MAGNETISM ON THE SINGLE ATOM

J. J. de Miguel Dept. Condensed Matter Physics, Univ. Autónoma de Madrid, Spain

Acknowledgement

Prof. Julio Camarero

Contents

Localized electron model

- Electron angular momentum and magnetic moment
- Atomic electronic orbitals
- Many electron atoms orbital filling rules
- Degeneracy lifting. Terms and multiplets

Response to external magnetic fields

- Zeeman effect
- Diamagnetism
- Paramagnetism
 - Langevin
 - Brillouin

Main bibliographical sources:

 [Coey] J. M. D. Coey, "Magnetism and Magnetic Materials", Cambridge.
 [TGS] E. du Trémolet de Lacheisserie, D. Gignoux & M. Schlenker, "Magnetism. Fundamentals", Springer.

Magnetism at the atomic scale

The elements framed in **blue** are **non-magnetic** in the atomic state. Those framed in **red** are **magnetic** in the solid state

UAM Universidad Autónoma de Madrid

Localized electron model – Classical

Magnetism of pure elements in the atomic state

Free, isolated atoms can have a magnetic moment.

ORBITAL MAGNETIC MOMENT

Semi-classical single-electron model

 $\vec{m} = \frac{1}{2} \int_{V} \vec{r} \times \vec{j}(r) \, dV$ magnetic moment created by a current density \vec{j}

We consider an electron in orbital motion within an atom:

 $\vec{j}(\vec{r}') = -e\vec{v}\underbrace{\delta(\vec{r}'-\vec{r})}_{\text{spatial charge distribution}}$

Then:

$$\vec{m}_o = -\left(\frac{e}{2}\right) \vec{r} \times \vec{v} = -\left(\frac{e}{2m_e}\right)\vec{L}_o$$

(source: TGS)

Thus, the orbital magnetic moment of a charged particle is proportional to its angular momentum $\vec{L_o} = \vec{r} \times me\vec{v}$

UAM Universidad Autónoma de Madrid

Quantically, the electron states are limited.

HYDROGENIC ATOM

Let us consider a single electron in a **central Coulomb potential**:

$$H = -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

In spherical coordinates:

$$\nabla^{2} = \frac{1}{r^{2} \sin \theta} \left[\sin \theta \, \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(\sin \theta \, \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin \theta} \, \frac{\partial^{2}}{\partial \phi^{2}} \right]$$
$$= \frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \, \frac{\partial}{\partial r} + \frac{1}{r^{2}} \left[\frac{\partial^{2}}{\partial \theta^{2}} + \cot \theta \, \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2} \theta} \, \frac{\partial^{2}}{\partial \phi^{2}} \right]$$
angular part: $-\hat{I}^{2}/\hbar^{2}$

where $\hat{\mathbf{i}}$ is the orbital angular momentum operator.

We can solve Schrödinger's equation by separation of variables:

 $\Psi(\mathbf{r}, \theta, \phi) = \mathbf{R}(\mathbf{r}) \cdot \Theta(\theta) \cdot \Phi(\phi)$

Then:

$$\left[\frac{-\hbar^2}{2m_e}\left|\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{1}{\hbar^2 r^2}\hat{I}^2\right| - \frac{Ze^2}{4\pi\varepsilon_0 r}\right]\Psi_i = \epsilon_i\Psi_i$$

• The **azimuthal part** of the solution is an eigenfunction of $\hat{I}_z = -i\hbar(\partial/\partial\phi)$: $\Phi(\phi) = \exp(im_I\phi)$

with eigenvalues $m_1\hbar$, $m_1 = 0$, ± 1 , ± 2 ,... $\pm I$

• The **polar part** of the solution is a Legendre polynomial:

 $\Theta(\theta) = P_I^{m_i}(\theta)$

and the angular momentum quantum number is I = 0, 1, 2, ...

