



## **MAGNETIC MICROSCOPY**

**Claire Donnelly** 

**European School of Magnetism** 

7th September 2023, Madrid, Spain



#### QUICK INTRO TO ME ③

#### Spin3D





Max Planck Institute for Chemical Physics of Solids (MPI-CPfS) Dresden, Germany

#### → Three dimensional magnetic systems



#### MAGNETISM: FROM 2D ... TO 3D

Three dimensional topological textures



Rybakov., arXiv:1904.00250

Fernandez-Pacheco et al., Nat. Comm. 8, 15756 (2017)

M(x, y)

#### **Opportunities for devices**



Parkin et al., Science 320,190 (2008) Geometrical tuning of magnetic properties



Sheka et al., Small **18**, 2105219, (2022)



### **TOOLS FOR MAGNETIC TEXTURES**



## \* We often make use of synchrotron X-rays!

### Fabricating them?





#### **RECORDING 2D IMAGES IMPORTANT!**











MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY



#### **RECORDING 2D IMAGES IMPORTANT!** → **THANKS RON!**







#### WHY MAGNETIC MICROSCOPY?





#### WHAT ARE WE RECORDING IN MAGNETS?



Pierre Weiss, 1907

Magnetic materials appear "non-magnetic"

 $\rightarrow$  presence of magnetic domains



#### CONFIRMED WITH FIRST MAGNETIC MICROSCOPY: THE BITTER METHOD

#### Put ferrofluid on top of a magnet



Lemos et al., Materials Science Forum Vol. 802 (2014)



#### NOWADAYS...

## MAGNETIC MICROSCOPY PLAYS KEY ROLE!



Wang et al., Nature (2006)



Matsumoto et al., Science Advances (2016)



Donnelly et al., Nature 547, 328 (2017)



Soldatov & Schäfer, Rev. Sci. Instrum. (2017)



Chmiel et al., Nature Materials 17, 581 (2018)



#### MAGNETIC MICROSCOPY: HOW DO WE CHOOSE OUR METHOD?





### **OUR QUESTIONS FOR THIS MORNING'S LECTURES:**



### Spatial resolution Sample environments Time resolution

# What methods are available?



# Choosing the method for me and my samples?





#### MAGNETIC MICROSCOPY: HOW DO WE CHOOSE OUR METHOD?





### SPATIAL RESOLUTION: WHAT DO WE NEED?





#### **QUICK DISCUSSION OF SPATIAL RESOLUTION...**

### **Question!**

What determines our resolution?

Our pixel size? Or our lens?



### **QUICK DISCUSSION OF SPATIAL RESOLUTION...**



#### **Optical resolution** Not enough **Barely enough** Enough spatial resoution spatial resoution spatial resoution Image: 120 x 120 pixels Image: 120 x 120 pixels Image: 120 x 120 pixels Feature size: 22 pixel Feature size: 22 pixels Feature size: 22 pixels PSF ~ 35 pixels PSF ~ 20 piexels PSF ~ 2 pixels **Observed** image

https://imaging.rigaku.com/blog/improve-resolution-x-ray-ct-images

We need both!

Small enough pixels

High enough optical resolution







MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY



### **MEASURING SPATIAL RESOLUTION**

#### **Resolving two features**

Need two features to resolve...



Nyquist sampling: pixel size < feature size/2

https://www.princetoninstruments.com/learn/camer a-fundamentals/pixel-size-and-camera-resolution

#### **Edge sharpness**

Sharpness is a convolution of

- a) the real edge width
- b) the spatial resolution Object









https://imaging.rigaku.com/blog/improve-resolutionx-ray-ct-images

#### **Fourier Ring Correlation**

Take 2 independent images, compare cross correlation as a function of spatial frequency. Dependent on pixel size





#### Q & A: CAN WE MEASURE EXPERIMENTALLY THE DOMAIN WIDTH WHEN IN THE NM SCALE?

**Answer: It depends!** 

 $\rightarrow$  Measured width = Convolution of spatial resolution & Domain wall width

→ Either:

 $\rightarrow$  Know that you have sufficient resolution (and that width = N\*spatial resolution)

#### Or

 $\rightarrow$  Know the expected domain wall width, & compare.

