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Magnetism at the atomic scaleMagnetism at the atomic scale

(source: TGS) 

The elements framed in blue are non-magnetic in the atomic state. 

Those framed in red are magnetic in the solid state  
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Localized electron model – Classical Localized electron model – Classical 

Magnetism of pure elements in the atomic state

Free, isolated atoms can have a magnetic moment. 

ORBITAL MAGNETIC MOMENT 

Semi-classical single-electron model 

magnetic moment created by a current density j

We consider an electron in orbital motion within an atom: 

      spatial charge distribution 

Then: 

(source: TGS)

Thus, the orbital magnetic moment of a charged particle is proportional to its 

angular momentum    
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Localized electron model – Quantum Localized electron model – Quantum 

Quantically, the electron states are limited. 

HYDROGENIC ATOM

Let us consider a single electron in a central Coulomb potential: 

In spherical coordinates: 

         angular part:  

where    is the orbital angular momentum operator. 
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Localized electron model – Quantum Localized electron model – Quantum 

We can solve Schrödinger’s equation by separation of variables: 

Then: 

●  The azimuthal part of the solution is an eigenfunction of                             : 

with eigenvalues 

● The polar part of the solution is a Legendre polynomial: 

and the angular momentum quantum number is 

The product of those 2 parts is a spherical harmonic: 
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Localized electron model – Quantum Localized electron model – Quantum 

● The radial part of the solution depends on two quantum numbers, n and l: 
 
 

V
n

l are Laguerre polynomials, and n = 1, 2, 3, … is the principal quantum 
number:  n > l 

The Bohr radius                              52.92 pm. 

The energy levels for one electron in a central Coulomb potential are: 

    :   the energies of levels depend only on n!

                   eV :   Rydberg  
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Localized electron model – Quantum Localized electron model – Quantum 

The square of the angular momentum     has eigenvalues               . 

Then: 

► The orbital angular momentum has values 

► Its projection     along Oz has values       

           can be measured simultaneously because their operators commute. 

Since the orbital magnetic moment is proportional 

to the angular momentum                : 

,  

The Bohr magneton, µ
B
 = 0.927× 10-23 A m², 

is the smallest possible value of an electronic 

magnetic moment. 

(source: TGS)

  

  

European School on 
Magnetism 2023 

l(l+1)ℏ2

√l(l+1)ℏ

−lℏ ≤ mlℏ ≤ +l ℏl̂ z

^l2 , l̂ z

l̂2

mo = −
e

2 me

Lo = −
ℏe

2me

l = −μB l

Lo = ℏ l



  

Localized electron model – Quantum Localized electron model – Quantum 

SPIN MAGNETIC MOMENT

☛ Intrinsic property of electrons (and other subatomic particles). 

☛ Demonstrated experimentally by Stern & Gerlach (1922), 

☛ Analogous (but inaccurate!) to a charged particle spinning around its axis. 

☛ Electrons, and fermions, can only have two spin states:   

 

Analogously to the orbital magnetic momentum: 

Then, 

   (source: TGS)
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Localized electron model – Quantum Localized electron model – Quantum 

The total magnetic moment is thus: 

Which needs not be collinear with the total angular momentum: 

 

✓ Every particle has a magnetic moment, and an intrinsic angular momentum; 

● Proton: 

● Neutron: does not carry electric charge, but it has both an intrinsic angular 

momentum and a magnetic moment: 

✓ These magnetic moments are much smaller than that of the electron, due to 

the different masses. 
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Many electron atomsMany electron atoms

repulsion between electrons

This Hamiltonian is insoluble. 

Approximation: average effective potential with spherical symmetry. 

 ➔ The degeneracy of energy levels with equal n is lifted: 

Energy depends on l:  E(2p
+1

) ≠ E(2p
0
) ≠ E(2p

-1
) 

Filling sequence of electronic levels!
 