The product of those 2 parts is a spherical harmonic:

$$Y_I^{m_I}(\theta,\phi) \propto P_I^{m_I}(\theta) e^{i m_I \phi}$$

A Universidad Autónoma de Madrid

• The **radial part** of the solution depends on two quantum numbers, *n* and *l*:

$$R(r) = V_n' \left(\frac{Zr}{na_0}\right) \exp\left[-\frac{Zr}{na_0}\right]$$

 V_n^{\prime} are Laguerre polynomials, and n = 1, 2, 3, ... is the **principal quantum number**: n > l

The Bohr radius
$$a_0 = \frac{4 \pi \epsilon_0 \hbar^2}{m_e e^2} = 52.92 \text{ pm.}$$

The energy levels for one electron in a central Coulomb potential are:

$$\epsilon_n = -\frac{Z^2 m_e e^4}{8 \varepsilon_0 h^2 n^2} = -\frac{Z^2 R_0}{n^2} : \text{ the energies of levels depend only on } n!$$
$$R_0 = \frac{m_e e^4}{8 \varepsilon_0^2 h^2} = 13.61 \text{ eV} : \text{ Rydberg}$$

The square of the angular momentum \hat{l}^2 has eigenvalues $l(l+1)\hbar^2$.

Then:

- ► The orbital angular momentum has values $\sqrt{l(l+1)}\hbar$
- ► Its projection \hat{l}_z along *Oz* has values $-l\hbar \leq m_l\hbar \leq +l\hbar$

 \hat{I}^2 , \hat{I}_z can be measured simultaneously because their operators commute.

Since the orbital magnetic moment is proportional to the angular momentum $L_{o} = \hbar I$:

$$\boldsymbol{m_o} = -\frac{e}{2m_e}\boldsymbol{L_o} = -\frac{\hbar e}{2m_e}\boldsymbol{I} = -\mu_B\boldsymbol{I}$$

The Bohr magneton, $\mu_{\rm B} = 0.927 \times 10^{-23}$ A m², is the smallest possible value of an electronic magnetic moment.

(source: TGS)

UAM Universidad Autónoma de Madrid

SPIN MAGNETIC MOMENT

- Intrinsic property of electrons (and other subatomic particles).
- Demonstrated experimentally by Stern & Gerlach (1922),
- Analogous (but inaccurate!) to a charged particle spinning around its axis.
- Electrons, and fermions, can only have two spin states: $\sigma = \pm 1/2$

Analogously to the orbital magnetic momentum:

$$L_{s} = \hbar s$$

$$\langle s^{2} \rangle = s(s+1)$$

$$\langle s_{z} \rangle = \pm 1/2$$

$$m_{s} = -2\mu_{B}s$$
Then, $\langle (m_{s})_{z} \rangle = \pm 1\mu_{B}$

(source: TGS)

The total magnetic moment is thus:

 $m_t = m_o + m_s$

Which needs not be collinear with the total angular momentum:

$$\boldsymbol{L_t} = \boldsymbol{\hbar}(\boldsymbol{I} + \boldsymbol{s})$$

 \checkmark Every particle has a magnetic moment, and an intrinsic angular momentum;

- Proton: $m_{p} = g_{p} \left(\frac{\hbar e}{2 m_{p}} \right) \hbar L$, $g_{p} = 2.793$
- Neutron: does not carry electric charge, but it has both an intrinsic angular momentum and a magnetic moment:

$$\boldsymbol{m_n} = \boldsymbol{g}_n \left(\frac{\hbar e}{2m_n} \right) \hbar \boldsymbol{L}, \quad \boldsymbol{g}_p = 1.913$$

 \checkmark These magnetic moments are much smaller than that of the electron, due to the different masses.

$$H_0 = \sum_{i} \left[-\left| \frac{\hbar^2}{2 m_e} \right| \nabla^2 - \frac{Z e^2}{4 \pi \varepsilon_0 r_i} \right] + \sum_{i < j} \frac{e^2}{4 \pi \varepsilon_0 r_{ij}}$$

repulsion between electrons

This Hamiltonian is insoluble.

Approximation: average effective potential with spherical symmetry.

 \rightarrow The degeneracy of energy levels with equal *n* is lifted:

Energy depends on *I*: $E(2p_{+1}) \neq E(2p_{0}) \neq E(2p_{-1})$

Filling sequence of electronic levels!