Domain wall width:  $\Delta \sim \pi \sqrt{A/K}$ Hard: 2-3 nm  $\rightarrow$  Soft: 10s to 100s nm

- $\rightarrow$  We need a spatial resolution from 10s of nm, to ~1 nm
- $\rightarrow$  Let's keep this in mind!



### **OUR QUESTIONS FOR THIS MORNING'S LECTURES:**





### AIM OF TODAY: WE'LL FILL OUT...

|                        | MFM | Nitrogen<br>vacancy | TEM | MOKE | XMCD<br>(synchrotron) | XMLD<br>(synchrotron) | Spin pol.<br>STM | SEMPA |
|------------------------|-----|---------------------|-----|------|-----------------------|-----------------------|------------------|-------|
| Contrast               |     |                     |     |      |                       |                       |                  |       |
| Spatial resolution     |     |                     |     |      |                       |                       |                  |       |
| Depth<br>sensitivity   |     |                     |     |      |                       |                       |                  |       |
| Sample<br>environment  |     |                     |     |      |                       |                       |                  |       |
| Invasive               |     |                     |     |      |                       |                       |                  |       |
| Sensitivity            |     |                     |     |      |                       |                       |                  |       |
| Cost/<br>accessibility |     |                     |     |      |                       |                       |                  |       |



#### WE CAN THINK ABOUT WHAT IS PROBED:

**B** probes

Electrons, scanning probe, Bitter method...

 $B = \mu_0(M + H)$ 

**M** probes

Magneto-optics, spin-polarised STM, SEM with polarisation analysis

Scanning probe









 $B = \mu_0(M + H)$ 





#### **SCANNING PROBES OF B:**

### **MAGNETIC FORCE MICROSCOPY**





Cantilever with magnetic tip

### **MAGNETIC FORCE MICROSCOPY**

Scan an oscillating cantilever with magnetic tip over surface of a sample

First pass: get topography

(van der Waals)

MFM Pass I



Second pass lifted higher: get long-range magnetic

x



Tip sample interactions change the cantilever oscillation, observed as a phase shift in the oscillation

Spatial resolution: determined by tip. Roughly 50 nm (down to ~10 nm)

Measure surface charges

& buried configuration!

\* Long range interaction

Kasakova et al., Journal of Applied Physics **125**, 060901 (2019)



#### **MAGNETIC FORCE MICROSCOPY**

#### Nanomagnet arrays:

Wang et al., Nature (2006)

Magnetic domains,

Duong et al., APL (2019)

skyrmions:



## Patterned magnetic micro/nanostructures:

Magnetic vortices



Shinjo et al., Science (2000)



### **MAGNETIC FORCE MICROSCOPY**

#### Take Home Messages of MFM

- High spatial resolution imaging of magnetic surface charges

- Tip can interact with sample surface – change state, control sample!



- Limited to ~flat samples - could need higher sensitivity -

|                        | MFM                              |
|------------------------|----------------------------------|
| Contrast               | H, surface charges               |
| Spatial resolution     | 10s of nm                        |
| Depth<br>sensitivity   | Surface sensitive                |
| Sample<br>environment  | Field, cryo, electrical contacts |
| Invasive               | Yes                              |
| Sensitivity            | Medium                           |
| Cost/<br>accessibility | Lab-based, accessible            |



#### **SCANNING PROBES OF B:**

### NITROGEN VACANCY MICROSCOPY





- Diamond tip, with a defect in the lattice:
- Prepare a particular quantum state, probe the field splitting of the state:
- Very sensitive: can detect a single electron spin ~nms from NV centre!
- Non-invasive





