle + \sin\frac{\theta}{2}\psi^N_{\downarrow}|\downarrow\rangle$$

In metals, the spin torque is mostly "dampinglike"

Stiles and Zangwill, Physical Review B 66, 014407 (2002)

The concept of spin mixing conductance

Basics of circuit theory

Generalization of Ohm's law

- This relation establishes a direction connection between the spin current and the spin accumulation
- All the spin physics (spin precession, &elaxation, dephasing, scattering, magnetic texture etc.) is contained in just two coefficients

Brataas, The European Journal of Physics B 22, 99 (2001) Brataas, Physics Report 427, 157 (2006)

The concept of spin mixing conductance

$$g_{r}^{\uparrow\downarrow} = \frac{e^{2}}{Ah} \sum_{nm} (\delta_{nm} - r_{nm}^{\uparrow} r_{nm}^{\downarrow*})$$
$$g_{t}^{\uparrow\downarrow} = \frac{e^{2}}{Ah} \sum_{nm} t'_{nm}^{\uparrow} t'_{nm}^{\downarrow*}$$

Zwierzycki, Physical Review B 71, 064420 (2005)

Spin Transfer Torque and Spin Pumping a. Transfer of angular momentum b. Spin pumping

Spin transfer torque and spin pumping

Spin transfer torque

Onsager reciprocity

L. Onsager, Physical Review 37, 405 (1931)

Onsager reciprocity

Brataas et al., in Spin Current, eds. Maekawa, Valenzuela, Saitoh, and Kimura (OUP, 2012)

The spin battery (Tutoooorial!)

Wei et al., Nature Communications 5, 3768 (2014)

Some experiments on charge pumping

Noel et al., Nature 580, 483 (2020)

Vaz et al., Nature Materials 18, 1187 (2019) Cornelissen, Nat. Physics 11, 1022 (2015)

II. Current-driven magnetization dynamics a. Switching b. Self-sustained oscillations c. Domain wall motion

Stability diagram and critical switching current

17

Stability diagram and critical switching current

Thermal activation Resistance fluctuation due to superparamagnetism

Stability diagram and critical switching current

Simulation of macrospin switching

Lee et al., Nature Materials 3, 877 (2004)

Strategies to optimize the critical switching current

II. Current-driven magnetization dynamics a. Switching b. Self-sustained oscillations c. Domain wall motion

Beyond current-driven switching

Kiselev, Nature 425, 380 (2003)

Current-driven self-oscillations

Current-driven self-oscillations

J.V. Kim, Spin-Torque Oscillators, in Solid State Physics 63 (2012)

Current-driven self-oscillations

Synchronization between nano-oscillators

Ruotolo, Nature Nanotechnology 4, 528 (2009)

II. Current-driven magnetization dynamics

- a. Switching
- b. Self-sustained oscillations
- c. Domain wall motion

Current-driven magnetic domain wall motion

The basic of field-driven motion

As long as the field torque compensates the demagnetizing damping: steady motion As soon as the field torque exceeds the demagnetizing damping: precessional motio**28**

One-dimensional model

One-dimensional model

Experimental observations

Domain wall motion in permalloy

$$M_s = 800 \ emu/cm^3, \alpha = 0.005$$

 $\Delta = 50 \ nm, P = 0.4$

Transverse wall

Vortex wall

Klaui, Physical Review Letters 95, 026601 (2005)

Pt/Co: Giant negative mobility

Moore, Applied Physics Letters 93, 262504 (2008) Moore, Applied Physics Letters 95, 179902 (2009)

Spin-orbitronics

32

A tale of spinning balls

A tale of spinning balls

A tale of spinning balls

J.W.M. Bush, The aerodynamics of the beautiful game, 2013. In *Sports Physics*, Ed. C. Clanet, Les Editions de l'Ecole Polytechnique, p.171-192.

