MAGNETISM ON THE SJNGLE ATOM

J. J. de Miguel
Dept. Condensed Matter Physics, Univ. Autónoma de Madrid, Spain

Acknowledgement

Prof. Julio Camarero

Contents

- Localized electron model
$>$ Electron angular momentum and magnetic moment
- Atomic electronic orbitals
- Many electron atoms - orbital filling rules
$>$ Degeneracy lifting. Terms and multiplets
- Response to external magnetic fields
> Zeeman effect
> Diamagnetism
- Paramagnetism
- Langevin
- Brillouin

Main bibliographical sources:
[Coey] J. M. D. Coey, "Magnetism and Magnetic Materials", Cambridge.
[TGS] E. du Trémolet de Lacheisserie, D. Gignoux \& M. Schlenker, "Magnetism. Fundamentals", Springer.

Magnetism at the atomic scale

The elements framed in blue are non-magnetic in the atomic state.
Those framed in red are magnetic in the solid state

Localized election model - Classical

Magnetism of pure elements in the atomic state
Free, isolated atoms can have a magnetic moment.

ORBITAL MAGNETIC MOMENT

Semi-classical single-electron model

$$
\vec{m}=\frac{1}{2} \int_{V} \vec{r} \times \vec{j}(r) d V \quad \text { magnetic moment created by a current density } \boldsymbol{j}
$$

We consider an electron in orbital motion within an atom:

$$
\vec{j}\left(\vec{r}^{\prime}\right)=-e \vec{v} \underbrace{\delta\left(\vec{r}^{\prime}-\vec{r}\right)}
$$

spatial charge distribution
Then:

$$
\vec{m}_{o}=-\left(\frac{e}{2}\right) \vec{r} \times \vec{v}=-\left(\frac{e}{2 m_{e}}\right) \vec{L}_{o}
$$

(source: TGS)

Thus, the orbital magnetic moment of a charged particle is proportional to its angular momentum $\vec{L}_{o}=\vec{r} \times m e \vec{v}$

Universidad Autónoma de Madrid

Localized election model - Quaintum

Quantically, the electron states are limited.

HYDROGENIC ATOM

Let us consider a single electron in a central Coulomb potential:

$$
H=-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}
$$

In spherical coordinates:

$$
\begin{array}{r}
\nabla^{2}=\frac{1}{r^{2} \sin \theta}\left[\sin \theta \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \\
=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) \\
\text { angular part: }-\hat{l}^{2} / \hbar^{2}
\end{array}
$$

where \hat{l} is the orbital angular momentum operator. de Madrid

Localized electiron model - Quantum

We can solve Schrödinger's equation by separation of variables:

$$
\Psi(r, \theta, \phi)=R(r) \cdot \Theta(\theta) \cdot \Phi(\phi)
$$

Then:

$$
\left[\frac{-\hbar^{2}}{2 m_{e}}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{1}{\hbar^{2} r^{2}} \hat{\boldsymbol{I}}^{2}\right)-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}\right] \Psi_{i}=\epsilon_{i} \Psi_{i}
$$

- The azimuthal part of the solution is an eigenfunction of $\hat{\boldsymbol{I}}_{z}=-i \hbar(\partial / \partial \phi)$:

$$
\Phi(\phi)=\exp \left(i m_{l} \phi\right)
$$

with eigenvalues $m_{l} \hbar, \quad m_{l}=0, \pm 1, \pm 2, \ldots \pm l$

- The polar part of the solution is a Legendre polynomial:

$$
\Theta(\theta)=P_{l}^{m_{1}}(\theta)
$$

and the angular momentum quantum number is $I=0,1,2, \ldots$
The product of those 2 parts is a spherical harmonic:

$$
Y_{1}^{m_{1}}(\theta, \phi) \propto P_{1}^{m_{1}}(\theta) \mathrm{e}^{i m_{1} \phi}
$$

Localized electiron model - Quantum

- The radial part of the solution depends on two quantum numbers, n and l :

$$
R(r)=V_{n}^{\prime}\left(\frac{Z r}{n a_{0}}\right) \exp \left[-\frac{Z r}{n a_{0}}\right]
$$

