

Transport and spintronics

Joo-Von Kim Centre for Nanoscience and Nanotechnology CNRS • Université Paris-Saclay 91120 Palaiseau, France

joo-von.kim@c2n.upsaclay.fr

Transport and spintronics

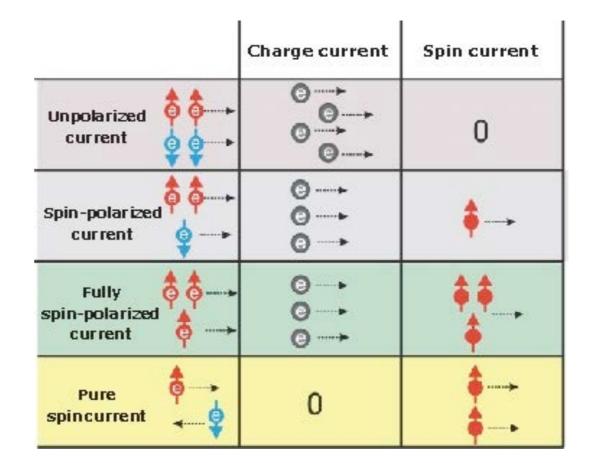
- Brief review of (some) concepts in spintronics
- Spin-dependent transport phenomena in ferromagnetic metals "How magnetism affects spin transport"
 - Fermi surfaces Two current model Giant magnetoresistance Tunnel magnetoresistance
- Spin transport torques

"How spin transport affects magnetism"

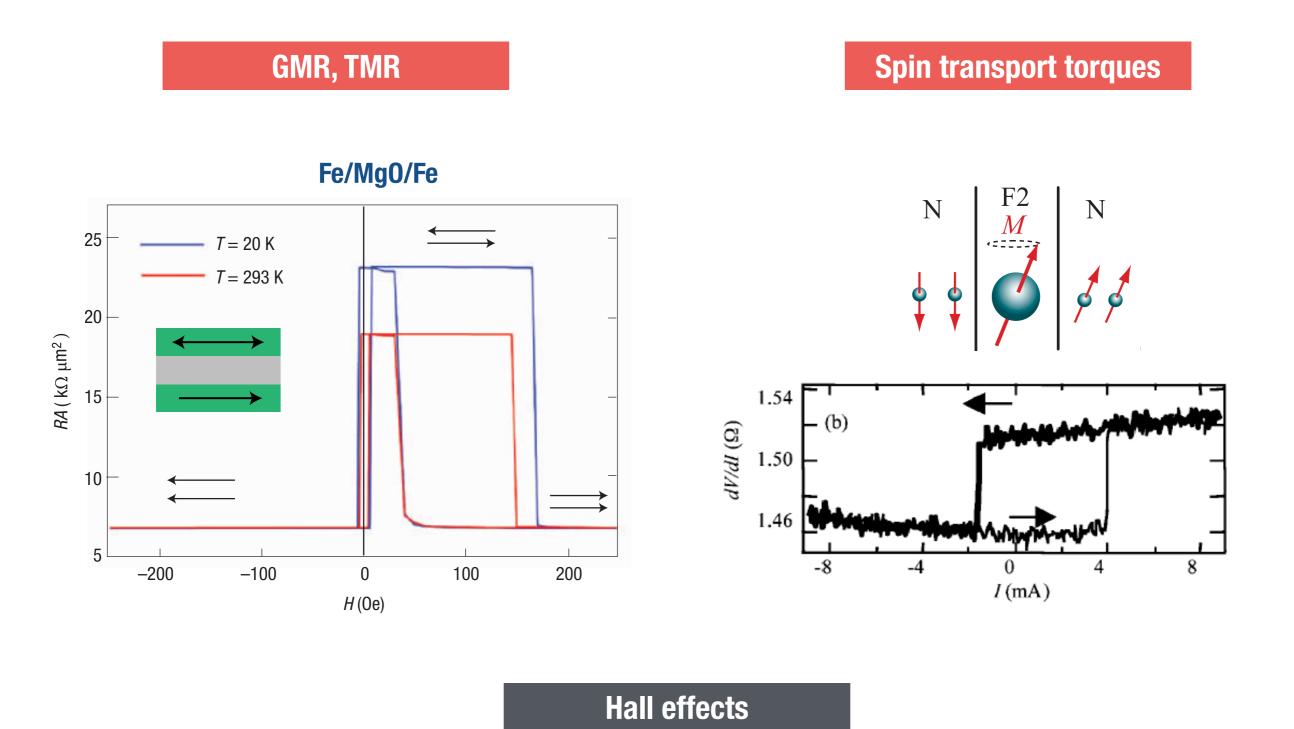
- Spin diffusion Slonczewski model (CPP) Zhang-Li model (CIP) Spin-orbit torques Lecture 1

What is spintronics?

