

MAGNETIC MEASUREMENTS: ADVANCED INSTRUMENTATION

Claire Donnelly

European School of Magnetism 2023

7th September 2023, Madrid, Spain

OUR QUESTIONS FOR THIS MORNING'S LECTURES:

OVERVIEW OF (A SELECTION OF) AVAILABLE METHODS

	MFM	Nitrogen vacancy	TEM	MOKE	XMCD (synchrotron)	XMLD (synchrotron)	Spin pol. STM	SEMPA
Contrast	<i>H</i> , surface charges	<i>H</i> , surface charges	$B \perp k$	m	m k	Néel vector $(\boldsymbol{m} \perp \boldsymbol{k})$	m	m
Spatial resoluti	10s of nm Beyond	10s of nm	Single digt nm	100s nm – μms	10s nm (&	10s nm (& below!)	0.1 nm	~5 nm
Depth sensitiv	First video "The Horse in Motion" by Eadweard Muybridge, 1878						ım	
Sample environ	-97					-		allenging, IV & eparation quired
Invasive Sensitive								
Sensitiv					SCHORING	antiferromagnets!		
Cost/ accessibility	Lab-based, accessible	Lab-based, recent commercial examples	Lab based, specialised equipment (10 ⁶ €)	Lab based, accessible	Large scale user facility, Open to all	Large scale user facility, Open to all	Lab-based, Specialised UHV equipment	Lab-based, Specialised UHV equipment

OUR QUESTIONS FOR TODAY:

ADVANCED INSTRUMENTATION? → BEYOND 2D IMAGING...

Higher dimensional investigations?

Vectorial imaging

Magnetisation dynamics

FIRST: WHY DO WE NEED VECTORICAL IMAGING? → THREE DIMENSIONAL TOPOLOGICAL TEXTURES

Skyrmions:

P. Milde et al., Science 340, 6136, (2013).

Well established Typically found in chiral systems

Fert at al., Nature Nanotechnology 8, 154 (2013)

Proposed racetrack devices

P. Milde et al., Science 340, 6136, (2013).

In 3D:

Prospect for complex 3D structure & topological transformations

FIRST: WHY DO WE NEED VECTORICAL IMAGING? → THREE DIMENSIONAL TOPOLOGICAL TEXTURES

Hopfions:

Growing number of theoretical works:

Rybakov et al., arXiv:1904.00250

Sutcliffe PRL 118, 247203 (2017)

Statics, & dynamics:

Liu et al., PRB 98 174437 (2018)

First experimental observations

Kent et al., Nat Comm. 12 1562 (2021)

Kiselev et al., https://doi.org/10.21203/rs.3.rs-2681064/v1

Yu et al., Adv. Mat. (2023)

3D MAGNETIC IMAGING

3D imaging: computed tomography

Guizar-Sicairos et al. Optics Express 19, 21345 (2011)

Recover 1 scalar value for each pixel e.g. electron density

Tensor/ Vector tomography:

Multiple components for each pixel.

- Need more data but what?
- Need new, tailored algorithms

Imaging ferroelectric domains

Karpov et al., Nat.Comm. (2017)

Element-specific tomo Donnelly et al., PRL (2015)

3D SAXS tensor tomo Liebi et al., Nature (2015)

MAGNETIC IMAGING IN 3D

With electrons:

Tanigaki et al., Nano. Lett. 15, 1309 (2015) Hilger et al., Nat. Comm. 9, 4023 (2018) Wolf et al. Chem. Mater. 27, 6771 (2015) Wolf et al., Comm. Phys. 2, 87 (2019)

... neutrons:

Manke et al., Nat. Comm. 1, 125 (2010) Kardjilov et al., Nat. Phys. 4, 399 (2008)

Spatial Resolution:

< 10 nm

Sample thickness:

< 200 nm

Spatial Resolution: ~10-100 µm

Sample thickness: up to mms

... & X-rays:

Streubel et al., Nat. Comm. (2015) Blanco-Roldan et al, Nat Comm. (2015) Donnelly et al., Nature (2017) Suzuki et al., Appl.Phys. Expr. (2018) Hierro-Rodriguez et al., arXiv (2019)

Donnelly et al., Nat. Nano. (2020) Witte et al., Nano Lett. (2020) Seki et al., Nat. Mat (2021) Finizio et al., Nano Lett. (2022) Di Pietro et al., PRB (2023)

Spatial Resolution: ~10 -100 of nm

Sample thickness: Up to 10s of µm

3D imaging: tomography

Guizar-Sicairos et al. Optics Express 19, 21345 (2011)

Ingredients of magnetic tomography? 2D X-ray magnetic imaging

X-ray magnetic circular dichroism:

Stohr, Magnetism: from fundamentals to Nanoscale dynamics (2006)

On resonance: scattering factor dependent on polarisation and \hat{m} !

Stohr, Magnetism: from fundamentals to Nanoscale dynamics (2006)

Combine with microscopy:

C_R 0.182 0.005

Soft X-rays: directly probe valence band \rightarrow strong signal

Hard X-rays: indirectly probe valence band

 \rightarrow weak signal

Question!

How many tomograms do we need?

What data do we need?

New reconstruction algorithm

Sensitive to the component of magnetisation *parallel* to the X-rays

X-rays

To be sensitive to the **y** component, we tilt the sample and remeasure:

X

m

Ζ

Gradient-based iterative reconstruction algorithm

X-RAY MAGNETIC TOMOGRAPHY

Absorption image (C_L)

XMCD image (C_L-C_R)

Pointing away

from us

Pointing towards us

Reconstruct with 100 nm spatial resolution

Donnelly et al., Nature 547, 328 (2017)

X-RAY MAGNETIC TOMOGRAPHY

Topology?

Donnelly et al., Nature **547**, 328 (2017)

UNDERSTANDING: TOPOLOGY

Key: Smoothly deform!

For magnetism?

Are these topologically equivalent?

X-RAY MAGNETIC TOMOGRAPHY

Donnelly et al., Nature **547**, 328 (2017)

100nm

3D MAGNETIC IMAGING

3D vortices & antivortices

Bloch point singularities

Closure domains & topological charge of Bloch points

Hierro Rodriguez et al., Nat. Comm. 11 6382 (2020) MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY Review on 3D magnetic imaging: Donnelly & Scagnoli, J. Phys. D. **32**, 213001 (2020)

Skyrmions & Bobbers

Seki et al., Nature Materials 21, 181 (2022)

IMPORTANCE OF DATA ANALYSIS! FOR EXAMPLE: → INSIGHT INTO TOPOLOGICAL STRUCTURES

Through calculations of the magnetic vorticity Ω :

N. Papanicolaou, NATO ASI Series C404, 151-158 (1993). Cooper, PRL 82 1554 (1999)

Magnetic vorticity Ω = flux of Skyrmion number density

Donnelly et al., Nature 547, 328 (2017) Donnelly et al., Nature Physics 17, 316 (2021)

IMPORTANCE OF DATA ANALYSIS! FOR EXAMPLE: → INSIGHT INTO TOPOLOGICAL STRUCTURES

Through calculations of the magnetic vorticity Ω :

Similar analysis: Hierro-Rodriguez et al., Nature Communications 11 6382 (2020)

Donnelly et al., Nature 547, 328 (2017) Donnelly et al., Nature Physics 17, 316 (2021)

IMPORTANCE OF DATA ANALYSIS! FOR EXAMPLE: → INSIGHT INTO TOPOLOGICAL STRUCTURES

Unexpectedly stable loops:

Cooper, PRL 82 1554 (1999)

Magnetic vortex rings!

WE CAN USE THIS TO UNDERSTAND NEW 3D TEXTURES:

Could it be the topology of the vortex ring?