V_{n}^{\prime} are Laguerre polynomials, and $n=1,2,3, \ldots$ is the principal quantum number: $n>1$
The Bohr radius $\mathrm{a}_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}=52.92 \mathrm{pm}$.
The energy levels for one electron in a central Coulomb potential are:

$$
\begin{aligned}
& \epsilon_{n}=-\frac{z^{2} m_{e} e^{4}}{8 \varepsilon_{0} h^{2} n^{2}}=-\frac{z^{2} R_{0}}{n^{2}}: \text { the energies of levels depend only on } n! \\
& R_{0}=\frac{m_{e} e^{4}}{8 \varepsilon_{0}^{2} h^{2}}=13.61 \mathrm{eV}: \text { Rydberg }
\end{aligned}
$$

Localized electiron model - Quantum

The square of the angular momentum $\hat{l^{2}}$ has eigenvalues $l(l+1) \hbar^{2}$.
Then:

- The orbital angular momentum has values $\sqrt{l(l+1)} \hbar$
- Its projection \hat{I}_{z} along $O z$ has values $-l \hbar \leq m_{l} \hbar \leq+l \hbar$
$\hat{\boldsymbol{I}}^{2}, \hat{\boldsymbol{I}}_{z}$ can be measured simultaneously because their operators commute.
Since the orbital magnetic moment is proportional to the angular momentum $L_{o}=\hbar l$:

$$
\boldsymbol{m}_{o}=-\frac{e}{2 m_{e}} \boldsymbol{L}_{o}=-\frac{\hbar e}{2 m_{e}} \boldsymbol{I}=-\mu_{B} I
$$

The Bohr magneton, $\mu_{\mathrm{B}}=0.927 \times 10^{-23} \mathrm{~A} \mathrm{~m}^{2}$, is the smallest possible value of an electronic magnetic moment.

(source: TGS)

Localized election model - Quaintunn

SPIN MAGNETIC MOMENT

- Intrinsic property of electrons (and other subatomic particles).
- Demonstrated experimentally by Stern \& Gerlach (1922),
- Analogous (but inaccurate!) to a charged particle spinning around its axis.
- Electrons, and fermions, can only have two spin states: $\sigma= \pm 1 / 2$

Analogously to the orbital magnetic momentum:

$$
\begin{aligned}
& L_{s}=\hbar s \\
& \left\langle s^{2}\right\rangle=s(s+1) \\
& \left\langle s_{z}\right\rangle= \pm 1 / 2 \\
& m_{s}=-2 \mu_{B} s
\end{aligned}
$$

Then, $\left\langle\left(m_{s}\right)_{z}\right\rangle= \pm 1 \mu_{B}$

(source: TGS)

Localized electiron model - Quantum

The total magnetic moment is thus:

$$
m_{t}=m_{o}+m_{s}
$$

Which needs not be collinear with the total angular momentum:

$$
L_{t}=\hbar(\boldsymbol{I}+\mathbf{s})
$$

\checkmark Every particle has a magnetic moment, and an intrinsic angular momentum;

- Proton: $\boldsymbol{m}_{p}=g_{p}\left(\frac{\hbar e}{2 m_{p}}\right) \hbar \boldsymbol{L}, \quad g_{p}=2.793$
- Neutron: does not carry electric charge, but it has both an intrinsic angular momentum and a magnetic moment:

$$
\boldsymbol{m}_{n}=g_{n}\left(\frac{\hbar e}{2 m_{n}}\right) \hbar \boldsymbol{L}, \quad g_{p}=1.913
$$

\checkmark These magnetic moments are much smaller than that of the electron, due to the different masses.

Many electron atioms

$$
\left.H_{0}=\sum_{i}\left[-\left\lvert\, \frac{\hbar^{2}}{2 m_{e}}\right.\right) \nabla^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{i}} \right\rvert\,+\underbrace{\sum_{i<j} \frac{e^{2}}{4 \pi \varepsilon_{0} r_{i j}}}
$$ repulsion between electrons

This Hamiltonian is insoluble.
Approximation: average effective potential with spherical symmetry.
\rightarrow The degeneracy of energy levels with equal n is lifted:
Energy depends on I: $E\left(2 p_{+1}\right) \neq E\left(2 p_{0}\right) \neq E\left(2 p_{-1}\right)$

Filling sequence of electronic levels!