Spin-orbit in a nutshell

Spin Hall effect

Michel D'yakonov Vladimir Perel'

Because of Mott spin-dependent scattering, a pure spin current can be generated, transverse to the injected current

D'yakonov, Perel Phys. Lett. 35A, 459 (1971) Hirsch, Physical Review Letters 83, 1834 (1999)

37

Three main mechanisms for spin (and anomalous) Hall effects

Berry curvature

Robert Karplus Joaquin Luttinger The wave function's Berry curvature induces an *anomalous velocity* $\boldsymbol{v}_n = \frac{1}{\hbar} \frac{\partial \varepsilon_n}{\partial \boldsymbol{k}} + \frac{e}{\hbar} \boldsymbol{E} \times \boldsymbol{\Omega}_n$ $\sigma_{xy} = -\frac{\hbar e^2}{\Omega} \sum_{n \neq m} \frac{2 \text{Im} \langle n | \hat{v}_x | m \rangle_0 \langle m | \hat{v}_y | n \rangle_0}{(\varepsilon_n - \varepsilon_m)^2} f_n$ The Hall current is *intrinsic* and associated with *interband transitions* $\sigma_n \sim \text{Const}$

$$\rho_{xy} \approx \frac{\sigma_{xy}}{\sigma_{xx}^2} \sim \rho_{xx}^2$$

Karplus, Luttinger, Physical Review 95, 1154 (1954)

Side jump

Luc Berger Scattering against spin-orbit coupled impurities induces an *anomalous velocity* $\widehat{v} = \frac{1}{\hbar} \partial_k \widehat{\mathcal{H}}_0 + \xi_{so} \widehat{\sigma} \times \nabla V_{imp}(\mathbf{r})$ The Hall effect is *extrinsic*, the Hall angle is *proportional* to the scattering rate

$$\theta_{SJ} = \beta \, \frac{m^* \xi_{so}}{\hbar^2 \tau_0}$$

$$\sigma_{xy} \sim \text{Const.}$$

 $\rho_{xy} \approx \frac{\sigma_{xy}}{\sigma_{xx}^2} \sim \rho_{xx}^2$

Berger, Physical Review B 2, 🗆 4559 (1970)

Skew scattering

Nevill Mott

The scattering probability on spin-orbit coupled impurities is also *spin-dependent*

 $P_{\mathbf{k}'\mathbf{k}}^{\sigma\sigma(2)} \sim n_i V_0^3 \mathcal{N}_F \xi_{so} \boldsymbol{\sigma}_{\sigma\sigma} \cdot (\mathbf{k}' \times \mathbf{k})$

The Hall effect is *extrinsic* but the Hall angle is *independent* of scattering time

$$\theta_{SS} = \beta \frac{2\pi}{3} \frac{k_F^2 \xi_{SO}}{\hbar} N_F V_{imp}$$
$$\sigma_{xy} \sim \sigma_{xx}$$
$$\rho_{xy} \sim \frac{\sigma_{xy}}{\sigma_{xx}^2} \Re \rho_{xx}$$

Smit, Physica Review 24, 39 (1958)

Spin Hall effect

Experimental detection of spin Hall effect

Diffusive theory of spin Hall accumulation

$$J_{s} = J_{s} = -\sigma_{0}\partial_{z}\mu_{s} - \theta_{H}J_{c} \otimes \sigma$$
$$\partial_{z}^{2}\mu_{s} = -\frac{\mu_{s}}{\lambda_{sf}}$$

Kato et al., Science 306, 1910 (2004)

Stamm, Physical Review Letters 119, 087203 (2017)

Spin Hall effect

Nonlocal detection

Valenzuela and Tinkham, Nature 44**4**,**0**76 (2006) Kimura et al., PRL **98**, 156601 (2007)

Rashba-Edelstein effect

A toy model for interfacial spin-momentum locking

Consider an atomic chain with p-orbitals

$$\varepsilon_0(k) = \varepsilon_k^0, |0\rangle = \frac{1}{\sqrt{|V_{zz}|^2 + |V_{zx}|^2}} (-V_{zx}|p_z\rangle + V_{zz}|p_x\rangle)$$

The orbital moment of this state reads

$$\langle 0|\boldsymbol{L}|0\rangle = \frac{2V_{zx}V_{zz}}{|V_{\sigma} + V_{\tau}}\langle 0|\boldsymbol{L}|0\rangle = \frac{2V_{zx}V_{zz}}{|V_{zz}|^2 + |V_{zx}|^2}\boldsymbol{y}\frac{1}{k_x a}\sin 2k_x a \boldsymbol{y}$$

Symmetry breaking promotes orbital mixing, and non-vanishing orbital mom41t

See G. Manchon et al., Physical Review B 101, 174423 (2020)