By plotting "pre-images" in 3D:

Pre-images link 3 times →**Hopf Index H=3** Pre-images don't link →**Hopf Index H=0**

100 nm

z X Y

Multiple vortex rings → magnetostatics key!

BEYOND SIMPLE VORTEX RINGS:

Plotting pre-images:

Observed in liquid crystals alongside hopfions

Ackerman et al., PRX 7 011006 (2017)

Onion shape → toron!

Predicted to be stable alongside hopfions in ferromagnets:

Liu et al., PRB **98** 174437 (2018)

GEOMETRICAL TUNING OF MAGNETIC PROPERTIES

Chirality: DMI Results in exotic chiral states:

Fert, et.al. Nat Rev Mat 2017

Vedmendeko et al, Phys. Rev. Lett., 2014

Until now, mostly required **specific** materials & interfaces

But...

Chirality can also be induced via curvature:

Dietrich et al., PRB **77** 174427 (2008)

Hertel, Spin **3** 1340009 (2013)

And chiral geometries:

APPLY THIS TO 3D NANOSTRUCTURES?

First: we need to fabricate!

 \rightarrow Focused electron beam induced deposition

With CAD designs and a growth model:

Skoric et al.,, Nano Lett. 20, 184 (2020)

(CH₃)₃Pt(CpCH₃)

APPLY THIS TO 3D NANOSTRUCTURES?

Curved surfaces

Sheka et al., Comm. Phys. **3**, 1 (2020).

Topological objects

Gaididei et al., J. Phys. A: Math. Theor. **50**, 385401 (2017).

3D model

Fabricated structure

Skoric et al.,, Nano Lett. 20, 184 (2020)

INFLUENCE OF 3D GEOMETRY ON DOMAIN WALLS

Separated: Dipolar coupled

In the as-grown state:

Anti-parallel helices

After applying a magnetic field:

Trap domain walls...

Donnelly et al., Nature Nanotechnology 17,136 (2022)

AND IF WE LOOK IN 3D?

Image 3D configuration:

Domain walls appear to have reversed...

Micromagnetic simulations: Magnum.fe

OUR QUESTIONS FOR TODAY:

Higher dimensional investigations?

Vectorial imaging

Magnetisation dynamics

Advanced sample environments

> Varying Temperature, Pressure, Magnetic field...

DYNAMICS – WHAT TIME SCALES?

DYNAMICS – WHAT TIME SCALES?

REVIEWS OF MODERN PHYSICS, VOLUME 82, JULY-SEPTEMBER 2010

Ultrafast optical manipulation of magnetic order

Andrei Kirilyuk,* Alexey V. Kimel, and Theo Rasing

Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

There are faster time-scales out there!

Stoehr et al., Magnetism Springer-Verlag, (2006)

TYPES OF DYNAMIC MEASUREMENTS

Brillouin Light Scattering (BLS)

Spin waves = presence of magnons

Information on spin wave dynamics

Single-shot

Measurement sufficiently short to measure relevant dynamics

Need enough statistics!

Need to measure fast enough

Pump-probe

Stroboscopic measurements Look at repetitive processes

https://en.wikipedia.org/wiki/Stroboscopic_effect

SPIN WAVES: SPIN EXCITATIONS

SPIN WAVES

What this leads to:

Spins all precessing at the same frequency

But: out of phase with one another:

 \rightarrow Propagating spin waves

35

SPIN WAVES: HOW TO EXCITE?

Excite spin waves with an antenna

SPIN WAVES: HOW TO EXCITE?

- \rightarrow nanoscale, ideal for spin wave excitation

Mayr et al., *49• • 28• •* ■ □□□□. □□. ☆ ⊗□□□□⊕

MEASURING SPIN WAVES

Brillouin Light Scattering (BLS)

Spin waves = presence of magnons

Information on spin wave dynamics

Brillouin Light Scattering

Scatter photons from surface spin waves of films

Reflected photons give information on spin waves that are created (Stokes) or annihilated (anti-Stokes)

MEASURING SPIN WAVES

Brillouin Scattering – microfocused!