- Electronics: move electron charges (or holes) around in circuits
- Spin electronics: exploit spin degree of freedom
- In ferromagnetic transition metals, currents are naturally spin-polarized (Half-metals: potential for 100% spin polarization)
- Magnetism plays an important role in the manifestation of spin-dependent transport
- Pure spin currents do not cause Joule heating → Low power electronics



Interplay between magnetic order and transport



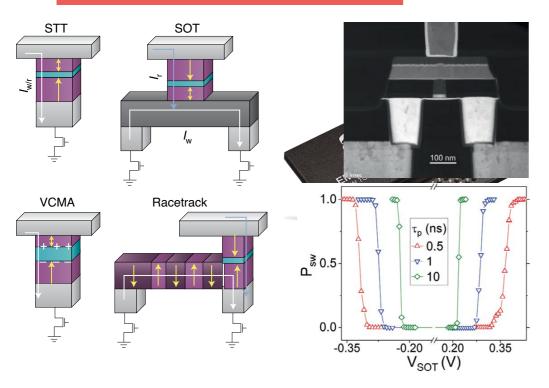
Many other spin-orbit related phenomena ... no time to cover here

4

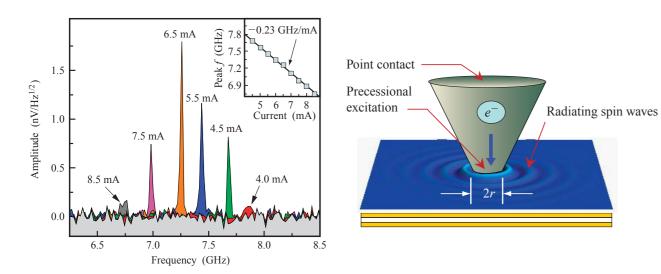
Some applications

see B Dieny et al, Nat Electron 3, 446 (2020)

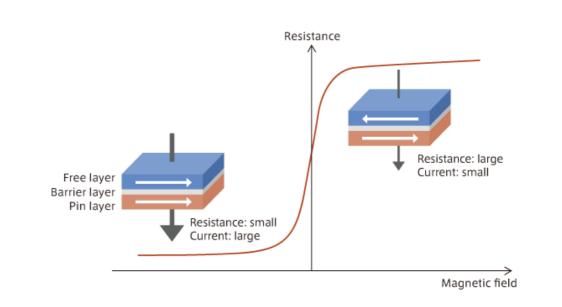
Novolatile memories



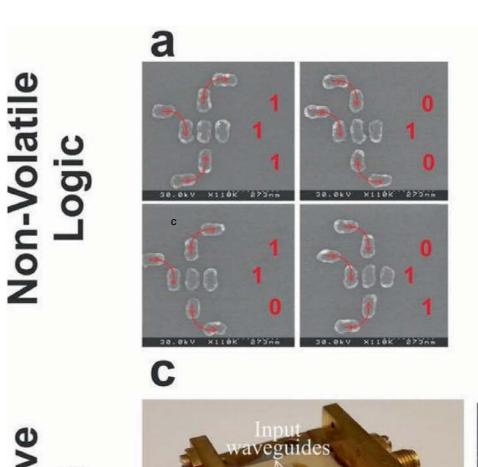
Microwave oscillators



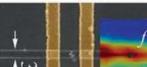
Field sensors



5



ຒ



0

b

c(input)

supply

Transport in metals: Free electron model

- Conduction electrons:
 - valence electrons that move freely through volume of metal
 - do not feel metallic ions, form uniform gas
 - Subject to Pauli exclusion principle (Fermi statistics)
- Consider 1D model for N electron gas

$$\mathcal{H} = \frac{p^2}{2m} \qquad p = -i\hbar \frac{d}{dx}$$

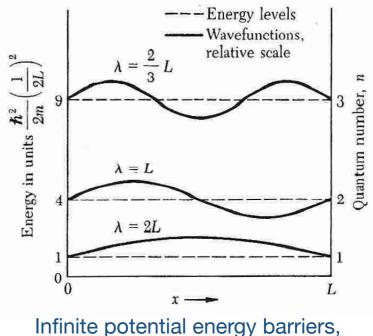
$$\mathcal{H}\psi_n = -\frac{\hbar^2}{2m}\frac{d^2\psi_n}{dx^2} = \varepsilon_n\psi_n$$

1D Schrödinger eq.

Free particle Hamiltonian

$$\varepsilon_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2 \qquad \qquad \varepsilon_F = \frac{\hbar^2}{2m} \left(\frac{N\pi}{2L}\right)^2$$

Box, length L



Infinite potential energy barriers, standing wave solutions

$$\psi_n = A \sin\left(\frac{2\pi}{\lambda_n}x\right)$$

$$\psi_n(0) = \psi_n(L) = 0$$

$$2n_F = N$$

Free electron model

Simple generalization to 3D

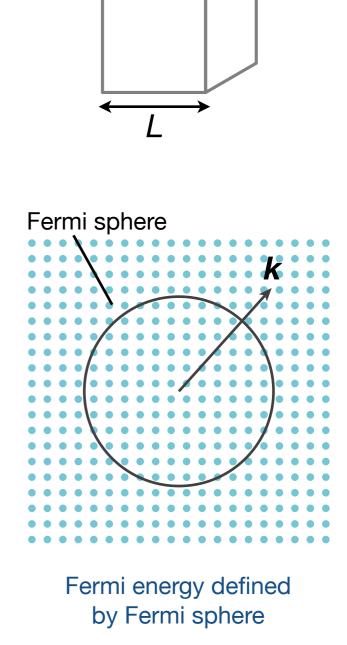
$$\mathbf{p} = -i\hbar\nabla$$
 $\mathcal{H} = \frac{\mathbf{p}^2}{2m}$

$$\mathcal{H}\psi_n = -\frac{\hbar^2}{2m}\nabla^2\psi_n = \varepsilon_n\psi_n$$

$$\varepsilon_F = \frac{\hbar^2}{2m} k_F^2 \qquad \qquad k = 2\pi/\lambda$$

• One k state (k_x, k_y, k_z) in volume element $(2\pi/L)^3$

$$k_F = \left(\frac{3\pi^2 N}{V}\right)^{1/3} \qquad \qquad \varepsilon_F = \frac{\hbar^2}{2m} \left(\frac{3\pi^2 N}{V}\right)^{2/3}$$