#### **SCANNING PROBES OF B:**

### NITROGEN VACANCY MICROSCOPY



https://www.fkf.mpg.de/7721404/NV-Magnetometry

- Defect behaves as an artificial atom
- Spin triplet ground state
  - Magnetic sensitivity & long spin coherence
- Optical readout
- Zeeman splitting = sensitivity to magnetic field



#### Optical image of tip:



Maletinsky et al., Nat. Nano., 7, 320 (2012)

### NITROGEN VACANCY MICROSCOPY

#### Ferromagnetic domain imaging:



Finco et al., PRL (2022)

#### Anti-ferromagnetic domains & domain walls:



Hedrich et al., Nature Physics (2021)

Spatial resolution: determined by tip (distance to NV centre). Roughly 50 nm (down to ~10 nm)

High sensitivity



### NITROGEN VACANCY MICROSCOPY

#### Take Home Messages of NV Magnetometry

- High spatial resolution imaging of magnetic surface charges
- Highly sensitive can even measure antiferromagnetic domain walls!
- Limited to ~flat samples new technique, continuous development –

|                        | NV Microscopy                               |
|------------------------|---------------------------------------------|
| Contrast               | H, surface charges                          |
| Spatial resolution     | 10s of nm                                   |
| Depth<br>sensitivity   | Surface sensitive                           |
| Sample<br>environment  | Field, ~cryo, electrical contacts (in dev.) |
| Invasive               | No                                          |
| Sensitivity            | High!!                                      |
| Cost/<br>accessibility | Lab-based, recent commercial examples       |





 $B = \mu_0(M + H)$ 





### **ELECTRON MICROSCOPY OF B:**

#### **TRANSMISSION ELECTRON MICROSCOPY**



In dedicated labs, millions of euros Highly intense source of electrons

Capable of (non-magnetic) resolution with sub-atomic resolution







Mundy et al., Nature 537, 523 (2016)

#### JEOL ARM 200F



#### **ELECTRON MICROSCOPY OF B:**

#### **TRANSMISSION ELECTRON MICROSCOPY**

**Question!** 

What determines our resolution?

Wavelength?



### **ELECTRON MICROSCOPY OF B:**

#### **TRANSMISSION ELECTRON MICROSCOPY**



In dedicated labs, millions of euros Highly intense source of electrons Capable of (non-magnetic) resolution with sub-atomic resolution

Lorentz

Electron holography

JEOL ARM 200F



### **MAGNETIC TEM: LORENTZ MICROSCOPY**

#### Lorentz microscopy:

Transmission electron microscopy:

Electrons deflected by Lorentz force:

 $\boldsymbol{F}_{Lorentz} = q(\boldsymbol{v} \times \boldsymbol{B})$ 



Image plane intensity

Transevese domain wall

Vortex domain wall



Togawa et al., Proc. SPIE 7036, Spintronics, 703617 (2008)



### **MAGNETIC TEM: ELECTRON HOLOGRAPHY**

#### **Electron holography:**

#### Aharonov–Bohm effect:

Electrically charged particle affected by an electromagnetic potential, which leads to a change in phase of the wavefunction of the particle.

- → If you can reconstruct the phase of an electron, you can directly reconstruct the magnetic vector potential
- → In-plane components of magnetic field B



Togawa et al., Proc. SPIE 7036, Spintronics, 703617 (2008)

#### Spatial resolution: single digit nm

Wavelength of an electron ~ pm. Not the limiting factor!


