

The European School on Magnetism 2022

UNIVERSITE DE LA GRANDE REGION UNIVERSITAT DER GROSSREGION

MAGNETISATION DYNAMICS

Claire Donnelly European School of Magnetism 2022 Saarbruecken, 15th September 2022

DYNAMICS – WHAT TIME SCALES?

MAGNETISATION DYNAMICS: VISCOSITY

Imagine an abrupt change in field:

$$t = 0$$
$$H = H_1$$
$$H = H_2$$

The magnetisation will vary with time:

$$I_n(t) = I_{n0} (1 - e^{-t/\tau})$$

MAGNETISATION DYNAMICS: VISCOSITY

Three main causes of magnetic viscosity:

Eddy currents		

Diffusion of impurities – allow domain walls to move

Temperature fluctuations

EDDY CURRENTS

Changing magnetisation leads to "Eddy currents"

Electromagnetic induction:

When a magnetic field changes, an electric field is created:

$$\int Edl = -\int \int \frac{dB}{dt} dS$$

$$2\pi r E(r) = -\mu_0 \pi r^2 \frac{dm}{dt}$$

 $E(r) = -\frac{\mu_0 r}{2} \frac{dm}{dt}$

→ Eddy currents:
$$i(r) = -\frac{\mu_0 r}{2} \frac{dm}{dt}$$

MAGNETISATION DYNAMICS: VISCOSITY

Three main causes of magnetic viscosity:

Eddy currents

Diffusion of impurities – allow domain walls to move

Temperature fluctuations

DIFFUSION OF IMPURITIES

Remember from before:

Slowly over time, the impurities can adjust themselves

DOMAIN WALL PINNING What causes this pinning? \rightarrow Local changes in the energy landscape Surface defects Voids Grain boundaries

MAGNETISATION DYNAMICS: VISCOSITY

Three main causes of magnetic viscosity:

Eddy currents

Diffusion of impurities – allow domain walls to move

Temperature fluctuations

MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY

Zero-temperature model!

In reality, we have finite temperature

What is our energy barrier?

Rotate through the "hard axis" $\theta = 90^{\circ}$:

$$E = v(K \sin^{2}(\theta - \varphi) - \mu_{0}HM_{S} \cos \varphi)$$
Anisotropy vs Magnetic field

Zero field energy barrier $\rightarrow \Delta E \sim K v$

Volume

Volume

In reality, we have finite temperature

$$E = v(K \sin^{2}(\theta - \varphi) - \mu_{0}HM_{S}\cos\varphi)$$
Anisotropy vs Magnetic field

Energy barrier $\rightarrow \Delta E = vK$

Thermal activation
$$\rightarrow E_{th} = \frac{k_B T}{2}$$

For a **small enough** particle, we can get spontaneous switching! $T = 273K \rightarrow k_BT = 3.77e - 21 J$ $K \sim 10^5 \frac{J}{m^3}$ for Co $v = 1.9x10^{-26} \text{m}^3$ so $d = 1.7x10^{-9} \text{ m}$ "superparamagnetism"

SUPERPARAMAGNETISM: TIME SCALES

What is the time scale of the oscillations?

i.e. time between two fluctuations?

Relaxation time ~ Attempt frequency and Boltzmann probability

 $au_0 \qquad e^{\Delta/k_B T} \sim 10^{-9} - 10^{-10} \, {
m s}$

Spin-flip / Neel relaxation time:
$$au_N = au_0 e^{\Delta/k_B T}$$

Can range from nanoseconds to years!

SUPERPARAMAGNETISM – OF NANOSTRUCTURES

Not only intrinsic anisotropy: can have fluctuations in small nanoislands:

For patterned nanostructures

(shape anisotropy)

Blocking temperature: temperature at which the structures become thermally active.

Can tune with shape!

Artificial Spin ice

Farhan et al. Phys. Rev. Lett. 111, 057204 (2013).

DYNAMICS – WHAT TIME SCALES?

FAST SPIN DYNAMICS:

Fast response of magnetisation to an excitation?