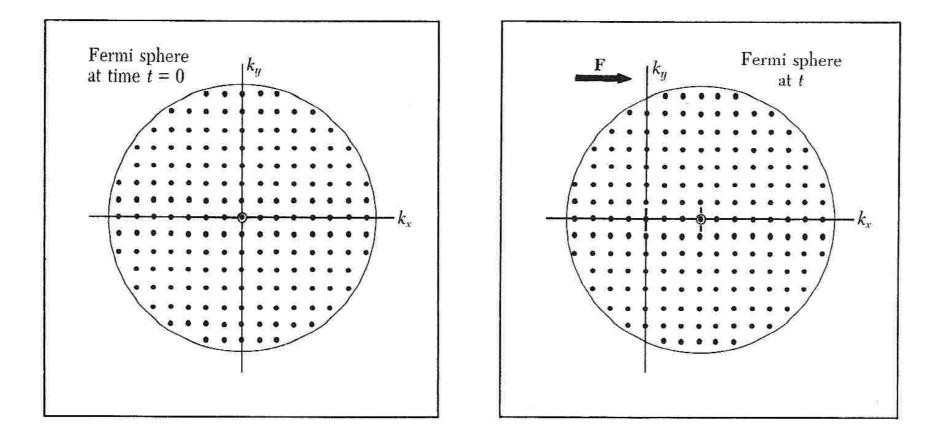


Electrical conductivity, Ohm's law

- Momentum of free electron is given by $m\mathbf{v} = \hbar \mathbf{k}$
- ▶ In an electric field *E* and a magnetic field *B*, force acting on charge is

$$\mathbf{F} = m\frac{d\mathbf{v}}{dt} = \hbar\frac{d\mathbf{k}}{dt} = -e\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$$

• In *E* field alone, Fermi surface is displaced at a rate of $\delta \mathbf{k} = -e\mathbf{E}\delta t/\hbar$



Electrical conductivity, Ohm's law

- Displacement of Fermi surface can be maintained at a constant value at steady state because of collisions e.g. scattering with phonons, lattice impurities
- For a mean collision time, au

$$\mathbf{v} = -\frac{e\mathbf{E}\tau}{m}$$

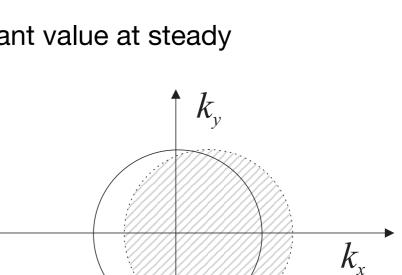
The electric current density then is

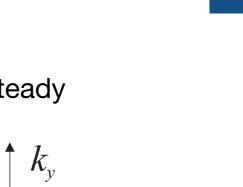
Ohm's la

aw
$$\mathbf{j} = nq\mathbf{v} = \frac{ne^2 \tau \mathbf{E}}{m}$$
 $\mathbf{j} = \sigma \mathbf{E}$ $\sigma = \frac{ne^2 \tau}{m}$ $\rho = 1/\sigma$
Drude

Define mean-free path as $l = v_F \tau$

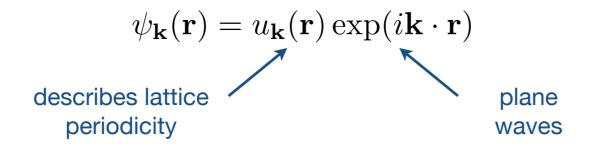
	au (fs) @ 273 K	<i>v_F</i> (x 10 ⁶ ms ⁻¹)	/ (nm) @ 273 K
Cu	27	1.57	42
Au	30	1.4	56
Fe	2.4	1.98	4.8



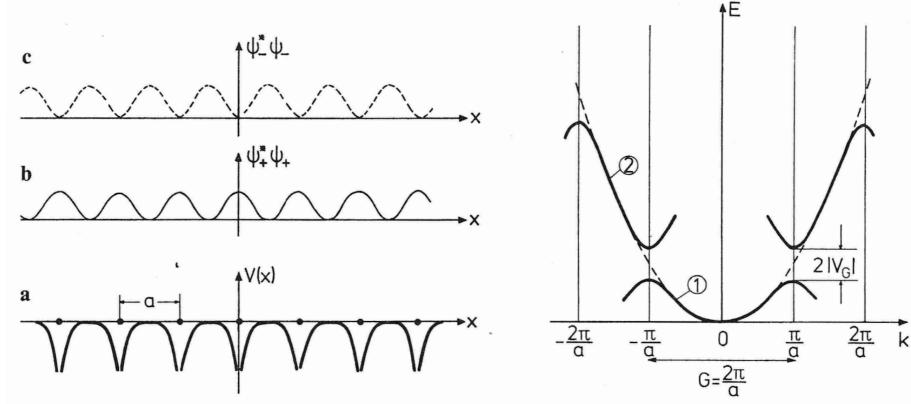


Nearly-free electron gas

- Account for periodic lattice of background metallic ions periodic potential
- Electrons in weak periodic potential are nearly free
- Solution to Schrödinger equation are Bloch functions