### **MAGNETIC TEM: ELECTRON HOLOGRAPHY**

#### Magnetic skyrmions



Matsumoto et al., Science Advances (2016)

#### Cobalt nanospirals



Phatak et al., Nano Letters (2014)

#### Magnetic nanoparticles



Almeida et al., Science Advances (2016)



### **TRANSMISSION ELECTRON MICROSCOPY**

#### Take Home Messages of Transmission Electron Microscopy

- Very high spatial resolution imaging of magnetic induction

(single digit nm)

- Probe of induction perpendicular to direction of propagation of electrons
- Can also provide high resolution imaging of atomic lattice
- Limited to 100nm thick samples Application of in situ fields difficult –

|                        | TEM                                                      |
|------------------------|----------------------------------------------------------|
| Contrast               | $B \perp k$                                              |
| Spatial resolution     | Single digt nm (or below!)                               |
| Depth<br>sensitivity   | Thin samples ~<100 nm                                    |
| Sample<br>environment  | ~cryo, electrical contacts (in dev.). Fields challenging |
| Invasive               | No                                                       |
| Sensitivity            | Medium                                                   |
| Cost/<br>accessibility | Lab based, specialised equipment (10 <sup>6</sup> €)     |





 $B = \mu_0(M + H)$ 



**Durham Magneto Optics** 

MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY

### **IN THE LAB: MAGNETO-OPTICS**

Laser as source of photons Relatively low cost, accessible

40

Table-top setup





**Evico Magnetics** 







In transmission: Faraday effect

Linear polarised light incident on magnetic material:



- $\rightarrow$  *Rotation* of the linear polarisation
- $\rightarrow$  Ellipticity of the light

Measure this rotation  $\rightarrow$  probe the magnetisation // k



#### **Spatial resolution**:

limited by wavelength of light ~hundreds of nanometres

McCord J. Phys. D: Appl. Phys. 48 (2015) 333001

In reflection: Kerr effect





Measure this rotation  $\rightarrow$  probe the magnetisation // k





### **MOKE MICROSCOPY**

MOKE signal depends on **k** 

#### In-plane and out of plane domains



Soldatov & Schaefer, Review of Scientific Instruments 88, 073701 (2017)

#### Dynamic imaging of microstructures



Urs et al., AIP Advances (2016)





### Q & A: WHAT IS THE PENETRATION DEPTH FOR KERR. HOW TO OBSERVE A DOMAIN WALL AT THE INTERFACE WITH A THICKER FILM, SAY, 40NM?

#### $\rightarrow$ Penetration depth of MOKE is approximately 10-20 nm for metals

- $\rightarrow$  Can probe thin materials & multilayers
- $\rightarrow$  40 nm: perhaps better to go for X-rays



MOKE signal disappears for > 40 nm of capping layer MOKE signal plateaus for > 40 nm of Co layer





### **MAGNETO-OPTICAL MICROSCOPY**



|                        | Magneto optics                                  |
|------------------------|-------------------------------------------------|
| Contrast               | m                                               |
| Spatial resolution     | 100s nm – µms                                   |
| Depth<br>sensitivity   | Surface sensitive                               |
| Sample<br>environment  | Field, ~cryo, electrical contacts (in dev.), TR |
| Invasive               | No                                              |
| Sensitivity            | High                                            |
| Cost/<br>accessibility | Lab based, accessible                           |





 $B = \mu_0(M + H)$ 





### SPIN POLARISED SCANNING TUNNELLING MICROSCOPY



- $\rightarrow$  Voltage applied between tip and sample
- $\rightarrow$  Electrons tunnel from tip to sample.
- → Highly sensitive to distance to tip, and material
- → Tip-sample separation:  $\sim$ 0.4 0.7 nm
- → Spatial resolution: 0.1 nm!

https://en.wikipedia.org/wiki/Scanning\_tunneling\_microscope



### SPIN POLARISED SCANNING TUNNELLING MICROSCOPY

- $\rightarrow$  Voltage applied between tip and sample
- $\rightarrow$  Electrons tunnel from tip to sample.
- → Highly sensitive to distance to tip, and material
- → Tip-sample separation:  $\sim$ 0.4 0.7 nm
- → Spatial resolution: 0.1 nm!
- → Tunnelling probability higher if magnetisation of tip parallel to magnetisation of sample



#### By ST\_surf, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=70795756

#### Atomic magnetic resolution requires:

- Atomically sharp, spin polarised tip
- Direction of moment well defined
- Low enough moment to not disturb sample
- $\rightarrow$  Ultra high vacuum, high stability



### **SPIN POLARISED STM**

High resolution (atomic scale!) magnetic imaging of...