Let's think about how the magnetisation reacts to a magnetic field:

CONSIDER THE GYROMAGNETIC RATIO

What is the gyromagnetic ratio?

$$\frac{1}{\gamma}\frac{dM}{dt} = -M \times H$$

Ratio of magnetic moment to angular momentum

 $\gamma = \frac{\mu}{L}$

It determines the precession of the magnetisation based on an applied field

FERROMAGNETIC RESONANCE

Ferromagnetic body under applied field strongly absorbs certain frequencies of field:

BLOCH EQUATION

Effective field: includes all contributions!

$$\frac{d\boldsymbol{M}}{dt} = -\gamma \boldsymbol{M} \times \boldsymbol{H}_{eff}$$

Angle to the field: constant!

Precesses with angular velocity $\omega = \gamma |\mathbf{B}|$

~28 GHz/T

 \boldsymbol{H}

 $M \times dM/dt$

M

d**M**/dt

LANDAU LIFSHITZ GILBERT EQUATION

But! We see from Hysteresis loops that in the end, a magnetic field can saturate a sample

- \rightarrow Energy dissipation (or damping)
- \rightarrow \rightarrow energy transferred to lattice vibrations, spin waves, & heating of conduction electrons
- \rightarrow Include damping into effective field:

$$\frac{d\boldsymbol{M}}{dt} = -\gamma \boldsymbol{M} \times \boldsymbol{H}_{eff} - \lambda \boldsymbol{M} \times (\boldsymbol{M} \times \boldsymbol{H}_{eff})$$

$$\frac{dM}{dt} = -\gamma M \times H_{eff} - \bigwedge_{M_S} \lambda M \times \frac{dM}{dt} \qquad \alpha = \frac{1}{2} \frac$$

LANDAU LIFSHITZ EQUATION

What is alpha?

Low damping materials:

CoFeB, Py, YIG

Determines the damping of a material

Depends on intrinsic and extrinsic effects

 \rightarrow Affects the dynamics

LANDAU LIFSHITZ EQUATION

What is this effective field?

Composed of different contributions

Including magnetic field!

Interactions of spins – what happens in multi-spin systems?

GYROMAGNETIC RATIO & APPLICATIONS

Could you talk about the gyromagnetic ratio in terms of applications?

$$\frac{dM}{dt} = -\gamma M \times H_{eff} - \bigwedge_{M_S} M \times \frac{dM}{dt}$$

$$\Rightarrow \text{ Typically, damping parameter optimised instead!}$$

Ratio of magnetic moment to angular momentum

$$\gamma = \frac{\mu}{L}$$
 ~28 GHz/T

 \rightarrow Magnetism is fast!

 \rightarrow However, not so easy to tailor...

MICROMAGNETICS WITH THE LLG

Micromagnetic simulations

Minimise energy or

Solve the LLG equation

Very robust for micromagnetic problems

SPIN EXCITATIONS

Now we know how the magnetisation reacts to the magnetic field

We had ferromagnetic resonance: spins precess in phase...

What happens when we think about an excitation of the spin

We have the ground state:

SPIN EXCITATIONS

We have the ground state:

SPIN WAVES

What this leads to:

Spins all precessing at the same frequency

But: out of phase with one another:

 λ

 \rightarrow Propagating spin waves

Let's think about "normal" waves

Take light as an example. What defines light? Frequency, wavelength \rightarrow dispersion relation

Quanta: the equivalent of a photon?

Magnons always present at finite temp

Excite spin waves with an antenna

- can also excite with spin textures
- \rightarrow nanoscale, ideal for spin wave excitation

Mayr et al., Nano Lett. 2021, 21, 4 (2021)

In light, different materials have different refractive indices.

Snell's law In magnetic materials

Stigloher et al., Phys. Rev. Lett. 117, 037204 (2016)

"OPTIC-LIKE" EFFECTS IN SPIN WAVES

COMMUNICATION

Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets

Edoardo Albisetti,* Silvia Tacchi, Raffaele Silvani, Giuseppe Scaramuzzi, Simone Finizio, Sebastian Wintz, Christian Rinaldi, Matteo Cantoni, Jörg Raabe, Giovanni Carlotti, Riccardo Bertacco, Elisa Riedo,* and Daniela Petti*

Spin wave lenses: domain wall used to excite spin waves

+max ΔM_z -max

Pattern domain wall – define different waves

MEASURING SPIN WAVES

Brillouin Scattering

Scatter photons from surface spin waves of films

Reflected photons give information on spin waves that are created (Stokes) or annihilated (anti-Stokes)

MEASURING SPIN WAVES

Brillouin Scattering – microfocused!