Not limited to coherent spin waves!

Sebastian et al., https://doi.org/10.3389/fphy.2015.00035

TYPES OF DYNAMIC MEASUREMENTS

Brillouin Light Scattering (BLS)

Spin waves = presence of magnons

Information on spin wave dynamics

Single- shot

Measurement sufficiently short to measure relevant dynamics

Need enough statistics!

Need to measure fast enough

Pump-probe

Stroboscopic measurements Look at repetitive processes

https://en.wikipedia.org/wiki/Stroboscopic_effect

IN SITU MEASUREMENTS: CHANGING THE EXCITATION

SINGLE SHOT: SUPERPARAMAGNETISM – OF NANOSTRUCTURES

PEEM Measurement:

seconds → minutes

For patterned nanostructures

Blocking temperature: temperature at which the structures become thermally active.

Artificial spin ice: thermal evolution (slow!)

Farhan et al. Phys. Rev. Lett. 111, 057204 (2013).

SINGLE SHOT/ QUASI-STATIC: NEED STATISTICS! SUPERPARAMAGNETISM – OF NANOSTRUCTURES

For patterned nanostructures

Blocking temperature: temperature at which the structures become thermally active.

Artificial spin ice: thermal evolution (slow!)

PEEM Measurement:

seconds \rightarrow minutes

https://mesosys.mat.ethz.ch/research/ artificial-spin-ice/asi-imaging.html

SINGLE SHOT: NEED STATISTICS! FASTER? → FREE ELECTRON LASER

Free electron laser

Very long accelerator: European XFEL 3.4 km long!

Ultra-bright, ultra-short X-ray pulses

10¹² photons/s

~fs pulse length

FS RESOLUTION FOR DYNAMIC MEASUREMENTS?

Ultra-bright, ultra-short X-ray pulses

10¹² photons/s

~fs pulse length

Why? \rightarrow damage/ non-reproducible dynamics

Powerful for many fields including biology

Future: also apply to magnetisation dynamics, holography & CDI

Challenge: fast detectors, dynamic range!

Neutze et al., Nature 406, 752 (2000)

MORE STATISTICS: PUMP PROBE → STROBOSCOPIC

Key aspect:

Pump: excite the system

Probe: Measure the response of the system

Introduce a time delay in between pump & probe to map out dynamic response

Temporal resolution of probes:						
Laser	Laser Synchrotron					
fs	ps	fs				

DIFFERENT TYPES OF PUMP PROBE

Single pump-single probe (classical method)

- \rightarrow Integrate signal for each time delay
- \rightarrow Require frequencies to match

Pulse Train Pump pulse Sample Detector Probe pulse Variable Delay Stage

Images from: www.klaeui-lab.de

\rightarrow Single pump-multiple probe (TR-STXM)

- \rightarrow Detect response to each individual excitation
- → Pump and probe frequencies don't need to match!

PUMP PROBE IMAGING OF SPIN WAVES

Apply pump-probe techniques to measure *coherent* spin waves:

Time resolved MOKE

- \rightarrow Pump probe rotation of linear polarised light
- \rightarrow ps temporal resolution, 100s nm µm spatial resolution

X-ray microscopy

Synchrotron X-rays

Albisetti et al., ... 3? a 32, 1906439 (2020)

- \rightarrow Time resolved Scanning transmission X-ray microscopy
- \rightarrow Pump-probe XMCD
- \rightarrow Ps temporal resolution, nm spatial resolution

MAGNETIC MICROSCOPY: X-RAYS

X-rays: X-ray magnetic circular dichroisn

Stöhr & Siegmann, Magnetism, From fundamentals Nanoscale Dynamics, Springer (2006)

Element speci

GOING TO THE 4^{TH} DIMENSION:

X-ray magnetic laminography:

Oersted field of stripline

Donnelly et al., Nature Nanotechnology 15 356 (2020)

θ_m (°)

O.