Skyrmions in ultra-thin PdFe/Ir(111)

Romming et al., Phys. Rev. Lett. **114**, 177203 (2015)

#### Helical textures in MnGe



Repicky et al., Science



### SPIN POLARISED SCANNING TUNNELLING MICROSCOPY

#### Take Home Messages of Spin Polarised STM

- High spatial resolution imaging of magnetisation
  - Can resolve atomic lattice
  - Highly surface sensitive  $\rightarrow$  0.1 nm
    - Highly sensitive
    - Specialised, UHV equipment

|                        | Spin Pol. STM                           |
|------------------------|-----------------------------------------|
| Contrast               | m                                       |
| Spatial resolution     | 0.1 nm                                  |
| Depth<br>sensitivity   | 0.1 nm                                  |
| Sample<br>environment  | Cryo, field                             |
| Invasive               | No                                      |
| Sensitivity            | High                                    |
| Cost/<br>accessibility | Lab-based,<br>Specialised UHV equipment |



### SEMPA: SCANNING ELECTRON MICROSCOPY WITH POLARISATION ANALYSIS

Scanning electron microscope + polarisation analyser



Oepen et al., J. Vac. Sci. Technol. B, 20, 6 (2002)



### SEMPA: SCANNING ELECTRON MICROSCOPY WITH POLARISATION ANALYSIS

Cross-tie walls in microstructures



Oepen et al., J. Vac. Sci. Technol. B, 20, 6 (2002)

Mapping chiral domain walls & skyrmions





Seng et al., Adv. Funct. Mat., 31, 2102307 (2021)

Measuring 3D magnetic nanostructures





Williams et al., Nano Research 11, 845 (2018)



### SCANNING ELECTRON MICROSCOPY WITH POLARISATION ANALYSIS

#### Take Home Messages of SEMPA

- High spatial resolution imaging of magnetisation
  - Highly surface sensitive  $\rightarrow$  1 nm
    - Highly sensitive
    - Specialised, UHV equipment

| SEMPA                                   |
|-----------------------------------------|
| m                                       |
| ~5 nm                                   |
| 1 nm                                    |
| Challenging, UHV & preparation required |
| No                                      |
| High                                    |
| Lab-based,<br>Specialised UHV equipment |
|                                         |





 $B = \mu_0(M + H)$ 





### LARGE SCALE FACILITIES: SYNCHROTRON X-RAYS

#### Synchrotron light sources:



Swiss Light Source, PSI



Balerna, Mobilio Intro. Synch. Rad



### **MAGNETIC MICROSCOPY @ SYNCHROTRONS**



#### Synchrotron X-ray microscopy









X-rays: X-ray magnetic circular dichroism Circular polarised light: angular momentum ±ħ

This time, resonant!



Stöhr & Siegmann, Magnetism, From fundamentals to Nanoscale Dynamics, Springer (2006)



On resonance:

scattering factor dependent on polarisation and m!



### **Question!**

# Which direction of **m** are we sensitive to?



X-rays: X-ray magnetic circular dichroism Circular polarised light: angular momentum ±ħ

This time, resonant!