Not limited to coherent spin waves!

Sebastian et al., https://doi.org/10.3389/fphy.2015.00035

MEASURING SPIN WAVES

Or apply pump-probe techniques to measure *coherent* spin waves:

Time resolved MOKE

- \rightarrow Pump probe rotation of linear polarised light
- \rightarrow ps temporal resolution, 100s nm µm spatial resolution

X-ray microscopy

Synchrotron X-rays

Albisetti et al., Adv. Mat. 32, 1906439 (2020)

- \rightarrow Time resolved Scanning transmission X-ray microscopy
- \rightarrow Pump-probe XMCD
- \rightarrow Ps temporal resolution, nm spatial resolution

MEASURING MAGNETISATION DYNAMICS – FASTER?

MEASURING MAGNETISATION DYNAMICS – FASTER?

Free electron laser

Very long accelerator: European XFEL 3.4 km long!

Ultra-bright, ultra-short X-ray pulses

10¹² photons/s

~fs pulse length

MAGNONICS ROADMAP

IOP Publishing

J. Phys.: Condens. Matter 33 (2021) 413001 (72pp)

Journal of Physics: Condensed Matter

https://doi.org/10.1088/1361-648X/abec1a

Topical Review

The 2021 Magnonics Roadmap

Anjan Barman^{1,51,*}, Gianluca Gubbiotti^{2,51,*}, S Ladak³, A O Adeyeye⁴, M Krawczyk⁵, J Gräfe⁶, C Adelmann⁷, S Cotofana⁸, A Naeemi⁹, V I Vasyuchka¹⁰, B Hillebrands¹⁰, S A Nikitov¹¹, H Yu¹², D Grundler¹³, A V Sadovnikov^{11,14}, A A Grachev^{11,14}, S E Sheshukova^{11,14}, J-Y Duquesne¹⁵, M Marangolo¹⁵, G Csaba¹⁶, W Porod¹⁷, V E Demidov¹⁸, S Urazhdin¹⁹, S O Demokritov¹⁸, E Albisetti²⁰, D Petti²⁰, R Bertacco²⁰, H Schultheiss^{21,22}, V V Kruglyak²³, V D Poimanov²⁴, S Sahoo¹, J Sinha²⁵, H Yang²⁶, M Münzenberg²⁷, T Moriyama^{28,29}, S Mizukami^{29,30}, P Landeros^{31,32}, R A Gallardo^{31,32}, G Carlotti^{33,34}, J-V Kim³⁵, R L Stamps³⁶, R E Camley³⁷, B Rana³⁸, Y Otani^{38,39}, W Yu⁴⁰, T Yu⁴¹, G E W Bauer^{30,42}, C Back⁴³, G S Uhrig⁴⁴, O V Dobrovolskiy⁴⁵, B Budinska⁴⁵, H Qin⁴⁶, S van Dijken⁴⁶, A V Chumak⁴⁵, A Khitun⁴⁷, D E Nikonov⁴⁸, I A Young⁴⁸, B W Zingsem⁴⁹ and M Winklhofer⁵⁰

- \rightarrow Sub-100 nm wavelength magnons
- \rightarrow Manipulation on the nanoscale
- \rightarrow Creation of sub-micrometre devices

"magnonics offers lower energy consumption, easier integrability and compatibility with CMOS structure"

OTHER TYPES OF DYNAMICS:

Domain walls move to grow domains

As domain wall moves, Zeeman energy decreases:

 $E = -\mu_0 M \cdot H$

DOMAIN WALL DYNAMICS

DOMAIN WALL DYNAMICS

Wall will feel a torque – start to tilt For strong enough fields, the wall will start to precess!

DOMAIN WALL DYNAMICS

WALKER BREAKDOWN: EXPERIMENTALLY

Domain wall propagated by spin-polarised current

Beach et al., JMMM 320, 1272 (2008)

IN REAL SYSTEMS: NANOWIRES

Burn & Atkinson Appl. Phys. Lett. 102, 242414 (2013)

Edges play a role!