L-S coupling scheme: (important for most ions of interest in magnetism) Individual spin and angular momenta add to give resultant quantum numbers:

$$
S=\sum s_{i}, \quad M_{S}=\sum m_{s i}, \quad L=\sum I_{i}, \quad M_{L}=\sum m_{l i}
$$

(Alternatively, when LS coupling is very strong, l_{i} and s_{i} first couple for each electron to yield $j_{i}: \boldsymbol{j}-\boldsymbol{j}$ coupling scheme)

Hund's rules

Set of empirical procedures to determine the ground state configuration of a multielectron atom:

1) First, maximize S
(electrons minimize Coulomb repulsion by occupying different orbitals; intra-atomic exchange tends to keep spins parallel)
2) Then maximize L consistent with S
(electrons orbit in the same sense if possible)
3) Finally combine L and S to obtain J :
i) $J=L-S \quad$ if shell occupation $<1 / 2$
ii) $\mathrm{J}=\mathrm{L}+\mathrm{S}$ if shell occupation $>1 / 2$
iii) If the shell occupation is $=1 / 2$, then $\mathrm{L}=0, \mathrm{~J}=\mathrm{S}$. (consequence of the sign of the spin-orbit coupling - SOC) de Madrid

Hund's rules

Graphically:

Fe $(Z=26): 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$

Many electron atioms

TERMS

Split energy levels due to intra-atomic correlations.
Energy shifts dependent on $\mathrm{L}, \mathrm{S}: \Delta \mathrm{E} \sim 10 \mathrm{eV}$.
Electronic configurations are represented by symbols: $\quad{ }^{25+1} X$
X accounts for the value of L : $(0,1,2,3,4,5, \ldots) \equiv(S, P, D, F, G, H, \ldots)$
Example: $\mathrm{C} \equiv 1 s^{2} 2 s^{2} 2 p^{2}$ - there are 15 different ways to distribute 2 electrons among the $32 p$ orbitals

	\mathbf{L}	\mathbf{S}	$\left(\mathbf{M}_{\mathbf{L}}, \mathbf{M}_{\mathbf{s}}\right)$
${ }^{1} \mathbf{S}$	0	0	$(0,0)$
${ }^{3} \mathbf{P}$	1	1	$(1,1)(1,0)(1,-1)(0,1)(0,0)(0,-1)(-1,1)(-1,0)(-1,-1)$
${ }^{1} \mathbf{D}$	2	0	$(2,0)(1,0)(0,0)(-1,0)(-2,0)$

Applying Hund's rules gives $S=1, L=1, J=L-S=0$, and thus the C atom is non-magnetic due to the SOC.

Universidad Autónoma de Madrid

Other examples:

- Fe^{3+} $3 d^{5}$
$\uparrow \uparrow \uparrow \uparrow 00000$
$S=5 / 2, \quad L=0, \quad J=S=5 / 2$,
${ }^{6} \mathrm{~S}_{5 / 2}$
- Ni^{2+}
$3 d^{8}$
$\uparrow \uparrow \uparrow \uparrow \downarrow \downarrow 00$
$S=1$,
$\mathrm{L}=3$,
$\mathrm{J}=\mathrm{L}+\mathrm{S}=4$,
${ }^{3} F_{4}$
- Nd^{3+}
44^{3}
$\uparrow \uparrow \uparrow 00000000000$
$S=3 / 2$,
$\mathrm{L}=6$,

$$
\mathrm{J}=\mathrm{L}-\mathrm{S}=9 / 2,
$$

$$
{ }^{4} \mathrm{I}_{9 / 2}
$$

- Dy ${ }^{3+}$
$4{ }^{9}$
$S=5 / 2, \quad L=5$,
$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow 00000$
$\mathrm{J}=\mathrm{L}+\mathrm{S}=15 / 2, \quad{ }^{6} \mathrm{H}_{15 / 2}$

WARNING: These rules work to derive the ground state (at $\mathrm{T}=0$) of single atoms. They are not applicable in general to solids, whose valence electrons form bands. This is particularly important for transition metals.