MAPPING MAGNETISATION DYNAMICS IN 3D

Track fast motion (200 m/s) of topological structures with high accuracy

 \rightarrow Map the modes of the magnetisation dynamics

Donnelly et al., Nature Nanotechnology 15 356 (2020)

DIFFERENT TYPES OF PUMP PROBE

Single pump-single probe (classical method)

- \rightarrow Integrate signal for each time delay
- \rightarrow Require frequencies to match

Pulse Train Pump pulse Sample Detector Probe pulse

Images from: www.klaeui-lab.de

- \rightarrow Single pump-multiple probe (TR-STXM)
 - \rightarrow Detect response to each individual excitation
 - \rightarrow Pump and probe frequencies don't need to match!

 \rightarrow Single pump-multiple probe (TR-STXM)

- → Detect response to each individual excitation
- → Pump and probe frequencies don't need to match!

Very fast detector: Avalanche Photo Diode

→ Photon bunches of the multibunch filling pattern (500 MHz repetition rate) can be resolved

 \rightarrow Single pump-multiple probe (TR-STXM)

- \rightarrow Detect response to each individual excitation
- → Pump and probe frequencies don't need to match!

For arbitrary frequency of excitation:

 \rightarrow A temporal sorting of the acquired data is performed with fast electronics

Images provided by Simone Finizio, PSI

 \rightarrow Single pump-multiple probe (TR-STXM)

- \rightarrow Detect response to each individual excitation
- → Pump and probe frequencies don't need to match!

Enables exploration of different dynamic modes in a sample!

 \rightarrow Here, a target skyrmion in a permalloy disc:

142 MHz Gyration

285 MHz Gyration

785 MHz Breathing

928 MHz Gyration

1420 MHz Gyration

1 µm

Images provided by Simone Finizio, PSI Finizio et al., PRB 98, 104415 (2018)

 \rightarrow Single pump-multiple probe (TR-STXM)

- \rightarrow Detect response to each individual excitation
- → Pump and probe frequencies don't need to match!

Enables exploration of different dynamic modes in a sample!

 \rightarrow As well as the switching behaviour of systems:

\rightarrow 1 nm thick Co discs:

SOT-induced magnetization switching

 $B_x = -124 \text{ mT}, \tau_p = 2 \text{ ns}, U_p = \pm 4 \text{ V}$

 $B_x = 94 \text{ mT}, \tau_p = 2 \text{ ns}, U_p = \pm 4 \text{ V}$ 100 nm

Baumgartner et al., Nat. Nano. 12, 980 (2017)

\rightarrow Single pump-multiple probe (TR-STXM)

→ Detect response to each individual excitation

SOT-induced magnetization switching

→ Pump and probe frequencies don't need to match!

Enables exploration of different dynamic modes in a sample!

 \rightarrow As well as the switching behaviour of systems:

 \rightarrow 1 nm thick Co discs:

 $B_x = 94 \text{ mT}, \tau_p = 2 \text{ ns}, U_p = \pm 4 \text{ V}$

Baumgartner et al., Nat. Nano. 12, 980 (2017)

GOING TO THE 4^{TH} DIMENSION:

X-ray magnetic laminography:

Track topological structures with high accuracy

Map out coherent rotation modes

Harness TR-STXM: Image different resonant modes in 3D:

3D vortex core gyration

Domain wall excitation

Donnelly et al., Nature Nanotechnology **15** 356 (2020) Finizio, CD et al., Nano Letters **25**, 1971 (2022)

SPIN WAVES IN 3D?