L-S coupling scheme: (important for most ions of interest in magnetism) Individual spin and angular momenta add to give resultant quantum numbers:

$$S = \sum s_i, \quad M_s = \sum m_{si}, \quad L = \sum I_i, \quad M_L = \sum m_{Ii}$$

(Alternatively, when LS coupling is very strong, I_i and s_i first couple for each electron to yield j_i : j - j coupling scheme)

UAM Universidad Autónoma de Madrid

Set of empirical procedures to determine the ground state configuration of a multielectron atom:

1) First, maximize S

(electrons minimize Coulomb repulsion by occupying different orbitals; intra-atomic exchange tends to keep spins parallel)

2) Then maximize L consistent with S

(electrons orbit in the same sense if possible)

- 3) Finally combine L and S to obtain J:
 - i) J = L S if shell occupation $< \frac{1}{2}$
 - ii) J = L + S if shell occupation > $\frac{1}{2}$
 - iii) If the shell occupation is = $\frac{1}{2}$, then L = 0, J = S.

(consequence of the sign of the spin-orbit coupling - SOC)

Hund's rules

Graphically:

Fe (Z = 26): $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$

TERMS

Split energy levels due to intra-atomic correlations.

Energy shifts dependent on L, S: $\Delta E \sim 10 \text{ eV}$.

Electronic configurations are represented by symbols: ^{2S+1}X

X accounts for the value of L: (0, 1, 2, 3, 4, 5, ...) \equiv (S, P, D, F, G, H, ...)

Example: $C \equiv 1s^2 2s^2 2p^2$ – there are 15 different ways to distribute 2 electrons among the 3 2*p* orbitals

	L	S	(M _L , M _S)
¹ S	0	0	(0,0)
³Р	1	1	(1,1) (1,0) (1,-1) (0,1) (0,0) (0,-1) (-1,1) (-1,0) (-1,-1)
¹ D	2	0	(2,0) (1,0) (0,0) (-1,0) (-2,0)

Applying Hund's rules gives S = 1, L = 1, J = L - S = 0, and thus the C atom is non-magnetic due to the SOC.

Hund's rules

Other examples:

• Fe ³⁺	. 3d ⁵	1111 00000	
S = 5/2,	L = 0,	J = S = 5/2,	⁶ S _{5/2}
• Ni ²⁺	3d ⁸	$\uparrow\uparrow\uparrow\uparrow\uparrow \downarrow\downarrow\downarrow\downarrow00$	
S = 1,	L = 3,	J = L + S = 4,	³ F ₄
• Nd ³⁺	4f ³	↑↑↑ 0000 000000	
• Nd ³⁺ S = 3/2,	4f ³ L = 6,	$\uparrow \uparrow \uparrow 0000 000000$ J = L - S = 9/2,	4 9/2
 Nd³⁺ S = 3/2, Dy³⁺ 	4f ³ L = 6, 4f ⁹	↑↑↑0000 0000000 J = L - S = 9/2, ↑↑↑↑↑↑↑↓↓00000	4 _{9/2}

WARNING: These rules work to derive the ground state (at T = 0) of **single atoms**. They are not applicable in general to solids, whose valence electrons form **bands**. This is particularly important for transition metals.

SPIN-ORBIT COUPLING

Interaction between individual orbital and spin angular momenta:

 $H_{ij}^{SO} = -\lambda_{ij}I_iS_j$

It is negligible for $i \neq j$, therefore: $H^{so} = -\lambda LS$

Weak interaction, proportional to Z (\sim 10-2 eV for Fe, \sim 1 eV RE), but responsible for many phenomena in magnetism:

- Magnetocrystalline anisotropy
- Magnetostriction

Anisotropic magnetoresistance, …

$$J = L + S \Rightarrow J^{2} = L^{2} + S^{2} + 2L \cdot S$$

$$L \cdot S = 1/2(J^{2} - L^{2} - S^{2}) \Rightarrow H^{so} = -\lambda L \cdot S = -\frac{\lambda}{2}(J^{2} - L^{2} - S^{2})$$

$$E_{J} = -\frac{\lambda}{2}[J(J+1) - L(L+1) - S(S+1)]$$

MULTIPLETS

Sets of different electronic energy levels after the degeneracy is lifted by SOC. Characterized by J = L + S

 $L = 1 S = \frac{3}{2}$

There exist 2J + 1 states within a multiplet.