Many electron atoms

SPIN-ORBIT COUPLING

Interaction between individual orbital and spin angular momenta:

$$
H_{i j}{ }^{\text {so }}=-\lambda_{i j} I_{i} s_{j}
$$

It is negligible for $i \neq j$, therefore: $H^{\text {so }}=-\lambda L S$
Weak interaction, proportional to Z ($\sim 10-2 \mathrm{eV}$ for $\mathrm{Fe}, \sim 1 \mathrm{eV}$ RE), but responsible for many phenomena in magnetism:
> Magnetocrystalline anisotropy
> Magnetostriction
> Anisotropic magnetoresistance, ...

$$
\begin{aligned}
& J=L+S \Rightarrow J^{2}=L^{2}+S^{2}+2 L \cdot S \\
& L \cdot S=1 / 2\left(J^{2}-L^{2}-S^{2}\right) \Rightarrow H^{s o}=-\lambda L \cdot S=-\frac{\lambda}{2}\left(J^{2}-L^{2}-S^{2}\right) \\
& E_{J}=-\frac{\lambda}{2}[J(J+1)-L(L+1)-S(S+1)]
\end{aligned}
$$

Many election atioms

MULTIPLETS

Sets of different electronic energy levels after the degeneracy is lifted by SOC.
Characterized by $\boldsymbol{J}=\boldsymbol{L}+\mathbf{S}$
There exist $2 \mathrm{~J}+1$ states within a multiplet.
Degeneracy lifted by $E_{J}=-\frac{\lambda}{2}[J(J+1)-L(L+1)-S(S+1)]$
Term symbols: ${ }^{2 S+1} \mathbf{X}_{J}$
$|\mathrm{L}-\mathrm{S}|<\mathrm{J}<\mathrm{L}+\mathrm{S}$
Example: (source: Coey)
$\begin{array}{ll}C_{0}^{2+} & 3 d^{7}\end{array}$
$S=3 / 2, \quad L=3, \quad J=9 / 2$

Partial summary

Summarizing:

$$
\begin{aligned}
& \boldsymbol{m}_{O}=-\mu_{B} \boldsymbol{L} \\
& \boldsymbol{m}_{s}=-2 \mu_{B} \boldsymbol{S}
\end{aligned}
$$

Within each multiplet, the total magnetic moment and the total angular moment are collinear:

$$
\begin{aligned}
& \boldsymbol{m}=-g_{J} \mu_{B} J \\
& g_{J}=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
\end{aligned}
$$

g_{j} is the Landé factor, characteristic of each multiplet.

- $g_{\mathrm{J}}=1, \quad$ if $S=0$;
$-g_{\mathrm{J}}=2, \quad$ if $\mathrm{L}=0$.
In general: $\boldsymbol{m}=-g\left(\frac{e}{2 m_{e}}\right) \boldsymbol{L}=\gamma \boldsymbol{L} \quad \boldsymbol{\gamma}$: gyromagnetic factor

Partial summary

Magnetic ions (some):
(source: TGS)

