

	Outline of my lecture	CEMS
1 2	 Introduction Basics of electrical transport Free electrons motion in a crystal Transport in ferromagnets Two currents model for ferromagnets 	- 1 _{st} Part
3	 Spin currents and spin dynamics Spin current Spin dynamics iii. Interaction of spin currents and spin dynamics 	
4	 Spin conversion phenomena Spin Hall effect in metals Edelstein effect (Rashba Interface & TI surface state) Magnetic spin Hall effect 	∽ 2 _{nd} Part
5	 New directions in spintronics i. Antiferromagnetic spintronics ii. Strong coupling 	
4		ESM @ Cluj Napoca 6~10 Sept. 2021
4		

🔞 Va	ents	CEMS				
Wei Han et al. Nature Mater. 2019						
Electron (hole) ($S = 1/2$)	Metals, semiconductors, topological insulators and etc	<mark>→ </mark>				
Spin-triplet pair $(S = 1)$	Spin Currents					
Quasiparticle ($S = 1/2$)	SCs					
Spinon (<i>S</i> = 1/2)	Quantum spin liquids	✓ 8 < < >>				
Magnon ($S = 1$)	Magnetic insulators	TTATTTT I				
Electron-hole pair or magnon $(S = 1)$	Spin superfluids					
		ESM @ Cluj Napoca 6~10 Sept. 202	21			
13						

Image: Note that the equation of the equation

Spin-orbit interaction in various materials										
$ \begin{pmatrix} \boldsymbol{\lambda}_{N} = \sqrt{\boldsymbol{D}\boldsymbol{\tau}_{sf}} \\ \boldsymbol{\rho}_{N} = \frac{\boldsymbol{m}}{\boldsymbol{n}\boldsymbol{e}^{2}\boldsymbol{\tau}} \end{pmatrix} \boldsymbol{\rho}_{N}\boldsymbol{\lambda}_{N} = \frac{\sqrt{3}\pi}{2k_{F}^{2}}\frac{h}{\boldsymbol{e}^{2}}\sqrt{\frac{\tau_{sf}}{\tau}} = \left(\frac{3\sqrt{3}\pi}{4}\frac{R_{K}}{k_{F}^{2}}\right)\frac{1}{\eta_{SO}} \qquad \because \frac{\tau}{\tau_{sf}} = \frac{4}{9}\eta_{SO}^{2} $										
$R_{\rm K} = h/e^2 \approx 25.8 {\rm k\Omega}$ $k_{\rm F} = 1.36 \times 10^8 {\rm cm}^{-1}$ (for Cu), $1.75 \times 10^8 {\rm cm}^{-1}$ (for Al) S. Takahashi & S. Maekawa Physica C 437-438, 309-313 (2006)										
			λ_{N} [nm]	$\rho_{\rm N}$ [m Ω cm]	$ ho_{ m N}\lambda_{ m N}[imes m 10^{-10}\Omega cm^2]$	$ au/ au_{ m sf}$ [×10-3]	$\eta_{ m SO}$			
	Cu*	(4.2 K)	1000	1.43	1.4	0.71	0.04			
	Cu**	(4.2 K)	546	3.44	1.9	0.41	0.03			
	Cu**'	* (4.2 K)	1500	1.00	1.5	0.62	0.04			
	Al*	(4.2 K)	1200	1.25	1.5	0.22	0.02			
	Pt	(77K)	10	12.8	0.26	9.10	0.14			
	* Jee	dema et	<i>al.</i> PRB 67	(2003) ** Garzo	on <i>et al</i> .PRL 94 (2005)	*** Kimura <i>et al</i> .P	RB 72 (2005)			
37							ESM @ Cluj	Napoca 6~10 Sept. 2021		
37										

Outline of my lecture	CEMS
 Introduction Basics of electrical transport Free electrons motion in a crystal Transport in ferromagnets Two currents model for ferromagnets Spin currents and spin dynamics Spin current Spin dynamics Interaction of spin currents and spin dynamics 	─ 1 _{st} Part
 4. Spin conversion phenomena Spin Hall effect in metals Edelstein effect (Rashba Interface & TI surface state) Magnetic spin Hall effect 5. New directions in spintronics Antiferromagnetic spintronics Strong coupling 	– 2 _{nd} Part
84	ESM @ Cluj Napoca 6~10 Sept. 2021
84	

	Antiferromagnetic spintronics				
	Comparison between F and AF				
		Ferromagnet	Antiferromagnet		
	Stray field	~ 1 T	Nearly zero → good for miniaturization		
	Resonance frequency	~ GHz	\sim THz → high speed operation		
	RT semiconductor	Challenge	Available → variety of material choice		
	Coupling with magnetic fields	Direct	Indirect → Difficult to control		
145			ESM @ Cluj Napo	ca 6~10 Sept. 20.	

	Summary		CEMS
1. 2. 3. 4. 5.	Introduction Basics of electrical transport i. Free electrons motion in a crystal ii. Transport in ferromagnets iii. Two currents model for ferromagnets Spin currents and spin dynamics i. Spin current ii. Spin dynamics iii. Interaction of spin currents and spin dynamics Spin conversion phenomena i. Spin Hall effect in metals ii. Edelstein effect (Rashba Interface & TI surface state) iii. Magnetic spin Hall effect New directions in spintronics i. Antiferromagnetic spintronics ii. Strong coupling	 1_{st} Part 2_{nd} Part 	
		ESM @ Cluj Napoca 6~10 Sept	2021