L-S coupling scheme: (important for most ions of interest in magnetism)          

Individual spin and angular momenta add to give resultant quantum numbers: 

(Alternatively, when LS coupling is very strong, l
i
 and s

i
 first couple for each 

electron to yield j
i
:   j – j coupling scheme)  
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Hund’s rules Hund’s rules 

Set of empirical procedures to determine the ground state configuration of a 

multielectron atom: 

1) First, maximize S 

(electrons minimize Coulomb repulsion by occupying different orbitals; 

intra-atomic exchange tends to keep spins parallel) 

2) Then maximize L consistent with S 

(electrons orbit in the same sense if possible) 

3) Finally combine L and S to obtain J: 

i)  J = L – S           if shell occupation < ½ 

ii)  J = L + S          if shell occupation > ½ 

iii)  If the shell occupation is = ½, then L = 0, J = S.  

(consequence of the sign of the spin-orbit coupling - SOC) 

European School on 
Magnetism 2023 



  

Hund’s rules Hund’s rules 

Graphically: 

Fe (Z = 26):  1s2 2s2 2p6 3s2 3p6 4s2 3d6
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n = 1 2 3 4 5 6

1s 2s 3s 4s 5s 6s

2p 3p 4p 5p 6p

3d 4d 5d 6d

4f 5f 6f

5g 6g



  

Many electron atomsMany electron atoms

TERMS

Split energy levels due to intra-atomic correlations. 

Energy shifts dependent on L, S:   ΔE ~  10 eV. 

Electronic configurations are represented by symbols:     2S+1X
 

X accounts for the value of L: (0, 1, 2, 3, 4, 5, ... ) ≡ (S, P, D, F, G, H, …) 

Example: C ≡ 1s2 2s2 2p2 – there are 15 different ways to distribute 2 electrons 
among the 3 2p orbitals          

Applying Hund’s rules gives S = 1, L = 1, J = L – S = 0, and thus the C atom is 

non-magnetic due to the SOC.
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L S (M
L
, M

S
)

1S 0 0 (0,0)

3P 1 1 (1,1) (1,0) (1,-1) (0,1) (0,0) (0,-1) (-1,1) (-1,0) (-1,-1) 

1D 2 0 (2,0) (1,0) (0,0) (-1,0) (-2,0) 



  

Hund’s rules Hund’s rules 

Other examples: 

●  Fe3+ ……….. 3d5                  00000 

 S = 5/2, L = 0, J = S = 5/2, 6S
5/2

 

● Ni2+ ………… 3d8                  00   

 S = 1, L = 3, J = L+S = 4, 3F
4
   

● Nd3+ ……..... 4f3          0000  0000000

 S = 3/2, L = 6, J = L – S = 9/2, 4I
9/2 

 

● Dy3+ ……….. 4f9          00000 

 S = 5/2, L = 5, J = L + S = 15/2, 6H
15/2

 

WARNING: These rules work to derive the ground state (at T = 0) of single 

atoms. They are not applicable in general to solids, whose valence electrons 

form bands. This is particularly important for transition metals. 
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Many electron atomsMany electron atoms

SPIN-ORBIT COUPLING

Interaction between individual orbital and spin angular momenta: 

It is negligible for i ≠ j, therefore:   

Weak interaction, proportional to Z (~10-2 eV for Fe, ~1 eV RE), but 

responsible for many phenomena in magnetism: 

➢ Magnetocrystalline anisotropy 

➢ Magnetostriction 

➢ Anisotropic magnetoresistance, …  
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Many electron atomsMany electron atoms

MULTIPLETS

Sets of different electronic energy levels after the degeneracy is lifted by SOC. 

Characterized by   

There exist 2J + 1 states within a multiplet. 

Degeneracy lifted by 

Term symbols:   2S+1X
J 

|L – S|  < J  < L + S

Example: (source: Coey)

Co2+      3d7 

S = 3/2,   L = 3,   J = 9/2          
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J = L + S

E J = −λ
2
[J (J+1) − L(L+1) − S (S+1)]



  

Partial summary  

Summarizing: 

 

Within each multiplet, the total magnetic moment and the total angular moment 
are collinear: 

 

 

g
J
 is the Landé factor, characteristic of each multiplet. 

● g
J
 = 1, if S = 0; 

● g
J
 = 2, if L = 0. 

In general:       γ: gyromagnetic factor      
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mO = −μB L

mS = −2μB S

m = −gJμB J

gJ = 1 +
J (J+1)+S (S+1)−L(L+1)

2 J (J+1)

m = −g (
e

2 me
)L = γL



  

Partial summary  

Magnetic ions (some): (source: TGS) 

 

        All non-magnetic free atoms in their ground state have J = 0! 
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Partial summaryPartial summary

 Filled electronic shells are non-magnetic 

 Only non-saturated shells have a magnetic moment 

 The magnetic moment of free atoms or ions is given by: 

 

 where        is the total angular momentum. 