Degeneracy lifted by $E_J = -\frac{\lambda}{2}[J(J+1) - L(L+1) - S(S+1)]$ Term symbols: ^{2S+1}X,

|L-S| < J < L+S

C0²⁺

iversidad Autónoma e Madrid

European School on Magnetism 2023

Μ,

Partial summary

Summarizing:

$$m_{o} = -\mu_{B}L$$
$$m_{s} = -2\mu_{B}S$$

Within each multiplet, the total magnetic moment and the total angular moment are collinear:

$$m = -g_{J}\mu_{B}J$$

$$g_{J} = 1 + \frac{J(J+1)+S(S+1)-L(L+1)}{2J(J+1)}$$

g₁ is the Landé factor, characteristic of each multiplet.

•
$$g_J = 2$$
, if L = 0.

In general:
$$\boldsymbol{m} = -g\left(\frac{e}{2m_e}\right)\boldsymbol{L} = \boldsymbol{\gamma}\boldsymbol{L}$$

y: gyromagnetic factor

Partial summary

Magnetic ions (some):

(source: TGS)

Ion 4f	^{2S+1} LJ	L	S	J	gJ	m ₀ (μ _{B)}	m _{eff} (μ _{B)}
$Ce^{3+} (4f^1)$	² F _{5/2}	3	1/2	5/2	6/7	2.14	2.54
Pr^{3+} (4f ²)	$^{3}H_{4}$	5	1	4	4/5	3.20	3.58
Nd^{3+} (4f ³)	⁴ I _{9/2}	6	3/2	9/2	8/11	3.27 ·	3.62
Pm^{3+} (4f ⁴)	$5I_4$	6	2	4	3/5	2.40	2.68
$Sm^{3+} (4f^5)$	⁶ H _{5/2}	5	5/2	5/2	2/7	0.71	0.85
Eu^{3+} (4f ⁶)	${}^{7}F_{0}$	3	3	0	_	0	0
$Gd^{3+} (4f^7)$	⁸ S _{7/2}	0	7/2	7/2	2	7.00	7.94
$Tb^{3+} (4f^8)$	⁷ F ₆	3	3	6	3/2	9.00	9.72
$Dy^{3+} (4f^9)$	⁶ H _{15/2}	5	5/2	15/2	4/3	10.00	10.65
Ho^{3+} (4f^{10})	⁵ I ₈	6	2	8	5/4	10.00	10.61
$Er^{3+} (4f^{11})$	${}^{4}I_{15/2}$	6	3/2	15/2	6/5	9.00	9.58
Tm^{3+} (4f^{12})	³ H ₆	5	1	6	7/6	7.00	7.56
$Yb^{3+} (4f^{13})$	${}^{2}\mathrm{F}_{7/2}$	3	1/2	7/2	8/7	4.00	4.53

All non-magnetic free atoms in their ground state have J = 0!

Partial summary

Filled electronic shells are non-magnetic

Only non-saturated shells have a magnetic moment

The magnetic moment of free atoms or ions is given by:

 $\boldsymbol{m} = -\boldsymbol{g}_{J}\mu_{B}\boldsymbol{J}$

where $\hbar J$ is the total angular momentum.

No other internal effects contribute to degeneracy lifting. All other energy contributions must come from external sources (interactions, applied fields)

The Zeeman interaction

The Hamiltonian for an atom with a magnetic moment $\boldsymbol{m} = -g_J \mu_B \boldsymbol{J}$ under an applied magnetic field is

$$H_{z} = g_{J}\mu_{B}\boldsymbol{J}\cdot\boldsymbol{B}$$

When the field is applied along Oz, *m* precesses rapidly about *J*, so on average :

$$H_{z} = g_{J}\mu_{B}J_{Z}B$$
$$\varepsilon_{z} = g_{J}\mu_{B}M_{J}B$$

The Zeeman splitting between adjacent levels is

 $\Delta \varepsilon_z = g_J \mu_B B \sim 1 \text{ K for B} = 1\text{T}.$

Diamagnetism with localised electrons

Diamagnetism: Response of non-magnetic atoms to applied magnetic fields (no permanent magnetic moments)

Let us consider the **classical model** of an electron in a circular orbit:

A magnetic field applied perpendicular to the current loop induces a variation of the orbital magnetic moment opposite to the field (Lenz's rule), irrespective of the sense of the electron movement.