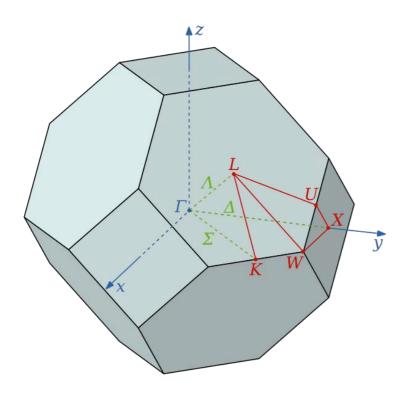


 Degeneracies at the Bragg plane are lifted by the perturbations due to potential: band gaps appear

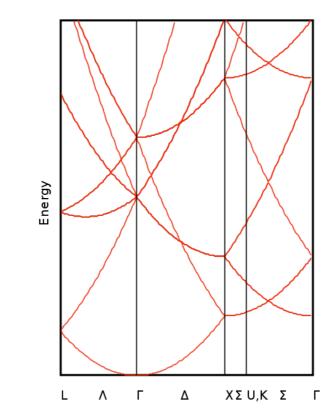


Fermi surfaces

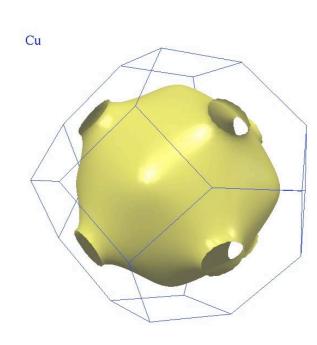
- Fermi surface is surface in k space of constant energy equal to the Fermi energy
- It separates filled states from empty states at absolute zero
- Shape of Fermi surface determines electrical properties, i.e., currents are due to changes in occupancy near this surface
- Account for crystal symmetry (cf band structure, nearly-free electron model)



fcc Brillouin zone



fcc free electron bands



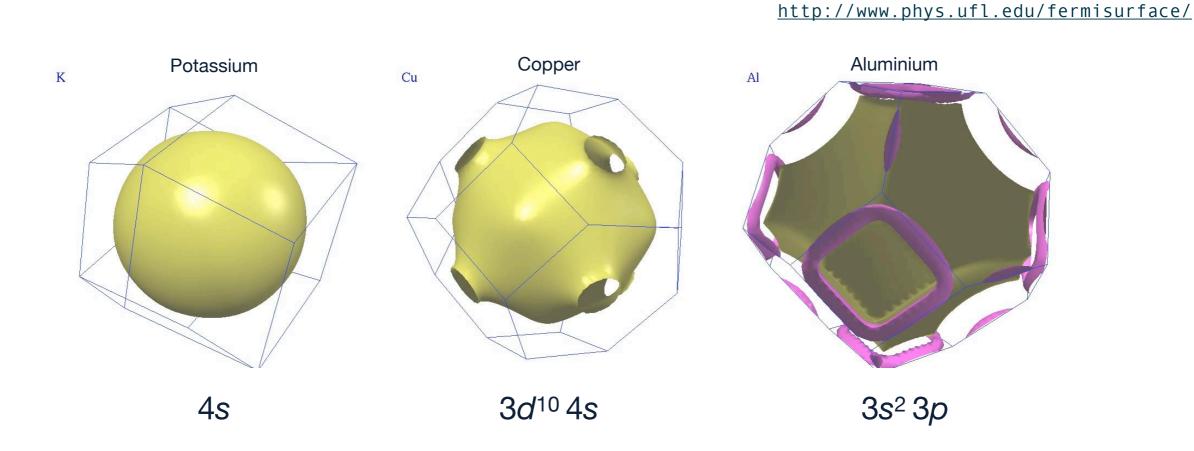
Fermi surfaces and conductivity

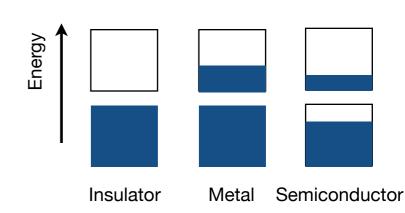
 Electrical conductivity is determined by how electrons respond to electric fields

Insulator: allowed energy bands are either empty or full

Metal: One or more bands are partially filled

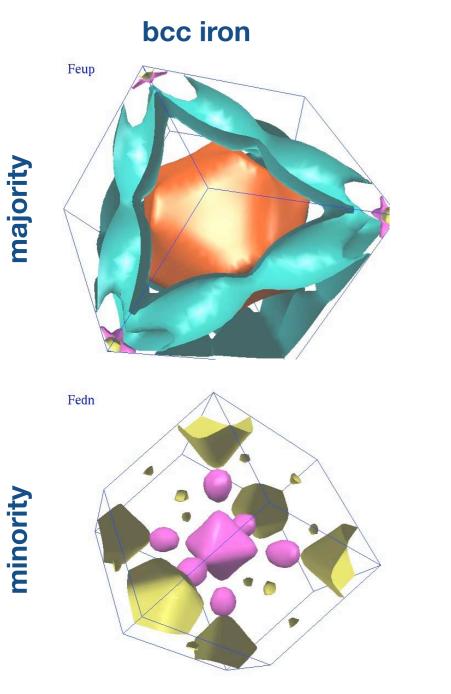
Metals: Conduction processes occur at <u>Fermi surface</u>

