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Free energy in the continuum approximation
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● M(r) is an average over the elementary volume ΔV
● The internal free energy G(r) is no longer a function of a single 

moment, but a functional G[M(r)] of M(r)
● The ground state is given by the energy minimum δGG[δGM(r)] = 0
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The exchange in the continuum limit
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Energy terms
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ENERGY TERM  Coeff. Definition Value Units

Exchange A Mater. const.    10-11 [J/m]

Anisotropy   Ku, K1 Mater. const. 102-107 [J/m3]

Stray field     Kd 0-3  106 [J/m3]

External stress lss - 102-105 [J/m3]

External field    moMs H -  1 - 108 [J/m3]
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Why materials are so different?
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Let us introduce a space-dependent free energy GL 

in the continuum limit:
(I) The static case

Exchange

MagnetostaticsAnisotropy External field
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It is always a good idea to NORMALIZE!
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Classification of materials (I)
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Soft and hard materials
<< 1 SOFT

~ 1 HARD
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Classification of materials (II)
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Large and small bodies: the exchange length

> L SMALL (uniform M)

< L LARGE (non-uniform M)
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Classification of materials (III)

Static micromagnetism
Dynamics of magnetization

Micromagnetic codes

Free energy
Classification of materials
Competing energies

The exchange vs. anisotropy ratio Domain formation
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Energy minimization
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… skipping ...
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Competing energies
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What is the magnetization configuration in a body?
Minimize the free energy above! (ps. difficult)

Sphere of radius R

Exchange StrayAnisotropy

(Thanks to G. Bertotti)
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Competing energies
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What is the magnetization configuration in a body?
Minimize the free energy above! (ps. difficult)

AnisotropyExchange

L

L

Stray



ESM 2021, Cluj-Napoca (Romania)G. Durin

Competing energies (case I)
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Exchange

L

L Not only exchange but also 
anisotropy energies are minimized

Demagnetizing factor of a cube ~ 1/3

This is independent of the body size!
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Competing energies (case II)
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Exchange and anisotropy relevant the transition region

, and m rotates out of plane (for inst.)

2 components of m change by ~ 1 over D/2;
the region occupies  ~ DL2/L3 of the volume

assuming Uniaxial anisotropy f(m) = sin2q / 2 
averaged over the D/L
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Competing energies (case II)
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Domain wall width
Anisotropy
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Competing energies (case III)
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when D => L

vs.
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Competing energies: soft material (low κ)
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k = 0.1

gI

gII

gIII

Lc
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Competing energies: hard material (high κ)
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k = 1

gI gII

gIII

Lc
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Competing energies (comments)
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 Small particles: uniform magnetization along an easy axis (depend on 
 the field history)

 Large bodies: much more complicated magnetization configuration 
   (vortex, domains) 

 Hysteresis: there are metastable states, separated by energy barriers
    (strongly depend on the field history)

 Magnetization configurations: in general are much more complicated
  --> micromagnetism, domain theory

 Magnetostatic effects: shape is important (as you know)

 Disorder: real materials are more or less disordered 
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Real magnetic materials
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Dynamics of magnetization
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Let us consider the temporal evolution of the magnetization
toward the equilibrium state 

(II) The dynamic case:
Landau-Lifshitz (LL) and

Landau-Lifshitz-Gilbert (LLG) equation

statics dynamics
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The LL and LLG equations
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The Spin Transfer Torque
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Adiabatic SST or
Slonczewski-like STT

Non-adiabatic SST,
field-like STT or
Zhang-Li STT
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The  Dzyaloshinskii-Moriya interaction
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Super-exchange interaction 
mediated
by an high Spin-Orbit Coupling metal
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Thermal effects: the LL-Bloch eq.
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● Needed when close to T
c

● Add a longitudinal damping parameter
● The effective field changes with the temperature
● The material’s parameters change as well
● Thermal field is introduced using fluctuation-dissipation theorem
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Available codes
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OOMMF is a project in the Applied and Computational Mathematics Division (ACMD) of ITL/
NIST, in close cooperation with µMAG, aimed at developing portable, extensible public domain 
programs and tools for micromagnetics. This code forms a completely functional 
micromagnetics package, with the additional capability to be extended by other programmers 
so that people developing new code can build on the OOMMF foundation. (
math.nist.gov/oommf/)

Language: C++
Method: finite differences
Licence: Open-source

mumax3 is a GPU-accelerated micromagnetic simulation program developed at the DyNaMat 
group of Prof. Van Waeyenberge at Ghent University. The code is written and maintained by 
Arne Vansteenkiste. A speed-up of the order of 100x compared to CPU-based simulations can 
easily be reached, even with relatively inexpensive gaming GPUs. Additionally, the software is 
optimized for low memory use and can handle about 16 million FD cells with 2GB of GPU RAM. 
(mumax.github.io/)

Language: Go
Method: finite differences
Licence: Open-source

Boris Computational Spintronics is a multi-physics software designed to solve three-
dimensional magnetisation dynamics problems, coupled with a self-consistent charge and spin 
transport solver, heat flow solver with temperature-dependent material parameters, and 
mechanical stress-strain solver in arbitrary multi-layered structures and shapes. 
The software is intended for research and design of spintronics devices, as well as analysis 
and modelling of experimental results. (www.boris-spintronics.uk/)

Method: multi-mesh finite 
elements
Licence: Open-source

Language: C++, Cuda

Nmag is a micromagnetic simulation package. It has been developed at the University of 
Southampton with substantial contributions from Hans Fangohr, Thomas Fischbacher, Matteo 
Franchin. It is released under the GNU GPL. (nmag.soton.ac.uk/nmag/)

Currently, there is no significant amount of funding or man power available to support Nmag 
users or develop it further. The software should thus be seen to be provided as is.

Language: Python
Method: finite elements
Licence: Open-source

http://math.nist.gov/oommf/
http://mumax.github.io/
http://www.boris-spintronics.uk/
http://nmag.soton.ac.uk/nmag/
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Finite differences vs finite elements
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The FEM is a general numerical method for solving partial differential equations in two or three space 
variables (i.e., some boundary value problems). To solve a problem, the FEM subdivides a large system into 
smaller, simpler parts that are called finite elements. This is achieved by a particular space discretization in 
the space dimensions, which is implemented by the construction of a mesh of the object: the numerical 
domain for the solution, which has a finite number of points. The finite element method formulation of a 
boundary value problem finally results in a system of algebraic equations. The method approximates the 
unknown function over the domain.

Sparse matrix
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Voronoi tessellation
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Realistic defects in simulations
● Reduce by 30% the exchange at the boundaries
● Ms in the cells reduced down to 50%
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A couple of good ‘references’
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