As we have seen:

 $m_o = -erv/2$

The induced electromotive force due to Lenz's rule is:

$$U = -\frac{d\Phi}{dt} = -\pi r^2 \frac{dB}{dt} = 2\pi r E$$
$$E = -\frac{r}{2} \frac{dB}{dt}$$
$$F = -eE = \frac{er}{2} \frac{dB}{dt} \Rightarrow \frac{dv}{dt} = \frac{er}{2m_e} \frac{dB}{dt}$$
$$\Delta v = \frac{er}{2m_e} \int_{0}^{B} dB = \frac{er}{2m_e} B$$

And the change in the magnetic moment is:

$$\Delta m_o = -\left(\frac{e^2 r^2}{4 m_e}\right) B$$

UAM Universidad Autónoma de Madrid

Diamagnetism with localised electrons

If the electron orbit is not perpendicular to the field, assuming a spherical orbital of radius

$$\sqrt{\langle R^2 \rangle} = \sqrt{\langle x^2 \rangle + \langle y^2 \rangle + \langle z^2 \rangle}$$

For the planar loop we have

$$\langle r^2 \rangle = \langle x^2 \rangle + \langle y^2 \rangle = 2/3 \langle R^2 \rangle$$

And then:

$$\Delta m_o = -\left|\frac{e^2 r^2}{6 m_e}\right| B$$

For an atom with Z electrons:

$$\Delta m = -\left(\frac{e^2 B}{6 m_e}\right) \sum_n \langle r_n^2 \rangle$$

And the diamagnetic susceptibility is

$$\chi = \frac{\partial M}{\partial H} = -\frac{\mu_0 N e^2 Z R^2}{6 m_e}$$

Diamagnetism with localised electrons

The susceptibilities of diamagnetic materials are $\sim 10^{-6}$ and weakly temperature dependent;

Non-magnetic atoms implies J = 0: filled shells in the atomic state or by bonding to other atoms

- Noble gases (He, Ne, Ar)
- Molecular gases (H₂, N₂, ...)
- Ionic solids (NaCl)
- Covalent compounds (organic molecules, etc)

Diamagnetism exists also in atoms with permanent magnetic moments, but it is negligible compared to the other contributions

Paramagnetism – classical

Behavior of materials with **non-interacting** permanent magnetic moments.

The classical theory of paramagnetism was developed in 1905 by P. Langevin.

Let us consider a set of magnetic moments *m* under an applied field *H*.

The Zeeman energy is:

$$\varepsilon_z(\theta) = -\mu_0 m H \cos \theta$$

The probability of \boldsymbol{m} forming an angle $\boldsymbol{\theta}$ with \boldsymbol{H} is:

$$P(\theta) = C \underbrace{2\pi \sin \theta}_{\text{fraction of solid angle}} \exp\left(\frac{\mu_0 H m \cos \theta}{k_B T}\right)$$

(source: Coey)

Paramagnetism – classical

The expected value of the magnetic moment along the field direction is then:

$$\langle m_z \rangle = \frac{\int_0^{\pi} m \cos \theta P(\theta) d\theta}{\int_0^{\pi} P(\theta) d\theta} = m \left[\tanh^{-1} \left| \frac{\mu_0 m H}{k_B T} \right| - \left| \frac{\mu_0 m H}{k_B T} \right|^{-1} \right]$$

Langevin function

(source: TGS)

At low H or high T:

$$\frac{\mu_0 m H}{k_B T} \ll 1 \quad \Rightarrow \quad \langle m_z \rangle \approx \frac{\mu_0 m^2 H}{3k_B T}$$

and the susceptibility is:

$$\chi = \frac{N \langle m_z \rangle}{H} = \frac{\mu_0 N m^2}{3 K_B T} = \frac{C}{T}$$

which is the Curie law, with $C = \frac{\mu_0 N m^2}{3k_B}$ being Curie's constant.

Paramagnetic susceptibility is $\sim 10^{-5} - 10^{-4}$, much larger than the diamagnetic contribution (but much smaller than the ferromagnetic one!)