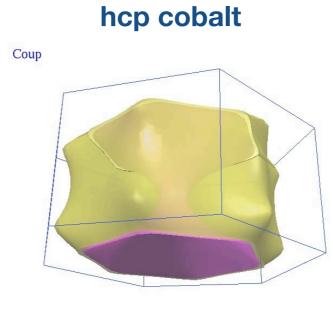


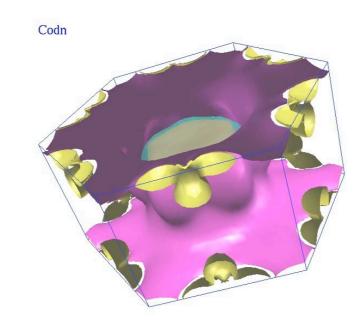


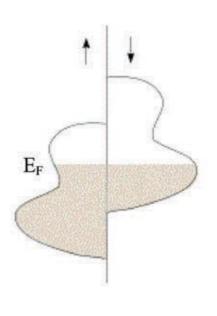
Fermi surface - ferromagnetic metals

Different Fermi surface for spin up and spin down electrons









- Conduction not same for spin-up/down electrons
- Spin-dependent transport processes

e-ESM 2020: Fundamentals of Magnetism – Transport and spintronics – Kim, JV

13

 $3d^{6}4s^{2}$

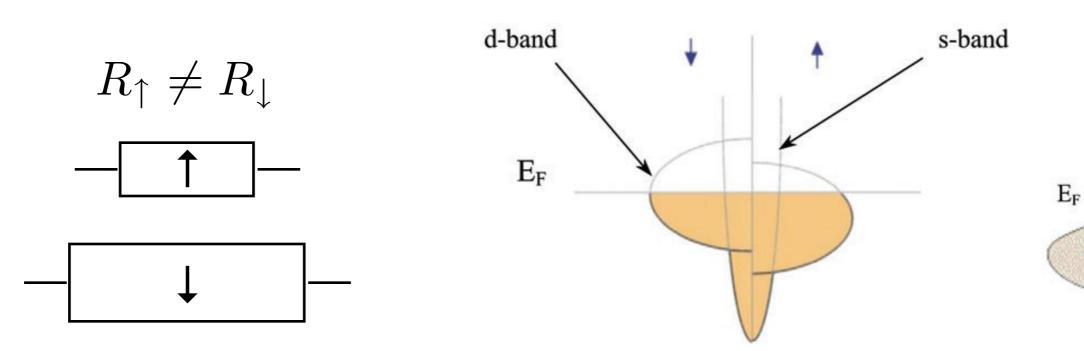
 $3d^7 4s^2$

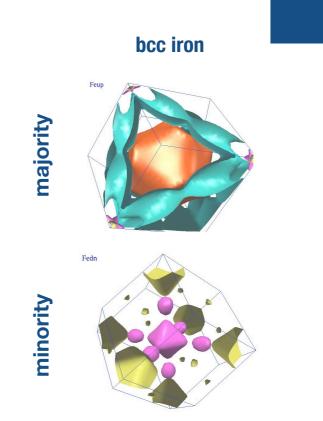
Two-current model (Mott)

- Electrical resistance depends on Fermi velocities, density of states @ Fermi surface, etc.
- <u>Nonmagnetic metals</u>: Fermi surface is identical for spin-up and spin-down
- <u>Ferromagnetic metals</u>: different resistances for spin-up and spin-down channels
- Electrical conduction approximated as two independent spin-channels