- Element specific
- Can penetrate thicker samples





Donnelly et al., PRB 94, 064421 (2016)

Stöhr & Siegmann, Magnetism, From fundamentals to Nanoscale Dynamics, Springer (2006)



### X-RAY MAGNETIC CIRCULAR DICHROISM: ELEMENT SPECIFICITY

#### Key Advantage of X-rays: Element specificity



https://www-ssrl.slac.stanford.edu/stohr/xmcd.htm

## → Different elements can be targeted separately

For ferrimagnets: Ferrimagnetic skyrmions in DyCo\_3 film

M<sub>z</sub>=1 0 -1

Luo et al., Comm. Phys. 6, 218 (2023)

And synthetic antiferromagnets: Synthetic antiferromagnetic skyrmion:



Juge et al., Nat. Comm. 13, 4807 (2022)



### X-RAY MAGNETIC CIRCULAR DICHROISM: SPIN & ORBITAL

As well as measuring something proportional to m, it provides a quantitative measure of the magnetic moment!





### **X-RAY MAGNETIC CIRCULAR DICHROISM:**





### And the microscopy?



Advantage of X-rays: highly penetrating, so can look through "thick" samples

Also disadvantage: small refractive index means hard to create optics!

Fresnel Zone Plate:



Nanofabrication determines spatial resolution





Baumgartner et al., Nat. Nano. 12, 980 (2017)



Alternative ways to obtain high resolution:



#### **Coherent diffractive imaging** Holography Tuesday STXM image 12-sep. 20 µm pinhol Mask and sample **Advanced Fabrication** SiN, membrar Magnetic film **Denys Makarov** Tripathi et al., PNAS 108, 33 (2011) Eisebitt et al., Nature 432, Advanced k-space instrumentation (scatter. & photoemission) Spatial resolution: not limited by wavelength! But by signal/ focusing optics, depending on technic **Nicolas Jaouen**

~ 20 nm routinely achievable

### **PEEM: PHOTO EMISSION ELECTRON MICROSCOPY**

 $\rightarrow$  ask Sandra for more details :) Screen x-ray beam **Projection lens** objective illumination selected area aperture aperture contrast aperture screen Aperture electron gun LEED/LEEM projector **Objective lens** transfer condensor field lenses **Photoelectrons** intermed. sector field lenses analyzer Circularly Sample polarised X-rays

Donnelly & Scagnoli, J. Phys. D. (2020)

E. Bauer, Surface Microscopy with Low Energy Electrons, Springer, (2014)



In reality, much more complicated...



### **PEEM: PHOTO EMISSION ELECTRON MICROSCOPY**



 $\rightarrow$  Surface sensitive technique:

Depth determined by escape depth of electrons ~ few nm

#### 2D artificial spin ice $\sim$ 2-3 nm thick:



And for 3D structures – with shadow PEEM!







De Col et al. PRB (2013)



Skoric et al. ACS Nano (2022)



### HIGH SPATIAL RESOLUTION: COHERENT DIFFRACTIVE IMAGING → PTYCHOGRAPHY

Take a large coherent beam, and measure coherent diffraction patterns for overlapping illuminations





→ Significant increase in spatial resolution, sensitivity

#### $\rightarrow$ Reconstruct complex transmission function

Urqyuhart, ACS Omega 7, 11521 (2022)

![](_page_69_Picture_0.jpeg)

### **DICHROIC X-RAY MAGNETIC PTYCHOGRAPHY**

Take a large coherent beam, and measure coherent diffraction patterns for overlapping illuminations

![](_page_69_Figure_3.jpeg)

Apply to magnetic imaging:

#### 7 nm spatial resolution imaging of magnetotactic bacteria:

![](_page_69_Picture_6.jpeg)

#### $\rightarrow$ Reconstruct complex transmission function

Hitchcock, Journal of Electron Spectroscopy and Related Phenomena 200, 49 (2015)

### **DICHROIC X-RAY MAGNETIC PTYCHOGRAPHY**

![](_page_70_Figure_1.jpeg)

![](_page_70_Picture_2.jpeg)

![](_page_70_Figure_3.jpeg)

Co/Pt Multilayer Grown by Ales Hrabec

Soft X-ray spectro-ptychography: 108 @ Diamond

> **Absorption XMCD contrast**  $\rightarrow$  at maximum absorption

![](_page_70_Figure_7.jpeg)

