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SOFT VS HARD MAGNETS:

M ‘ M Hard to switch:
Easy to switch: wide loop, “hard”

narrow loop, “soft”

He He

= |

=
H

Permanent magnets, motors,
magnetic recording

shielding.
E.g. Co, NdFeB, CoSm
E.g. Permalloy, Iron, FeCo J

Sensors, transformer, magnetic
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M (arb. unit)

COMBINATION OF SOFT AND HARD?

Exchange spring!

Combination of hard & soft

r el 1 od Al

- —
0.6 | ]
[ | Hard FM .
0.4} | (SmFe) .

0.2 -

0.0 | o | n
0.2 -
-0.4 soft
0.6} 1—:

N

-0.8 hard

-

A

6000 -3000 0 3000 6000
Magnetic Field (Oe)
Gu et al., PRB 81, 214435 (2010)
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ldea;

Hard magnets useful, however rare earth
permanent magnets expensive

Combination of hard rare earths & “cheap”
soft magnets

- Higher Ms, higher Hc
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OUR QUESTIONS FOR TODAY:

Reversal of a single Domain wall motion Alternative types of Topology in reversal
particle switching
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MAGNETIC REVERSAL:

“Stoner Wohlfarth Model”

A MECHANISM OF MAGNETIC HYSTERESIS IN
HETEROGENEOUS ALLOYS

By E. C. STONER, F.R.S. axp E. P. WOHLFARTH
Physics Department, University of Leeds

(Received 24 July 1947)

Single domain particle with:
* Anisotropy K

* Magnetic field H

START WITH A SINGLE PARTICLE

“‘easy axis

E = K sin?(8 — @) — ugHM;s cos ¢
\ l

\ J
| I

Anisotropy vs Magnetic field

“macro-spin” model
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SINGLE PARTICLE: “SIMPLE” CASES

A MECHANISM OF MAGNETIC HYSTERESIS IN
HETEROGENEOUS ALLOYS

A A

I By E. C. STONER, F.R.S. axp E. P. WOHLFARTH !

| Physics Department, University of Leeds !

I

: (Recetved 24 July 1947) 1

I — o I

‘easy axis” | 6 =0 t “hard axis” ;
1

|00p “easy axis” | 0 IOOp

K

6 = 90°

ANy

Reversal field larger for hard or easy axis?
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SINGLE PARTICLE: “SIMPLE” CASES

4 4
! A MECHANISM OF MAGNETIC HYSTERESIS IN :
: HETEROGENEOUS ALLOYS !
1
1 J— [o] !
“casy axis” 8 =0 By E. C. STONER, F.RSS. Axp E. P. WOHLFARTH “hard axis” ,
Physics Department, University of Leeds
loop loop
(Received 24 July 1947)
4
| 6 =90°
“ . ” 1
easy axis : e
1 , +
' |
] 1
! 0 deg ! !
I T T I : :
! 1} !
1 1
051
4 |
UJ: : I
= of ! |
S | | |
5T |
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
h h

1
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SINGLE PARTICLE: “SIMPLE” CASES

‘easy axis” 1 0 =0° Easy axis:

loop

Two stable states

0 deg

1,

051
*
”i

= 0
=
1 0.5 0 0.5 1
h
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Hard axis: t “hard axis”

loop

M rotates

|
1
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SINGLE PARTICLE: SOLVE FOR ARBITRARY ANGLES:

“‘easy axis”

—> can minimise energy:

Rearranging, find solutions:

dE_O
dgo_

Question: which direction does the magnetisation point for a given field?

E = K sin?(8 — @) — ,l‘,lOHMS cos ¢
l l

|

|

Anisotropy vs Magnetic field

MM
s

And determine if they are stable:
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M/M
s

1

60 deg

1
h MAGNETIC REVERSAL | 15.09.2022
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SINGLE PARTICLE: SOLVE FOR ARBITRARY ANGLES:

“‘easy axis”
K

8 = 60°

——m— e —

Question: which direction does the magnetisation point for a given field?

