The European School on Magnetism 2022

UNIVERSITE DE LA GRANDE REGION UNIVERSITAT DER GROSSREGION

MAGNETIC REVERSAL

European Schoo of Magnetism 2022
Saarbruecken, 15 th September 2022

SOFT VS HARD MAGNETS:

Easy to switch: narrow loop, "soft"

Sensors, transformer, magnetic shielding.
E.g. Permalloy, Iron, FeCo

Hard to switch:
wide loop, "hard"

Permanent magnets, motors, magnetic recording
E.g. Co, NdFeB, CoSm

COMBINATION OF SOFT AND HARD?

Exchange spring!

Combination of hard \& soft

Idea:
Hard magnets useful, however rare earth permanent magnets expensive

Combination of hard rare earths \& "cheap" soft magnets
\rightarrow Higher Ms, higher Hc

OUR QUESTIONS FOR TODAY:

Alternative types of switching

MAGNETIC REVERSAL: START WITH A SINGLE PARTICLE

"Stoner Wohlfarth Model"

A MECHANISM OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS

By E. C. STONER, F.R.S. and E. P. WOHLFARTH Physics Department, University of Leeds
(Received 24 July 1947)

Single domain particle with:

- Anisotropy K
- Magnetic field H

SINGLE PARTICLE: "SIMPLE" CASES

A MECHANISM OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS
By E. C. STONER, F.R.S. and E. P. WOHLFARTH Physics Department, University of Leeds
(Received 24 July 1947)

Reversal field larger for hard or easy axis?

SINGLE PARTICLE: "SIMPLE" CASES

SINGLE PARTICLE: "SIMPLE" CASES

SINGLE PARTICLE: SOLVE FOR ARBITRARY ANGLES:

Question: which direction does the magnetisation point for a given field?
\rightarrow can minimise energy: $\quad E=\underbrace{K \sin ^{2}(\theta-\varphi}_{\text {Anisotropy }})-\underbrace{\mu_{0} H M_{S} \cos \varphi}_{\text {va }}$

Rearranging, find solutions:

$$
\frac{d E}{d \varphi}=0
$$

And determine if they are stable:

$$
\frac{\mathrm{d}^{2} E}{\mathrm{~d} \varphi^{2}}>0
$$

SINGLE PARTICLE: SOLVE FOR ARBITRARY ANGLES:

Question: which direction does the magnetisation point for a given field?
\rightarrow can minimise energy: $\quad E=\underbrace{K \sin ^{2}(\theta-\varphi}_{\text {Anisotropy }})-\underbrace{\mu_{0} H M_{S} \cos \varphi}_{\text {va }}$
Giving our hysteresis loop!

- Switching points - discontinuous
- Continuous rotation of m towards switching point

SINGLE PARTICLE: SOLVE FOR ARBITRARY ANGLES:

SINGLE PARTICLE: SOLVE FOR ARBITRARY ANGLES:

For all of these cases, we have the smooth rotation of the magnetisation... \rightarrow coherent rotation

Max coercive field = anisotropy field

COERCIVITY:

Area of loop: Losses

$$
\int \mu_{0} \boldsymbol{H}_{e x t} \cdot \boldsymbol{m}
$$

Note: Coercive field:
When M.H = 0

ASTEROID CURVE

Switching field as a function of angle:

First experimental demonstration:
Ellipsoidal Co nanoparticle ~25 nm diameter

Wernsdorfer et al., PRL 78, 9 (1997)

MACRO SPIN FOR LARGER PARTICLES?

For flat particles (tunnel junctions)
Macro-spin model less applicable as size increases
Be careful when applying!

COERCIVITY: PARADOX

Max coercive field: reflective of anisotropy
\rightarrow But! Coercivity rarely this large! Difficult to get a coercive field that approaches anisotropy

Or, "Brown's paradox"
\rightarrow Why does it switch prematurely? \rightarrow size!

Can be described as: (William Brown, "Brown's theorem")

$$
H_{C} \geq \underbrace{\left(\frac{2 K_{1}}{\mu_{0} M_{S}}\right)}_{\text {Magnetocrystalline }}-\underbrace{N M_{S}}_{\text {Shape }}
$$

OUR QUESTIONS FOR TODAY:

BEYOND COHERENT ROTATION...

Can we assume coherent rotation?
\rightarrow Small particles, coherent rotation
\rightarrow Larger particles...?

Nucleation \& propagation of
Intermediate configurations

LARGER SYSTEMS: INHOMOGENEOUS

Small region of inhomogeneous sample will switch first due to lower anisotropy
\rightarrow "nucleation field"
\rightarrow "Propagation field"

LARGER SYSTEMS: INHOMOGENEOUS

DOMAIN WALL MOVES UNDER "PRESSURE"

δx

As the wall moves δx :

$$
\begin{aligned}
& \Delta E_{Z}=2 \mu_{0} M H \delta x \\
& \text { (per unit area of wall) }
\end{aligned}
$$

We know that pressure:

$$
p=\frac{F}{A}=\frac{F x}{A x}
$$

Therefore:

Leading to a velocity of

$$
v_{D W}=\mu_{0} \eta_{D W}\left(H-H_{d e p}\right)
$$

DW mobility $\sim 1-1000 \mathrm{~m} / \mathrm{s} / \mathrm{mT}$
"depinning field"

In a perfect system: domain walls move through system smoothly!

IN A NON-PERFECT SYSTEM:

Internal defects

Pinning points: local defects

\rightarrow Discontinuous motion

BARKHAUSEN NOISE

First discovered by Barkhausen in 1919

First evidence of ferromagnetic domains!
(pre-Bitter method!)