Scherz et al., PRB 76, 214410 (2007) Donnelly et al., PRB 94, 064421 (2016) Neethirajan et al., Submitted

![](_page_70_Figure_9.jpeg)

![](_page_71_Picture_0.jpeg)

### X-RAY MAGNETIC MICROSCOPY: XMCD

### Take Home Messages of Synchrotron X-ray microscopy: XMCD

- High spatial resolution imaging of magnetisation
- Element-specific can target different elements in a sample
  - Can penetrate through thick samples, up to micrometres
- Can combine with time-resolution to probe picosecond dynamics
  - Requires submission of beamtime proposal for user beamtime –

|                        | X-ray magnetic circular<br>dichroism             |
|------------------------|--------------------------------------------------|
| Contrast               | <i>m</i>    <i>k</i>                             |
| Spatial resolution     | 10s nm (& below!)                                |
| Depth<br>sensitivity   | nm - µms                                         |
| Sample<br>environment  | Field, ~cryo, electrical contacts (in dev.), TR  |
| Invasive               | No                                               |
| Sensitivity            | High, element sensitive                          |
| Cost/<br>accessibility | Large scale user facility,<br><b>Open to all</b> |


### MAGNETIC MICROSCOPY: X-RAYS BEYOND M...

On resonance:

There exist higher order terms in the magnetic scattering factor:

"Electronic" XMCD: Circular dichroism  $f = f_c(\boldsymbol{\epsilon}_f^* \cdot \boldsymbol{\epsilon}_i) - i f_m^{(1)} (\boldsymbol{\epsilon}_f^* \times \boldsymbol{\epsilon}_i) \cdot \mathbf{m}(\mathbf{r}) + f_m^{(2)} (\boldsymbol{\epsilon}_f^* \cdot \mathbf{m}(\mathbf{r})) (\boldsymbol{\epsilon}_i \cdot \mathbf{m}(\mathbf{r}))$ 

XMLD: Linear dichroism



Linear polarised light:

J. Kunes et al. JMMM 272, 2146 (2004)



## **MAGNETIC MICROSCOPY: ANTIFERROMAGNETS**

#### XMLD-PEEM

CuMnAs:

SPINTRONICS



Krizek et al., Science Advances, 8, 13 (2022)



## **MAGNETIC MICROSCOPY: ANTIFERROMAGNETS**

XMLD-PEEM



 $\rightarrow$  Vector map of Neel vector

 $\rightarrow$  Identify topological defects in hematite





Chmiel et al., Nature Materials 17, 581 (2018)



## X-RAY MAGNETIC MICROSCOPY: XMLD

### Take Home Messages of Synchrotron X-ray microscopy: XMLD

- High spatial resolution imaging of Néel vector
- Element-specific can target different elements in a sample
- Can combine with time-resolution to probe picosecond dynamics
  - Requires submission of beamtime proposal for user beamtime –

|                        | X-ray Magnetic Linear<br>Dichroism                  |
|------------------------|-----------------------------------------------------|
| Contrast               | Néel vector $(\boldsymbol{m} \perp \boldsymbol{k})$ |
| Spatial resolution     | 10s nm                                              |
| Depth<br>sensitivity   | nm - µms                                            |
| Sample<br>environment  | Field, ~cryo, electrical contacts (in dev.), TR     |
| Invasive               | No                                                  |
| Sensitivity            | Medium, element sensitive, antiferromagnets!        |
| Cost/<br>accessibility | Large scale user facility,<br><b>Open to all</b>    |