Ion $\mathbf{4 f}$	${ }^{2} \mathbf{S}+\mathbf{1}_{\mathbf{L}} \mathbf{J}$	\mathbf{L}	\mathbf{S}	\mathbf{J}	$\mathbf{g} \mathbf{J}$	$\mathfrak{m}_{\mathbf{0}}\left(\boldsymbol{\mu}_{\mathbf{B}}\right)$	$\mathfrak{m}_{\mathbf{e f f}}\left(\boldsymbol{\mu}_{\mathbf{B}}\right)$
$\mathrm{Ce}^{3+}\left(4 \mathrm{f}^{1}\right)$	${ }^{2} \mathrm{~F}_{5 / 2}$	3	$1 / 2$	$5 / 2$	$6 / 7$	2.14	2.54
$\mathrm{Pr}^{3+}\left(4 \mathrm{f}^{2}\right)$	${ }^{3} \mathrm{H}_{4}$	5	1	4	$4 / 5$	3.20	3.58
$\mathrm{Nd}^{3+}\left(4 \mathrm{f}^{3}\right)$	${ }^{4} \mathrm{I}_{9 / 2}$	6	$3 / 2$	$9 / 2$	$8 / 11$	3.27	3.62
$\mathrm{Pm}^{3+}\left(4 \mathrm{f}^{4}\right)$	${ }^{5} \mathrm{I}_{4}$	6	2	4	$3 / 5$	2.40	2.68
$\mathrm{Sm}^{3+}\left(4 \mathrm{f}^{5}\right)$	${ }^{6} \mathrm{H}_{5 / 2}$	5	$5 / 2$	$5 / 2$	$2 / 7$	0.71	0.85
$\mathrm{Eu}^{3+}\left(4 \mathrm{f}^{6}\right)$	${ }^{7} \mathrm{~F}_{0}$	3	3	0	-	0	0
$\mathrm{Gd}^{3+}\left(4 \mathrm{f}^{7}\right)$	${ }^{8} \mathrm{~S}_{7 / 2}$	0	$7 / 2$	$7 / 2$	2	7.00	7.94
$\mathrm{~Tb}^{3+}\left(4 \mathrm{f}^{8}\right)$	${ }^{7} \mathrm{~F}_{6}$	3	3	6	$3 / 2$	9.00	9.72
$\mathrm{Dy}^{3+}\left(4 \mathrm{f}^{9}\right)$	${ }^{6} \mathrm{H}_{15 / 2}$	5	$5 / 2$	$15 / 2$	$4 / 3$	10.00	10.65
$\mathrm{Ho}^{3+}\left(4 \mathrm{f}^{10}\right)$	${ }^{5} \mathrm{I}_{8}$	6	2	8	$5 / 4$	10.00	10.61
$\mathrm{Er}^{3+}\left(4 \mathrm{f}^{11}\right)$	${ }^{4} \mathrm{I}_{15 / 2}$	6	$3 / 2$	$15 / 2$	$6 / 5$	9.00	9.58
$\mathrm{Tm}^{3+}\left(4 \mathrm{f}^{12}\right)$	${ }^{3} \mathrm{H}_{6}$	5	1	6	$7 / 6$	7.00	7.56
$\mathrm{Yb}^{3+}\left(4 \mathrm{f}^{13}\right)$	${ }^{2} \mathrm{~F}_{7 / 2}$	3	$1 / 2$	$7 / 2$	$8 / 7$	4.00	4.53

All non-magnetic free atoms in their ground state have $\mathrm{J}=0$!

Universidad Autónoma

Partial summary

- Filled electronic shells are non-magnetic
- Only non-saturated shells have a magnetic moment
- The magnetic moment of free atoms or ions is given by:

$$
\boldsymbol{m}=-g_{J} \mu_{B} \boldsymbol{J}
$$

where $\hbar \boldsymbol{J}$ is the total angular momentum.

No other internal effects contribute to degeneracy lifting. All other energy contributions must come from external sources (interactions, applied fields)

The Zeeman interaction

The Hamiltonian for an atom with a magnetic moment $\boldsymbol{m}=-g_{J} \mu_{\mathrm{B}} \boldsymbol{J}$ under an applied magnetic field is

$$
H_{z}=g_{J} \mu_{\mathrm{B}} \boldsymbol{J} \cdot \boldsymbol{B}
$$

When the field is applied along Oz , \boldsymbol{m} precesses rapidly about \mathbf{J}, so on average :

$$
\begin{aligned}
& H_{z}=g_{J} \mu_{B} J_{Z} B \\
& \varepsilon_{Z}=g_{J} \mu_{B} M_{J} B
\end{aligned}
$$

The Zeeman splitting between adjacent levels is

$$
\Delta \varepsilon_{z}=g_{J} \mu_{\mathrm{B}} B \sim 1 \mathrm{~K} \text { for } \mathrm{B}=1 \mathrm{~T} .
$$

Diamagnetism with locallised electirons

Diamagnetism: Response of non-magnetic atoms to applied magnetic fields (no permanent magnetic moments)

Let us consider the classical model of an electron in a circular orbit:

(source: TGS)

A magnetic field applied perpendicular to the current loop induces a variation of the orbital magnetic moment opposite to the field (Lenz's rule), irrespective of the sense of the electron movement.