- can minimise energy:  E = K sin?(8 — @) — uoHMs cos @
l J \ 1

¢

Giving our hysteresis loop!

A

Z

QY

60 deg

-1 -0.5 0 0.5 1
h

« Switching points - discontinuous

« Continuous rotation of m towards switching point
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[ : ,
' Anisotropy vs Magnetic field
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SINGLE PARTICLE

“easy axis”

M/M
o

051

: SOLVE FOR ARBITRARY ANGLES:

051

0 deg 30 deg
1 L
05 7 K
w
2 o0
=
-05¢ J
AF
1 0.5 0 0.5 1 1 0.5 0 0.5
h h
45 deg 60 deg

90 deg
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SINGLE PARTICLE: SOLVE FOR ARBITRARY ANGLES:

“easy axis”

MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY

0 deg 30 deg

05 I 1 05 L

M/M
o

M/M
o

-05F 1 -0.5¢

@ | o | /’
|

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5
h h

For all of these cases, we have the smooth rotation of the magnetisation...

45 deg 60 deg

1
- coherent rotation

90 deg

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1

-0.5 0 0.5 1

h h h
Max coercive field = anisotropy field
MAGNETIC REVERSAL | 15.09.2022 12



COERCIVITY:

,~ Remanent magnetisation

o

30 deg,”
T T / T
17 ¥ R S
0.5
(%]
051
A
-1 -0.5 0 0.5
h

Area of loop: Losses

f HoHexe - m
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_.--- Saturating field

[~ switching field:

When the magnetisation changes abruptly

Note: Coercive field:

When M\H=0
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ASTEROID CURVE

Switching field as a function of angle:

Hard
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First experimental demonstration:
Ellipsoidal Co nanoparticle ~25 nm diameter

200

-400 -300 -200 -100 O 100 200 300 400
HoHy(m T)

Wernsdorfer et al., PRL 78, 9 (1997)
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MACRO SPIN FOR LARGER PARTICLES?

0.2x0.5 um
wf R T
@ A
- S0F
3
=
.50-
| For flat particles (tunnel junctions)
100 50 (.J S.O 1.60 . . . .
H_, %) Macro-spin model less applicable as size increases

Be careful when applying!
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COERCIVITY: PARADOX

30 deg

051

M/M
o

05 i J

-1 -0.5 0 0.5 1
h

Max coercive field: reflective of anisotropy
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—> But! Coercivity rarely this large! Difficult to get a
coercive field that approaches anisotropy

Or, “Brown’s paradox”

- Why does it switch prematurely? - size!

Can be described as: (William Brown, “Brown’s theorem”)

H <2K1> NM
¢= ‘HoMs S,

] |
| |
Anisotropies: Magnetocrystalline  Shape

Vv
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OUR QUESTIONS FOR TODAY:

Reversal of a single Domain wall motion Alternative types of Topology in reversal
particle switching
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BEYOND COHERENT ROTATION...

Can we assume coherent rotation?
- Small particles, coherent rotation

—> Larger particles...?

Nucleation & propagation of Intermediate configurations
domain walls
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LARGER SYSTEMS: INHOMOGENEOUS

Small region of inhomogeneous sample will switch first due to
lower anisotropy

- “nucleation field”

- “Propagation field”

MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY MAGNETIC REVERSAL | 15.09.2022
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LARGER SYSTEMS: INHOMOGENEOUS

Surface charge H ®

effects

Internal defects Domain walls move |
to grow domains i
Seen experimentally
in MOKE
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DOMAIN WALL MOVES UNDER “PRESSURE”

5x As the wall moves dx: Leading to a velocity of

AEZ —_ Z‘LloMng

(per unit area of wall)

Vpw = UoNpw (H — Hdep)

We know that pressure: T
p = F_Ex DW mobility “depinning field”
A Ax ~1-1000 m /s /mT
Therefore:

In a perfect system: domain walls

p = E 2uoMH move through system smoothly!
Ax

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL



IN A NON-PERFECT SYSTEM:

Surface charge
effects

P

Internal defects

MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY

Domain walls move
to grow domains

Pinning points: local defects

Until they get
pinned by defects

- Discontinuous motion

MAGNETIC REVERSAL | 15.09.2022 22



BARKHAUSEN NOISE

First discovered by Barkhausen in 1919

A/ B

>
H

Discrete jJumps in the magnetisation
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First evidence of
ferromagnetic domains!