$$\mathbf{j}_{\uparrow,\downarrow} = \sigma_{\uparrow,\downarrow} \mathbf{E}$$

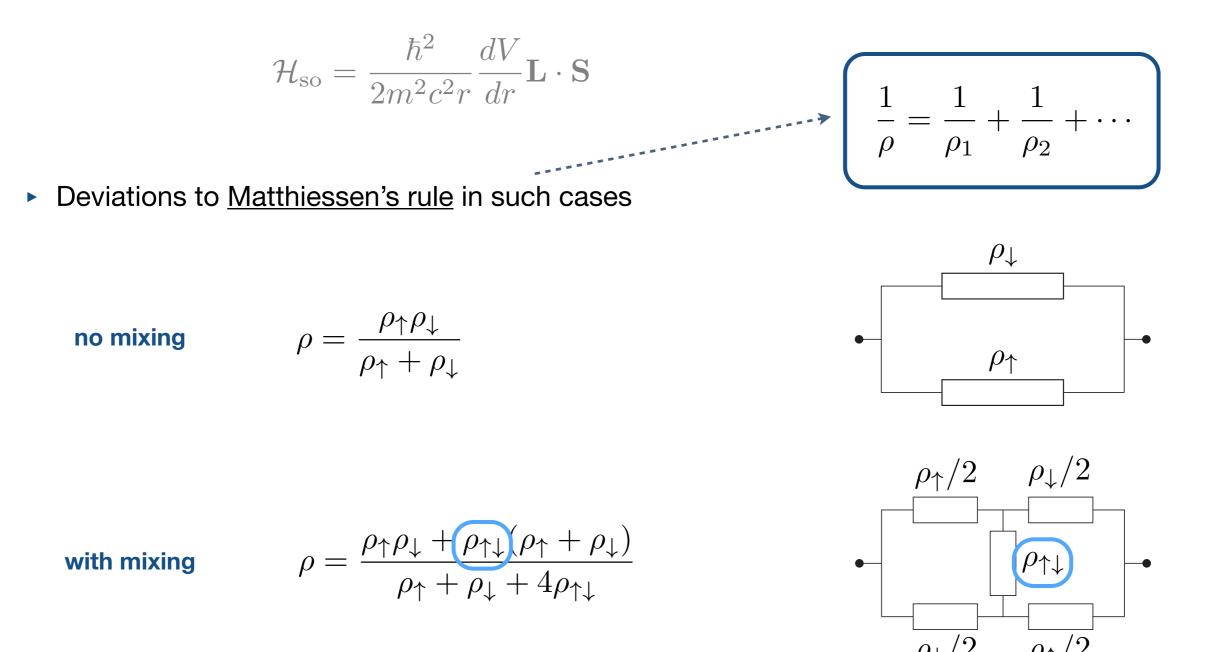
$$\sigma_{\uparrow,\downarrow} = \frac{ne^2\tau_{\uparrow,\downarrow}}{m}$$





Two-current model

- Spin-mixing can occur, but rare (at low T) compared with spin-conserving scattering processes
- Spin-orbit interaction and electron-magnon scattering can lead to spin flips (Question: Why? Which symmetry principles underlie these processes?)



Giant magnetoresistance

- Giant magnetoresistance effect is an important manifestation of spin-dependent transport
- Electrical resistance of a metallic magnetic multilayer depends on the relative orientation of the constituent layer magnetizations

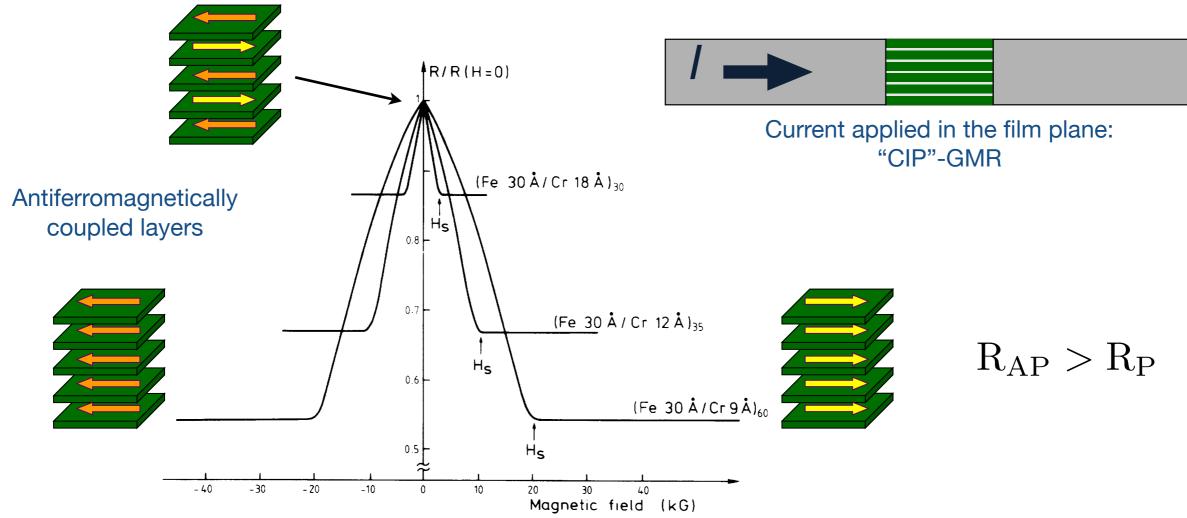
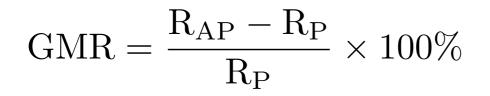


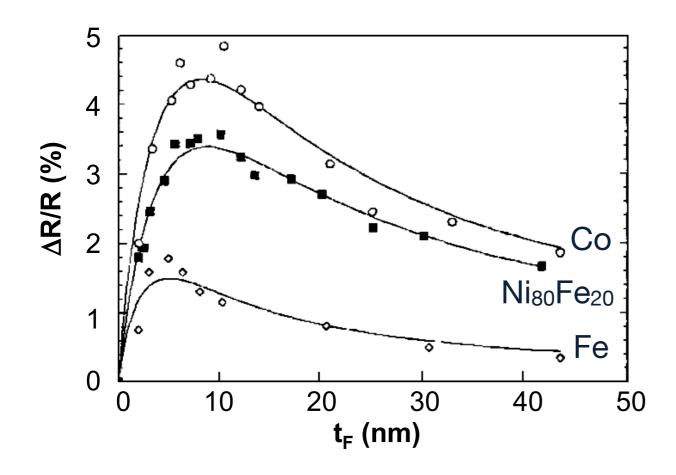
FIG. 3 Magnetoresistance of three Fe/Cr superlattices at 4.2 K. The current and the applied field are along the same [110] axis in the plane of the layers.