Rashba-Edelstein effect

E. Rashba

Ly

Orbital Rashba effect
$$L_y \sim k_x$$

Spin-orbit coupling $\xi_{so} L \cdot S$

Tadaaa....
$$H_R = -\alpha_R \boldsymbol{\sigma} \cdot (\boldsymbol{z} \times \boldsymbol{k})$$

Lashell et al., PRL 77. 3419 (1996)

Rashba-Edelstein effect

 $\vec{S} \propto \vec{y} \Rightarrow \vec{T} = D\vec{m} \times \vec{S} \propto \vec{y} \times \vec{m}$

Ivchenko & Pikus, Pis'ma Zh. Eksp. Teor. Fiz 27, 604 (1978) Edelstein, Solid State Com. 73, 233 (1990)

Manchon et al., Nature Materials 14, 871 (2015) Bihlmayer et al., Nature Physics Reviews (2022)

Orbitronics: the new frontier?

Orbitronics: the new frontier?

Spin-orbit physics at interfaces

Three interesting consequences
 a. Electrical control of antiferromagnets
 b. Chiral walls and skyrmions
 c. Topological insulators

Spin-orbit torque in antiferromagnets

49

Baltz, Manchon et al., Review of Modern Physics 90, 015005 (2018)

Spin-orbit torque in antiferromagnets

Three interesting consequences
 a. Electrical control of antiferromagnets
 b. Chiral walls and skyrmions
 c. Topological insulators

Chiral domain walls

The domain wall flows along the electron direction The domain wall velocity is much larger than usual Inversion symmetry breaking seem to play a central role

Haazen, Nature Materials 12, 299 (2013)

Chiral domain walls

Ryu, Nature Nanotechnology 8, 527 (2013)

Chiral domain walls

Skyrmion dynamics

MnSi, T<30 K

300 nm 200 nm disks tracks

First observation of

stable skyrmion lattices

in bulk MnSi magnet

Yu Nature 465, 901 (2010)

Mühlbauer Science 323, 915 (2009)

 $(Ir/Co/Pt)_{10}$

Ta/CoFeB/TaOx

Jiang Science 349, 283 (2015) Chen Appl. Phys. Lett. 106, 242404 (2015) Moreau-Luchaire Nature Nanotechnology 11, 444 (2016). Boulle, Nature Nanotechnology 11, 449 (2016) Woo Nature Materials 15, 501 (2016)

Three interesting consequences a. Electrical control of antiferromagnets b. Chiral walls and skyrmions c. Topological insulators

Layman's vision of topological insulators

k

symmetry

57

k

Qi and Zhang, Rev. Mod. Phys. 83, 1057 (2010) Hasan and Moore Annu. Rev. Condens. Matter Phys. 2, 55 (2010)

Three dimensional topological insulators

J. Phys. Chem. C 121, 23551 (2017) Chen, Science 2010

Large spin-orbit torque at room temperature

Mellnik, Nature 511, 449 (2014) Fan, NatMat 13, 699 (2014) Wang, PRL 114, 257202 (2015) Han, PRL 119, 077702 (2017) Mahendra, NatMat 17, 800 (2018)

Ni _{0.8} Fe _{0.2}	Parameters	Bi _x Se _(1-x) (This work)	Bi ₂ Se ₃ Mellnik	β-W	Pt	
	$\sigma_{(\Omega^{-1}m^{-1})}$	0.78×10^{4}	5.7 × 10 ⁴	4.7×10^{5}	4.2×10^{6}	
Interfacial layer	$\sigma_{\rm cur}$ $(\frac{\hbar}{\Omega} \Omega^{-1} { m m}^{-1})$	1.5×10^{5}	2.0 × 10 ⁵	1.9×10^{5}	3.4 × 10 ⁵	
Bi ₂ Se ₃	$\frac{2e}{\theta}$	18.83	3.5	0.4	0.08	
5 nm	$J_{sw} (A/cm^2)$	4.3 × 10 ⁵		1.6 × 10 ⁶	2.85 × 10 ⁷ -10 ⁸	59

BONUS!! Spin torque devices

The many opportunities of spin transfer torque

Spin-torque building blocks

Locatelli et al., Nature Materials 13, 11 (2013)

Magnetic random-access memories

IBM magnetic core memories

Field-driven MRAM

Spin torque-driven MRAM

7 Thermal stability and critical switching current

Nano-oscillators and neuromorphic computing

https://commons.wikimedia.org

Nano-oscillators and neuromorphic computing

Torrejon et al., Nature 547, 428 (2017)