(pre-Bitter method!)
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DOMAIN WALL PINNING

What causes this pinning?

- Local changes in the energy landscape

Voids Grain boundaries Surface defects
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DOMAIN WALL PINNING: VOIDS

What causes this pinning? Voids:

Magnetostatic energy of a sphere:
1 M* 4mrr3
oc —_
2 3‘[10 3
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Domain wall intersecting void
- Magnetostatic energy ~ halved!

MAGNETIC REVERSAL | 15.09.2022
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DOMAIN WALL PINNING: GRAIN BOUNDARIES

Two grains with different anisotropies

Without domain wall:

Magnetostatic energy of boundary:
E « (Ms(COS 01 — COS 92))2
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With domain wall:

Each change in angle:

=
SH—N

SAE~2)S2 (E)Z

Energy cost of wall:
AE 2J5° i
Tor™2/ N

Total angle of domain wall < m
- DW energy reduced

MAGNETIC REVERSAL | 15.09.2022 26



LARGE ANISOTROPIC SYSTEMS

Reversal stages:

1. Domain wall nucleation
2. Domain wall propagation
3. Coherent rotation

Can determine dominating factor by virgin magnetisation curves

| —

First magnetization

— B

Nucleation field-limited Depinning field-limited

MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY

Question:

Will a nucleation-limited switch give a

square or rounded loop?

MAGNETIC REVERSAL | 15.09.2022
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LARGE ANISOTROPIC SYSTEMS

First magnetization

_ N .

— —1
Nucleation field-limited Depinning field-limited
Few nucleation events needed Many nucleation events needed

Followed by domain wall propagation - ~square loops - Rounded loops
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THIN FILMS: NUCLEATING A DOMAIN WALL

In a thin film:

Which has lower switching field?
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THIN FILMS: NUCLEATING A DOMAIN WALL

In a thin film:

Region of low anisotropy: nucleation pad

Sanz-Hernandez et al., Advanced Materials 33, 17 (2021)
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QUESTION FROM Q&A:

Amorphous ferromagnets are known as very soft magnetic materials. Compared with Permalloy thin
films, why do amorphous ferromagnetics get more soft magnetic with increasing thickness, while the

coercivity of premalloy thin films does not vary much with thickness?

Amorphous materials: neglect grain effects - Have shape anisotropy & surface effects

As film thickness increases:

Domain wall type changes

Bloch walls: Neel walls:

R

o¢¢§++§¢¢c oo o o 0 ©6

Surface charges Volume charges

Stable for thick films Stable for thin films
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Shape anisotropy
decreases

-—

Surface defects
less important

MAGNETIC REVERSAL | 15.09.2022
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OUR QUESTIONS FOR TODAY:

Reversal of a single Domain wall motion Alternative types of Topology in reversal
particle switching
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LARGER PARTICLES

Stoner Wohlfarth assumes
macro spin — single domain

———————p
———————p

Buckling
However, yesterday we

realised that multi-domain

states can be stable - if the
sample is larger @
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CURLING: A SOFT DISC
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CURLING: A SOFT DISC

MAX PLANCK INSTITUTE FOR CHEMICAL PHYSICS OF SOLIDS | CLAIRE DONNELLY

Magnetization, M/Ms

=
L

1.0

0.5

—
il

a—
=

100 \ 150

MAGNETIC REVERSAL | 15.09.2022
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THE CORE OF A VORTEX:

Vortex core magnetisation reversal:

H

Magnetic field coupled to the vortex core only

Coherent reversal of vortex core magnetization is topologically impossible
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THE CORE OF A VORTEX Calculates over a surface

For a vortex: m .
wp

Vortex core magnetisation reversal: s { ©

w — winding number

p — polarisation
Tretiakov PRB 75, 012408 (2007)

H
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Reversal of core = change in topology

Mediated by a Bloch point

Thiaville et al.,
PRB 67, 094410 (2003)
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PERPENDICULAR ANISOTROPY

B=07

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL



PERPENDICULAR ANISOTROPY

Let’s look at some data:
B increasing

B B=0

Fagd &
o
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PERPENDICULAR ANISOTROPY
B increasing

- White stripes appear ...and grow White dominates Domains break up

= 3
5 | Ky :
B <
s K g
= s \‘\(, %
3 I R
; B
B _O B ‘ & 5
— . *
-y &
K. 1% Gt LfY
¥
- ¥ o
b, » n’h
o s
:



DOMAINS BREAK UP INTO

. . “Bubble domains” or skyrmions
B increasing

R

Saturation

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL



PERPENDICULAR ANISOTROPY: HYSTERESIS

Linear: expansion of domains

B increasing

-~ White stripes appear ...and grow White dominates Domains break up

sOR A

¥ /,)

P-MOKE [mdeg]

B decreasing

Abrupt: formation of
bubbles/ domains
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BUBBLE DOMAINS AND SKYRMIONS

Bubble domains: studied in 1970s, “Bubble memory” proposed

Cylindrical domains

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



BUBBLE DOMAINS AND SKYRMIONS

Bubble domains: studied in 1970s, “Bubble memory” proposed

Skyrmion publications

450

Cylindrical domains

250

200

# publications

150

100

<%

T T e - W S ) <
% % e % B B B % 9 B % % % B

From webofscience.com
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BUBBLES VS SKYRMIONS

Bubbles: can have different types of domain walls

©

®

Skyrmions?
“Topologically non-trivial”

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



OUR QUESTIONS FOR TODAY:

Reversal of a single Domain wall motion Alternative types of Topology in reversal
particle switching
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UNDERSTANDING: TOPOLOGY

-
Meaning: W —~

For magnetism?
- assume continuous vector field

Key: Smoothly deform!

Let’s start with 2D!
Winding number:
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UNDERSTANDING: TOPOLOGY

-

Key: Smoothly deform! Meaning:

For magnetism?

- assume continuous vector field

Let’s start with 2D!
Winding number:

: | /=N 1 /—\ b/ —N | /=N
Wind clockwise Wind clockwise
2> W=+1 > W=+1

Are these topologically equivalent?
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UNDERSTANDING: TOPOLOGY

-
Meaning: r —~

For magnetism?
- assume continuous vector field

Key: Smoothly deform!

Let’s start with 2D!
Winding number:

\ / Rotate all / l \ Rotate all \ /

spins by 90° spins by 90°

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL



TOPOLOGY

Key: Smooth unwinding! Meaning: —~
3D spins in 2D Skyrmion number:
Skyrmion number OM OM
1
n=— | M- X dxd
» 4‘"/ ( r Oy ) Y

Calculates over a surface
- Considers how many of the directions are present

Everschor-Sitte et al.,
JAP 115, 172602 (2014)
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SKYRMIONS & TOPOLOGY

Skyrmion number: How do the existing spins map onto the sphere?

1 amxamdd
n_4n m dx Jdy xay

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL



SKYRMIONS & ANTISKYRMIONS?

Skyrmion

n=1

Hoffmann et al., Nat. Comm. 8, 308 (2017)
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Anti-skyrmion

n=-—1
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UNZIPPING A SKYRMION?

Requires a Bloch point singularity

P. Milde et al., Science 340, 6136, (2013). Birch et al. Nat. Comm. 11, 1726 (2020)
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OUR QUESTIONS FOR TODAY:

Reversal of a single Domain wall motion Alternative types of Topology in reversal
particle switching
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