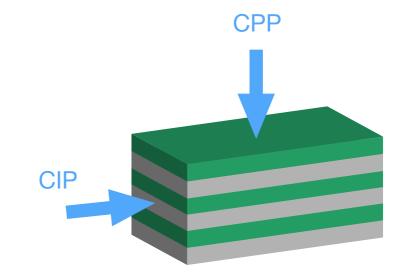
16

Giant magnetoresistance

- GMR is an interface effect (thin films important)
- Appears in both current-in-plane (CIP) and currentperpendicular-to-plane (CPP) geometries
- Resistance variation of order of a few percent





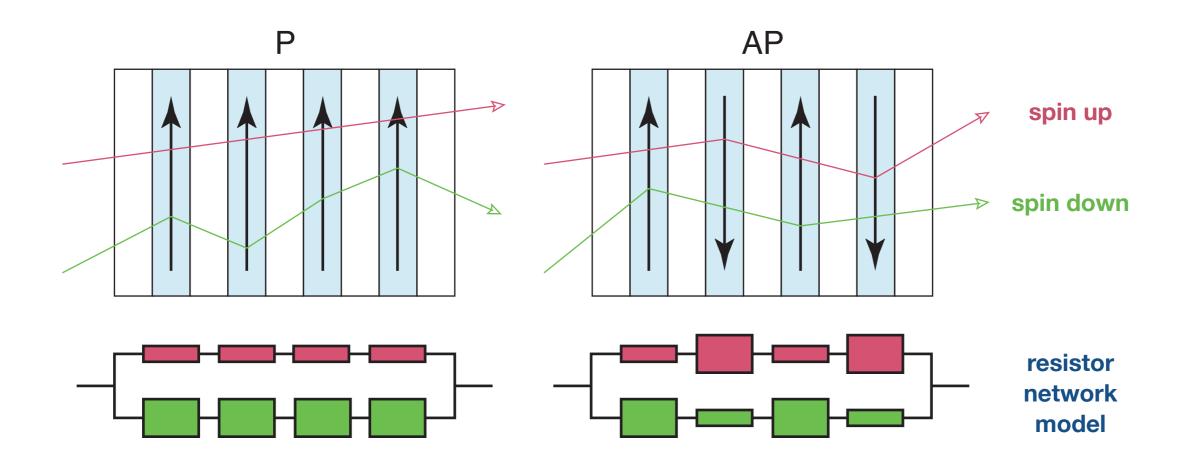


F t_F / Cu (2.5 nm) / NiFe (5 nm)

(CIP GMR, Dieny 1994)

Phenomenological model

- How can we understand the giant magnetoresistance based on what we've learnt about spin-dependent transport?
- Consider how electrons propagate through parallel and antiparallel alignment of magnetization in a superlattice structure

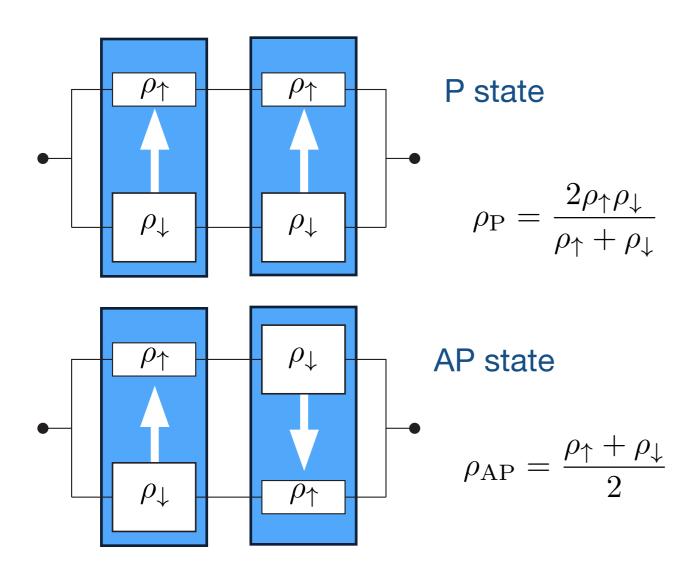


 Basic resistor model tells us that there ought to be a difference in the overall resistance of the two configurations

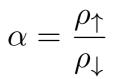
Phenomenological model

An equivalent resistor model is a good starting point. Let's naively suppose that we can just combine spin-up and spin-down resistances.