Diamagnetism with locallised electirons

As we have seen:

$$
m_{0}=-e r v / 2
$$

The induced electromotive force due to Lenz's rule is:

$$
\begin{aligned}
U & =-\frac{d \Phi}{d t}=-\pi r^{2} \frac{d B}{d t}=2 \pi r E \\
E & =-\frac{r}{2} \frac{d B}{d t} \\
F & =-e E=\frac{e r}{2} \frac{d B}{d t} \Rightarrow \frac{d v}{d t}=\frac{e r}{2 m_{e}} \frac{d B}{d t} \\
\Delta v & =\frac{e r}{2 m_{e}} \int_{0}^{B} d B=\frac{e r}{2 m_{e}} B
\end{aligned}
$$

And the change in the magnetic moment is:

$$
\Delta m_{O}=-\left(\frac{e^{2} r^{2}}{4 m_{e}}\right) B
$$

Diamagnetism with locallised electirons

If the electron orbit is not perpendicular to the field, assuming a spherical orbital of radius

$$
\sqrt{\left\langle R^{2}\right\rangle}=\sqrt{\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle+\left\langle z^{2}\right\rangle}
$$

For the planar loop we have

$$
\left\langle r^{2}\right\rangle=\left\langle x^{2}\right\rangle+\left\langle y^{2}\right\rangle=2 / 3\left\langle R^{2}\right\rangle
$$

And then:

$$
\Delta m_{O}=-\left(\frac{e^{2} r^{2}}{6 m_{e}}\right) B
$$

For an atom with Z electrons:

$$
\Delta m=-\left(\frac{e^{2} B}{6 m_{e}}\right) \sum_{n}\left\langle r_{n}^{2}\right\rangle
$$

And the diamagnetic susceptibility is

$$
\chi=\frac{\partial M}{\partial H}=-\frac{\mu_{0} N e^{2} Z R^{2}}{6 m_{e}}
$$

Diamagnetism with locallised electirons

- The susceptibilities of diamagnetic materials are $\sim 10^{-6}$ and weakly temperature dependent;

Non-magnetic atoms implies $\mathrm{J}=0$: filled shells in the atomic state or by bonding to other atoms

- Noble gases (He, Ne, Ar)
- Molecular gases ($\mathrm{H}_{2}, \mathrm{~N}_{2}, \ldots$)
- Ionic solids (NaCl)
- Covalent compounds (organic molecules, etc)

D Diamagnetism exists also in atoms with permanent magnetic moments, but it is negligible compared to the other contributions

Paramagnetism - classical

Behavior of materials with non-interacting permanent magnetic moments.
The classical theory of paramagnetism was developed in 1905 by P. Langevin.
Let us consider a set of magnetic moments \boldsymbol{m} under an applied field \boldsymbol{H}.
The Zeeman energy is:

$$
\varepsilon_{z}(\theta)=-\mu_{0} m H \cos \theta
$$

The probability of \boldsymbol{m} forming an angle θ with \boldsymbol{H} is:

$$
P(\theta)=C \underbrace{2 \pi \sin \theta} \exp \left|\frac{\mu_{0} H m \cos \theta}{k_{B} T}\right|
$$

fraction of solid angle

(source: Coey)

Paramagnetism - classical

The expected value of the magnetic moment along the field direction is then:

$$
\left\langle m_{z}\right\rangle=\frac{\int_{0}^{\pi} m \cos \theta P(\theta) d \theta}{\int_{0}^{\pi} P(\theta) d \theta}=m\left[\tanh ^{-1}\left|\frac{\mu_{0} m H}{k_{B} T}\right|-\left|\frac{\mu_{0} m H}{k_{B} T}\right|^{-1}\right]
$$

Langevin function

(source: TGS)

Paramagnetism - classical

At low H or high T :

$$
\frac{\mu_{0} m H}{k_{B} T} \ll 1 \Rightarrow\left\langle m_{z}\right\rangle \approx \frac{\mu_{0} m^{2} H}{3 k_{B} T}
$$

and the susceptibility is:

$$
\chi=\frac{N\left\langle m_{z}\right\rangle}{H}=\frac{\mu_{0} N m^{2}}{3 K_{B} T}=\frac{C}{T}
$$

which is the Curie law, with $C=\frac{\mu_{0} N m^{2}}{3 k_{B}}$ being Curie's constant.
Paramagnetic susceptibility is $\sim 10^{-5}-10^{-4}$, much larger than the diamagnetic contribution (but much smaller than the ferromagnetic one!)