# **OVERVIEW OF (A SELECTION OF) AVAILABLE METHODS**

|                        | MFM                                    | Nitrogen<br>vacancy                                  | TEM                                                               | MOKE                                                     | XMCD<br>(synchrotron)                                    | XMLD<br>(synchrotron)                                 | Spin pol.<br>STM                           | SEMPA                                            |
|------------------------|----------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|--------------------------------------------------|
| Contrast               | <i>H</i> , surface charges             | <i>H</i> , surface charges                           | $B \perp k$                                                       | m                                                        | <i>m</i>    <i>k</i>                                     | Néel vector $(m \perp k)$                             | m                                          | m                                                |
| Spatial resolution     | 10s of nm                              | 10s of nm                                            | Single digt nm<br>(or below!)                                     | 100s nm – µms                                            | 10s nm (&<br>below!)                                     | 10s nm                                                | 0.1 nm                                     | ~5 nm                                            |
| Depth<br>sensitivity   | Surface<br>sensitive                   | Surface<br>sensitive                                 | Thin samples<br>~<100 nm                                          | Surface<br>sensitive                                     | nm - µms                                                 | nm - µms                                              | 0.1 nm                                     | 1 nm                                             |
| Sample<br>environment  | Field, cryo,<br>electrical<br>contacts | Field, ~cryo,<br>electrical<br>contacts (in<br>dev.) | ~cryo, electrical<br>contacts (in<br>dev.). Fields<br>challenging | Field, ~cryo,<br>electrical<br>contacts (in<br>dev.), TR | Field, ~cryo,<br>electrical<br>contacts (in<br>dev.), TR | Field, ~cryo,<br>electrical contacts<br>(in dev.), TR | Cryo, field                                | Challenging,<br>UHV &<br>preparation<br>required |
| Invasive               | Yes                                    | No                                                   | No                                                                | No                                                       | No                                                       | No                                                    | No                                         | No                                               |
| Sensitivity            | Medium                                 | High!!                                               | Medium                                                            | High                                                     | High, element sensitive                                  | Medium, element<br>sensitive,<br>antiferromagnets!    | High                                       | High                                             |
| Cost/<br>accessibility | Lab-based,<br>accessible               | Lab-based,<br>recent<br>commercial<br>examples       | Lab based,<br>specialised<br>equipment (10 <sup>6</sup><br>€)     | Lab based,<br>accessible                                 | Large scale<br>user facility,<br><b>Open to all</b>      | Large scale user<br>facility,<br><b>Open to all</b>   | Lab-based,<br>Specialised<br>UHV equipment | Lab-based,<br>Specialised<br>UHV equipment       |



### Q & A: CAN WE MEASURE EXPERIMENTALLY THE DOMAIN WIDTH WHEN IN THE NM SCALE?

### Answer: It depends!

-> Measured width - Convolution of enotiol resolution & Domain wall width

| → Eithe |                    | MFM                        | Nitrogen<br>vacancy        | ТЕМ                                  | MOKE                  | XMCD<br>(synchrotron) | XMLD<br>(synchrotron)     | Spin pol.<br>STM | SEMPA |
|---------|--------------------|----------------------------|----------------------------|--------------------------------------|-----------------------|-----------------------|---------------------------|------------------|-------|
| → Knc   | Contrast           | <i>H</i> , surface charges | <i>H</i> , surface charges | $B \perp k$                          | m                     | m∥k                   | Néel vector $(m \perp k)$ | m                | m     |
| Or      | Spatial resolution | 10s of nm                  | 10s of nm                  | Single <u>digt</u> nm<br>(or below!) | 100s nm – µ <u>ms</u> | 10s nm (&<br>below!)  | 10s nm                    | 0.1 nm           | ~5 nm |

 $\rightarrow$  Know the expected domain wall width, & compare.

Domain wall width: 
$$\Delta \sim \pi \sqrt{A/K}$$
  
Hard: 2-3 nm  $\rightarrow$  Soft: 10s to 100s nm

- $\rightarrow$  We need a spatial resolution from 10s of nm, to ~1 nm
- $\rightarrow$  Let's keep this in mind!



### **OUR QUESTIONS FOR THIS MORNING'S LECTURES:**