Quantically, we know that the electron magnetic moments are quantized:

$$m_z = -g_J \mu_B M_J, \quad -J \leq M_J \leq +J$$

Then, the energy is: $E = \mu_0 g_J \mu_B M_J H$

And applying Boltzmann statistics:

$$M = \frac{N}{Z} \sum_{J}^{+J} -g_J \mu_B M_J \exp\left(-\frac{xM_J}{J}\right), \text{ with } x = \mu_0 g_J \mu_B J H / k_B T$$

Z is the partition function:

$$Z = \sum_{J=J}^{+J} \exp\left(-\frac{xM_J}{J}\right) = e^x [1 + e^{x/J} + (e^{x/J})^2 + \dots + (e^{x/J})^{2J}] = \frac{\sinh\left(\frac{2J+1}{2J}x\right)}{\sinh\left(\frac{x}{2J}\right)}$$

Then the magnetization is:

 $M = M_0 B_J(x)$

 M_0 is the maximum ("saturation") magnetization:

$$M_0 = N g_J \mu_B J = N m_0$$

and $B_{1}(x)$ is the **Brillouin function**:

$$B_{J}(x) = \left(\frac{2J+1}{2J}\right) \tanh^{-1}\left(\frac{2J+1}{2J}x\right) - \left(\frac{1}{2J}\right) \tanh^{-1}\left(\frac{1}{2J}x\right)$$

 $B_{J}(x)$ reduces to the Langevin function in the limit $J \rightarrow \infty$.

In the small *x* limit:

$$B_J(x) \approx \left(\frac{J+1}{3J}\right) x - \frac{[(J+1)^2 + J^2](J+1)}{90J^2} x^2 + \dots$$

and the leading term reproduces Curie's law with an effective moment

$$m_{\rm eff} = g_J \mu_B \sqrt{(J+1)J}$$

Paramagnetism – quantum

Comparison of the Langevin and Brillouin functions:

This theory works well for dilute magnetic materials (3*d*, 4*f*).

All possible electron configurations for the C atom

		n T	able 4	. 3 . Ex	ample	of the	e six-e	lection	carbo	on aton	n; 1s ²	$2s^2 2p^2$			
15	↑↓	↑↓	↑↓	14	$\uparrow\downarrow$	↑↓	↑↓	1↓	* ↑↓	↑↓	^↓	11	↑↓	1↓	1↓
2 <i>s</i>	↑↓	↑↓	↑↓	^↓	^↓	↑↓	≜↑↓	1↓		1↓	1↓	^↓	1↓	↑↓	↑↓
$2p_{-1}$	$\uparrow\downarrow$	1	1	ł	ł	1	1		¥	\downarrow					
$2p_0$		Ť	¥	1	ł			↑ ↓			V	1	¥	 ▲	
2 <i>p</i> ₁						1	¥		1	\downarrow	.↓	4	1 1	1	
M _L	2	1	1	1	1	0	0	0	0	U		1 A	1 A		<u>-</u>
M _S	0	-1	0	0	+1	-1	U	U	U	+1	+1	U	U		la de la Constantina de la Con

(source: Coey)

Magnetic character of elements in the solid state

Η He dia Li Be С В Ν F Ne О para dia dia dia dia AF dia dia Mg Na Al Si Ρ S Cl Ar para para dia dia dia dia para dia Κ Ca Sc Ti V Cr Mn Fe Co Ni Zn Ge Cu Ga As Se Br Kr AF AF Ferro Ferro Ferro dia dia dia para para para para para dia dia dia dia dia Rb Sr Y Nb Tc Ru Zr Mo Rh Pd Cd Sb Sn Ag In Te I Xe para para para para para para para para para dia dia dia * dia dia dia dia Cs Ba La Hf Ta W Re Os Ŀ Pt Hg TI Bi Au Pb Po At Rn para para para para dia dia dia dia para para para dia dia Ra FrAc Sm Eu Gd Ce Pr Nd PmTb Dy Ho Er Tm Yb Lu * AF AF Ferri Ferro Ferro Ferri Ferri Ferri para para para Th U Pa Np Pu Am Cm Bk Cf Es Fm Md No -Lwpara para

(source: TGS)