Paramagnetism - quantum

Quantically, we know that the electron magnetic moments are quantized:

$$
m_{z}=-g_{J} \mu_{B} M_{J}, \quad-J \leq M_{J} \leq+J
$$

Then, the energy is: $E=\mu_{0} g_{j} \mu_{B} M_{j} H$
And applying Boltzmann statistics:

$$
M=\frac{N}{Z} \sum_{-J}^{+J}-g_{J} \mu_{B} M_{J} \exp \left(-\frac{x M_{J}}{J}\right) \text {, with } x=\mu_{0} g_{J} \mu_{B} J H / k_{B} T
$$

Z is the partition function:

$$
Z=\sum_{-J}^{+J} \exp \left|-\frac{x M_{J}}{J}\right|=\mathrm{e}^{\times}\left[1+\mathrm{e}^{x / J}+\left(\mathrm{e}^{x / J}\right)^{2}+\ldots+\left(\mathrm{e}^{x / J}\right)^{2 J}\right]=\frac{\sinh \left(\left.\frac{2 J+1}{2 J} x \right\rvert\,\right.}{\sinh \left|\frac{x}{2 J}\right|}
$$

Paramagnetism - quantum

Then the magnetization is:

$$
M=M_{0} B_{J}(x)
$$

M_{0} is the maximum ("saturation") magnetization:

$$
M_{0}=N g_{J} \mu_{B} J=N m_{0}
$$

and $B_{\jmath}(x)$ is the Brillouin function:

$$
B_{J}(x)=\left(\frac{2 J+1}{2 J}\right) \tanh ^{-1}\left(\frac{2 J+1}{2 J} x\right)-\left(\frac{1}{2 J}\right) \tanh ^{-1}\left(\frac{1}{2 J} x\right)
$$

$B_{j}(x)$ reduces to the Langevin function in the limit $J \rightarrow \infty$.
In the small x limit:

$$
B_{J}(x) \approx\left|\frac{J+1}{3 J}\right| x-\frac{\left[(J+1)^{2}+J^{2}\right](J+1)}{90 J^{2}} x^{2}+\ldots
$$

and the leading term reproduces Curie's law with an effective moment

$$
m_{\text {eff }}=g_{J} \mu_{\mathrm{B}} \sqrt{(J+1) J}
$$

Paramagnetism - quantum

Comparison of the Langevin and Brillouin functions:

This theory works well for dilute magnetic materials (3d, 4f).

Terms

All possible electron configurations for the C atom

15	11	$1 \downarrow$	11	$1 \downarrow$	$\uparrow \downarrow$	$1 \downarrow$	$1 \downarrow$	11	$\uparrow \downarrow$	个ゆ	11	11	11	11	$1 \downarrow$
2 s	$1 \downarrow$	$1 \downarrow$	11.	$1 \downarrow$	\uparrow	$1 \downarrow$	11	11	$\uparrow \downarrow$	$\uparrow \downarrow$	11	11	11	11	$\uparrow \downarrow$
$2 p_{-1}$	11	1	1	1	\downarrow	1	1		\downarrow	\downarrow					
$2 p_{0}$		1	1	1	\downarrow			11							
$2 p_{1}$						1	1		1	1	\downarrow	\downarrow	\uparrow	\uparrow	$\uparrow \downarrow$
M_{L}	2	1	1	1	1	0	0	0	0	0	-1	-1	-1	$)^{-1}$	-2
M_{S}	0	-1	0	0	+1	-1	0	0	0	+1	$+1$	0	0	-1	0

(source: Coey)

Magnetic character of elements in the solid statie

Ce	$\underset{\text { prara }}{\mathrm{Pr}}$	$\begin{array}{\|l\|} \hline \mathbf{N d} \\ \mathrm{AF} \end{array}$	Pm	$\underset{\mathrm{AF}}{\mathrm{Sm}}$	$\underset{\text { Ferri }}{\text { Eu }}$	Gd Ferro	Tb Ferro	$\begin{aligned} & \text { Dy } \\ & \text { Ferro } \end{aligned}$	Ho Ferri	$\underset{\text { Ferri }}{\mathbf{E r}}$	$\underset{\text { Ferri }}{\mathbf{T} \mathbf{m}}$	Yb Lu para para
Tb para	$P a$	U para	$N p$	Pu	Am	Cm	Bk	$C f$	Es	Fm	Md	No

(source: TGS)