Discrete jumps in the magnetisation

DOMAIN WALL PINNING

What causes this pinning?
\rightarrow Local changes in the energy landscape

DOMAIN WALL PINNING: VOIDS

What causes this pinning? Voids:

Magnetostatic energy of a sphere:

$$
E \propto \frac{1}{2} \frac{M_{S}{ }^{2}}{3 \mu_{0}} \frac{4 \pi r^{3}}{3}
$$

Domain wall intersecting void
\rightarrow Magnetostatic energy ~ halved!

DOMAIN WALL PINNING: GRAIN BOUNDARIES

Two grains with different anisotropies

Without domain wall:

Magnetostatic energy of boundary:
$E \propto\left(M_{S}\left(\cos \theta_{1}-\cos \theta_{2}\right)\right)^{2}$

With domain wall:

Total angle of domain wall $<\pi$
\rightarrow DW energy reduced

LARGE ANISOTROPIC SYSTEMS

Reversal stages:

1. Domain wall nucleation
2. Domain wall propagation
3. Coherent rotation

Can determine dominating factor by virgin magnetisation curves

Question:
Will a nucleation-limited switch give a square or rounded loop?

LARGE ANISOTROPIC SYSTEMS

Few nucleation events needed
Followed by domain wall propagation \rightarrow ~square loops

Many nucleation events needed \rightarrow Rounded loops

THIN FILMS: NUCLEATING A DOMAIN WALL

In a thin film:

Which has lower switching field?

THIN FILMS: NUCLEATING A DOMAIN WALL

In a thin film:

Region of low anisotropy: nucleation pad

Sanz-Hernández et al., Advanced Materials 33, 17 (2021)

QUESTION FROM Q\&A:

Amorphous ferromagnets are known as very soft magnetic materials. Compared with Permalloy thin films, why do amorphous ferromagnetics get more soft magnetic with increasing thickness, while the coercivity of premalloy thin films does not vary much with thickness?

Amorphous materials: neglect grain effects \rightarrow Have shape anisotropy \& surface effects

As film thickness increases:

Domain wall type changes

Stable for thick films

Shape anisotropy decreases

Surface defects less important

OUR QUESTIONS FOR TODAY:

Topology in reversal

Buckling

LARGER PARTICLES

Stoner Wohlfarth assumes macro spin - single domain

However, yesterday we realised that multi-domain states can be stable - if the sample is larger

Curling

CURLING: A SOFT DISC

CURLING: A SOFT DISC

THE CORE OF A VORTEX:

Vortex core magnetisation reversal:

Magnetic field coupled to the vortex core only
Coherent reversal of vortex core magnetization is topologically impossible
the core of a vortex:

Vortex core magnetisation reversal:

Calculates over a surface

For a vortex:

$$
n=\frac{w p}{2}
$$

$w-$ winding number
p - polarisation
Tretiakov PRB 75, 012408 (2007)

$$
n=+\frac{1}{2}
$$

m

Reversal of core \rightarrow change in topology
Mediated by a Bloch point

Thiaville et al., PRB 67, 094410 (2003)

PERPENDICULAR ANISOTROPY

\hat{t}_{0}

$B=0$?

PERPENDICULAR ANISOTROPY

How do these evolve?

Let's look at some data:

PERPENDICULAR ANISOTROPY

DOMAINS BREAK UP INTO

PERPENDICULAR ANISOTROPY: HYSTERESIS

Linear: expansion of domains

Abrupt: formation of bubbles/ domains

BUBBLE DOMAINS AND SKYRMIONS

Cylindrical domains

Bubble domains: studied in 1970s, "Bubble memory" proposed

BUBBLE DOMAINS AND SKYRMIONS

Cylindrical domains

Bubble domains: studied in 1970s, "Bubble memory" proposed

BUBBLES VS SKYRMIONS

Bubbles: can have different types of domain walls

Skyrmions?
"Topologically non-trivial"

OUR QUESTIONS FOR TODAY:

Alternative types of switching

Topology in reversal

UNDERSTANDING: TOPOLOGY

For magnetism?
\rightarrow assume continuous vector field
Let's start with 2D!
Winding number:

Are these topologically equivalent?

UNDERSTANDING: TOPOLOGY

Key: Smoothly deform!

Meaning:

For magnetism?

\rightarrow assume continuous vector field
Let's start with 2D!
Winding number:

Are these topologically equivalent?

UNDERSTANDING: TOPOLOGY

Meaning:

\sim

For magnetism?

\rightarrow assume continuous vector field
Let's start with 2D!
Winding number:

TOPOLOGY

Key: Smooth unwinding!
Meaning:

\neq

Skyrmion number:
$n=\frac{1}{4 \pi} \int \mathbf{M} \cdot\left(\frac{\partial \mathbf{M}}{\partial x} \times \frac{\partial \mathbf{M}}{\partial y}\right) d x d y$

Calculates over a surface

- Considers how many of the directions are present

SKYRMIONS \& TOPOLOGY

Skyrmion number: How do the existing spins map onto the sphere?

$$
n=\frac{1}{4 \pi} \int \boldsymbol{m} \cdot\left(\frac{\partial \boldsymbol{m}}{\partial x} \times \frac{\partial \boldsymbol{m}}{\partial y}\right) d x d y
$$

$$
n=1
$$

SKYRMIONS \& ANTISKYRMIONS?

UNZIPPING A SKYRMION?

Requires a Bloch point singularity

P. Milde et al., Science 340, 6136, (2013).

Birch et al. Nat. Comm. 11, 1726 (2020)

OUR QUESTIONS FOR TODAY:

Alternative types of switching

Topology in reversal