No other internal effects contribute to degeneracy lifting. 

All other energy contributions must come from external sources 

(interactions, applied fields)
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The Zeeman interactionThe Zeeman interaction

The Hamiltonian for an atom with a magnetic moment     

under an applied magnetic field is 

When the field is applied along Oz, 

m precesses rapidly about J, so on 

average : 

The Zeeman splitting between adjacent levels is 

    ~ 1 K for B = 1T. (source: TGS)
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m = −gJμB J

HZ = gJμB J⋅B

εZ = gJμB M J B

ΔεZ = gJμB B

HZ = gJμB JZ B



  

Diamagnetism with localised electronsDiamagnetism with localised electrons

Diamagnetism: Response of non-magnetic atoms to applied magnetic fields 

(no permanent magnetic moments) 

Let us consider the classical model of an electron in a circular orbit: 

 

(source: TGS) 

A magnetic field applied perpendicular to the current loop induces a variation of 

the orbital magnetic moment opposite to the field (Lenz’s rule), irrespective of 

the sense of the electron movement.  
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Diamagnetism with localised electronsDiamagnetism with localised electrons

As we have seen: 

The induced electromotive force due to Lenz’s rule is: 

 

And the change in the magnetic moment is: 
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Diamagnetism with localised electronsDiamagnetism with localised electrons

If the electron orbit is not perpendicular to the field, assuming a spherical orbital 

of radius  

For the planar loop we have 

And then: 

 

For an atom with Z electrons: 

And the diamagnetic susceptibility is 
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Diamagnetism with localised electronsDiamagnetism with localised electrons

 The susceptibilities of diamagnetic materials are ~10-6 and weakly 

temperature dependent; 
 

 Non-magnetic atoms implies J = 0: filled shells in the atomic state or by 

bonding to other atoms
● Noble gases (He, Ne, Ar) 

● Molecular gases (H
2
, N

2
, …) 

● Ionic solids (NaCl) 
● Covalent compounds (organic molecules, etc) 

 Diamagnetism exists also in atoms with permanent magnetic moments, but it 

is negligible compared to the other contributions  
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Paramagnetism – classical    

Behavior of materials with non-interacting permanent magnetic moments. 

The classical theory of paramagnetism was developed in 1905 by P. Langevin. 

Let us consider a set of magnetic moments m under an applied field H. 

The Zeeman energy is: 

 

The probability of m forming an angle θ with H is: 

fraction of solid angle 

(source: Coey) 
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εZ (θ) = −μ0 mH cosθ

P (θ) = C 2π sinθ⏟ exp (
μ0 H mcosθ

kBT )



  

Paramagnetism – classical    

The expected value of the magnetic moment along the field direction is then: 

Langevin function

     (source: TGS) 
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Paramagnetism – classical    

At low H or high T: 

and the susceptibility is: 

which is the Curie law, with                           being Curie’s constant. 

Paramagnetic susceptibility is ~10-5 – 10-4, much larger than the diamagnetic 

contribution (but much smaller than the ferromagnetic one!)  

     (source: TGS) 
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Paramagnetism – quantum

Quantically, we know that the electron magnetic moments are quantized: 

Then, the energy is:  

And applying Boltzmann statistics: 

     ,  with   

Z is the partition function: 
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Paramagnetism – quantum

Then the magnetization is: 

M
0
 is the maximum (“saturation”) magnetization: 

 
and B

J
(x) is the Brillouin function: 

B
J
(x) reduces to the Langevin function in the limit J   ∞. 

In the small x limit:  

and the leading term reproduces Curie’s law with an effective moment 
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Paramagnetism – quantum

Comparison of the Langevin and Brillouin functions: 

(source: Coey) 

This theory works well for dilute magnetic materials (3d, 4f).  
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TermsTerms

All possible electron configurations for the C atom

(source: Coey)  

European School on 
Magnetism 2023 



  

Magnetic character of elements in the solid stateMagnetic character of elements in the solid state

(source: TGS)  
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