Can avoid by going to different geometries:

APPLIED PHYSICS LETTERS 99, 122505 (2011)

Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission

Ming Yan,^{1,a)} Christian Andreas,¹ Attila Kákay,¹ Felipe García-Sánchez,¹ and Riccardo Hertel^{1,2}

WALKER BREAKDOWN:

The Walker breakdown limits the maximum velocity of domain walls

DYNAMICS – WHAT TIME SCALES?

SPIN-FLIP: HOW FAST CAN WE GO?

Acremann et al., Science, 290, 492 (2000)

- \rightarrow Mz field pulse
- → Larmor's theoreum: precessional orbit of the magnetisation
- \rightarrow Microscopy: get spatial resolution:

SPIN-FLIP: HOW FAST CAN WE GO?

Does this precessional motion matter?

Yes – for devices it limits the speed!

The ultimate speed of magnetic switching in granular recording media

I. Tudosa¹, C. Stamm¹, A. B. Kashuba², F. King³, H. C. Siegmann¹, J. Stöhr¹, G. Ju⁴, B. Lu⁴ & D. Weller⁴

¹Stanford Synchrotron Radiation Laboratory, PO Box 20450, Stanford, California 94309, USA

²Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow 117940, Russia ³Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA

⁴Seagate Technology LLC, Pittsburgh, Pennsylvania 15222, USA

Applied physics Speed limit ahead

C. H. Back and D. Pescia

Are there any limits to what science and technology can achieve? When it comes to recording data in magnetic media, the answer is yes: there is a natural limit to the speed at which data can be encoded.

\rightarrow Limited to ~100s picoseconds

DIFFERENT TIME SCALES:

REVIEWS OF MODERN PHYSICS, VOLUME 82, JULY-SEPTEMBER 2010

Ultrafast optical manipulation of magnetic order

Andrei Kirilyuk,* Alexey V. Kimel, and Theo Rasing

Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

There are faster time-scales out there!

Stoehr et al., Magnetism Springer-Verlag, (2006)

GOING ULTRAFAST

So far, we have looked at thermal and magnetic field/ current driven dynamics

- \rightarrow Indicate that it is limited to ~ns, ps.
- \rightarrow However, when excited by a femtosecond laser, spin dynamics can be sub-pico second!

FEMTOSECOND DYNAMICS: ULTRAFAST DEMAGNETISATION

Nickel

- \rightarrow Demagnetisation in sub-ps time scale
- \rightarrow Recovers ~ ps

Beaurepaire et al., Phys. Rev. Lett. 76, 4250 (1996)

Gadolinium

 \rightarrow Demagnetisation in 10/100 ps timescale

Wietstruk et al. Phys. Rev. Lett. 106, 127401 (2011)

ULTRAFAST: WHAT'S HAPPENING?

Longer time scales:

Spin & lattice in equilibrium

Fast time scales:

Lattice-driven spin demagnetisation!

Electrons act as heat bath for spin system

 \rightarrow Effective heating of the spins above the Curie temperature

Ni vs Gd?

Magnetic moment ~ Angular momentum

Moment of Gd larger (7.3 vs 1.26 µB) Rate of change of L ~ similar

ULTRAFAST DYNAMICS: SWITCHING?

- → Helicity independent, single shot switching
- → Single shot: how fast?

Fast switching!

- → Multi-pulse, helicity dependent optical switching
- → ~ms

El Hadri et al, Phys. Rev. B , 94, 064412 (2016)

ALL-OPTICAL SWITCHING

GdFeCo:

Reproducible switching back and forth

Ostler et al., Nat. Commun. 3, 666 (2012)

ULTRAFAST ALL-OPTICAL SWITCHING

Key: ferrimagnet?

Reveals:

Fe and Gd demagnetise on different timescales → Transient ferromagnetic state

 \rightarrow Drives robust switching process

DYNAMICS – WHAT TIME SCALES?

Slow!

Ultrafast!

Magnetic viscosity

Superparamagnetism

Spin waves

Domain wall dynamics

Ultra-fast switching