Davide Girardi

Daniela Petti

Resolving the three dimensional structure of spin waves in a SAF

Reveal 3D interference pattern of spin waves

Girardi, CD et al., In review

TEMPORAL RESOLUTION OF SYNCHROTRON MEASUREMENTS: "TIME OF ARRIVAL STXM"

Electron bunches: Finite width ~ 70 ps (SLS)

S. Finizio *et al.*, J. Syn. Rad. **27**, 1320 (2020)

What if we could detect each photon?

- \rightarrow Detect with 10 ps resolution
- → 30 ps temporal resolution confirmed
 - → Beyond the resolution of the synchrotron!
- → Power of advanced electronics

counts

APD count

Normalized amplitude

OUR QUESTIONS FOR TODAY:

Higher dimensional investigations?

Vectorial imaging

Magnetisation dynamics

WHAT TIMESCALES ARE WE ON?

REVIEWS OF MODERN PHYSICS, VOLUME 82, JULY-SEPTEMBER 2010

Ultrafast optical manipulation of magnetic order

Andrei Kirilyuk,* Alexey V. Kimel, and Theo Rasing

Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

There are faster time-scales out there!

Stoehr et al., Magnetism Springer-Verlag, (2006)

GOING ULTRAFAST

So far, we have looked at thermal and magnetic field/ current driven dynamics down to ps

 \rightarrow However, when excited by a femtosecond laser, spin dynamics can be sub-pico second!

FEMTOSECOND DYNAMICS: ULTRAFAST DEMAGNETISATION

Nickel

- \rightarrow Demagnetisation in sub-ps time scale
- \rightarrow Recovers ~ ps

Beaurepaire et al., Phys. Rev. Lett. 76, 4250 (1996)

Gadolinium

 \rightarrow Demagnetisation in 10/100 ps timescale

Wietstruk et al. Phys. Rev. Lett. 106, 127401 (2011)

ULTRAFAST: WHAT'S HAPPENING?

Longer time scales:

Spin & lattice in equilibrium

Fast time scales:

Lattice-driven spin demagnetisation!

Electrons act as heat bath for spin system

 \rightarrow Effective heating of the spins above the Curie temperature

Ni vs Gd?

Normalized remanence

0.5

0

Magnetic moment ~ Angular momentum

Moment of Gd larger (7.3 vs 1.26 µB) Rate of change of L ~ similar

ULTRAFAST: WHAT'S HAPPENING? → X-RAY HOLOGRAPHY

Resolve demagnetization propagation front: Moves at 0.2 nm/fs

C. von Korff Schmising PRL 112, 217203 (2014)

ULTRAFAST DYNAMICS: SWITCHING?

- → Helicity independent, single shot switching
- → Single shot: how fast?

Fast switching!

- → Multi-pulse, helicity dependent optical switching
- → ~ms

El Hadri et al, Phys. Rev. B , 94, 064412 (2016)

ALL-OPTICAL SWITCHING

GdFeCo:

Reproducible switching back and forth

Imaging with MOKE

Ostler et al., Nat. Commun. 3, 666 (2012)

ULTRAFAST ALL-OPTICAL SWITCHING

Key: ferrimagnet?

Use element-specific XMCD probe

Femto-slicing beamline for soft x-rays

Reveals:

Fe and Gd demagnetise on different timescales

- \rightarrow Transient ferromagnetic state
- \rightarrow Drives robust switching process

Radu et al., Nature 472, 205 (2011)

APPLICATION OF PRESSURE: FAST & SLOW

Diamond Anvil Cell

Possible to apply up to ... in situ Mechnical motion \rightarrow slow

Time-resolved lattice dynamics

Laser induced control of strain \rightarrow fast!

OUR QUESTIONS FOR TODAY:

Higher dimensional investigations?

Vectorial imaging

Magnetisation dynamics

OUR QUESTIONS FOR THIS MORNING'S LECTURES:

Spatial resolution Sample environments Time resolution

What methods are available?

Choosing the method for me and my samples?