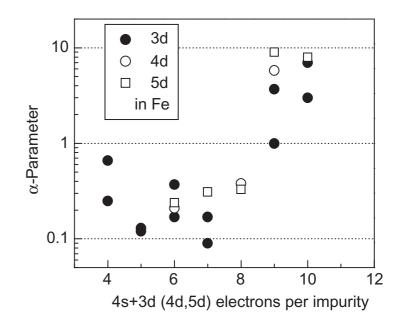
e.g., CPP GMR in trilayer



$$\frac{\Delta\rho}{\rho_{\rm AP}} = \left(\frac{\rho_{\uparrow} - \rho_{\downarrow}}{\rho_{\uparrow} + \rho_{\downarrow}}\right)^2 = \left(\frac{\alpha - 1}{\alpha + 1}\right)^2$$

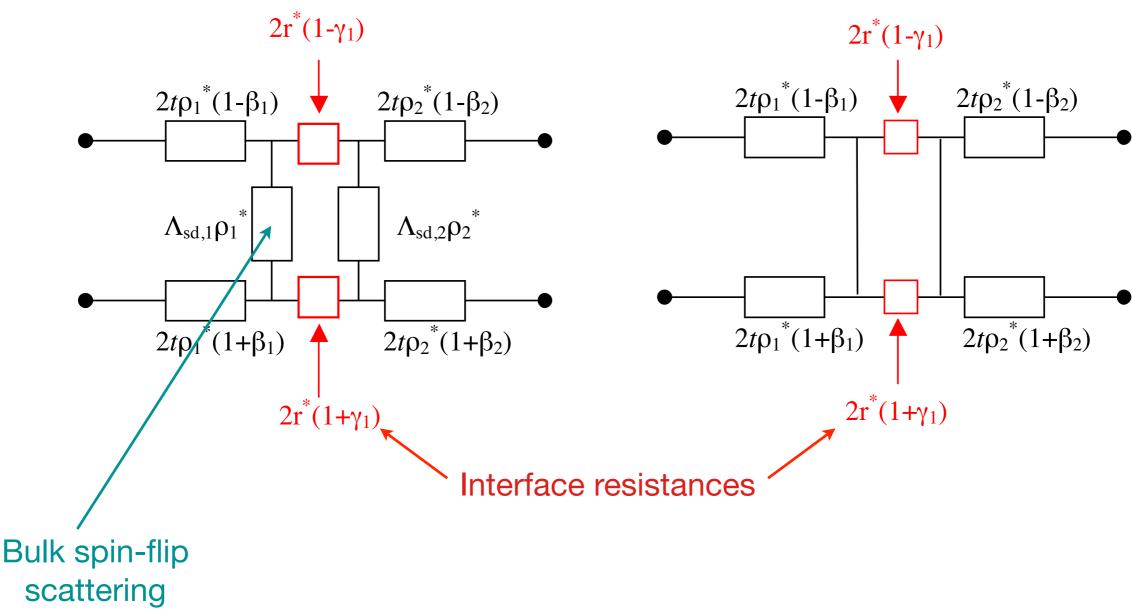


spin asymmetry parameter



Towards a better resistor network

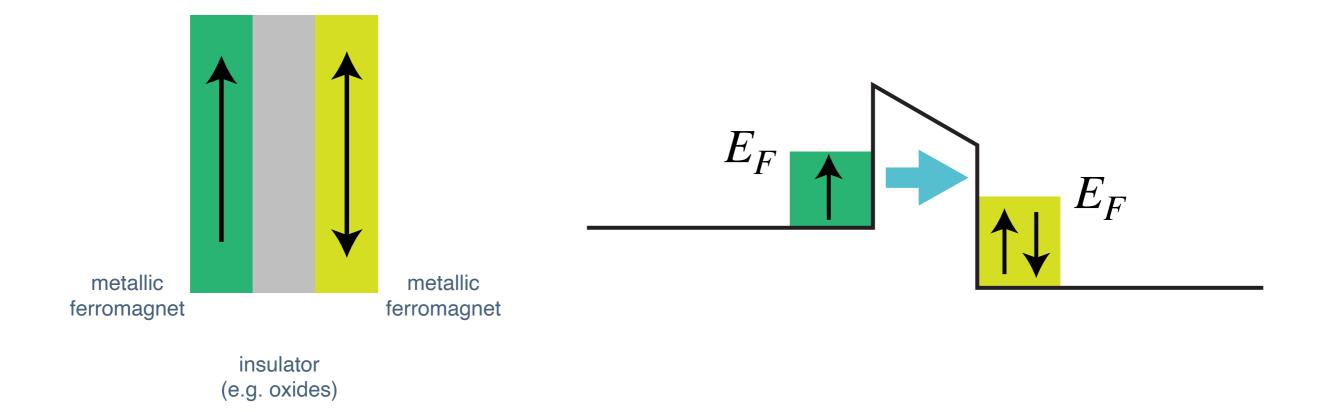
Take into account bulk spin-flip scattering and interface resistances with additional elements in the circuit



Valet & Fert, Phys Rev B 48, 7099 (1993)

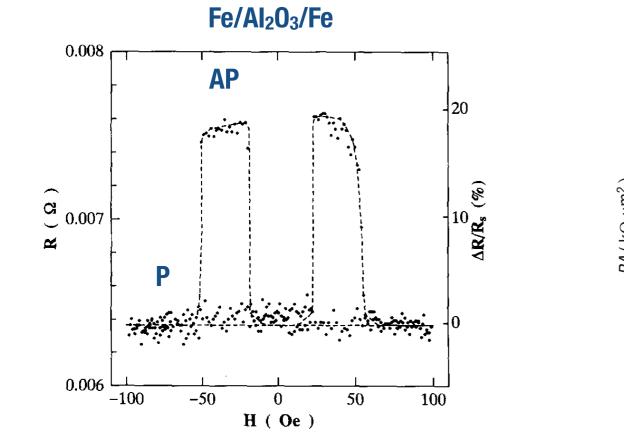
Tunnel magnetoresistance

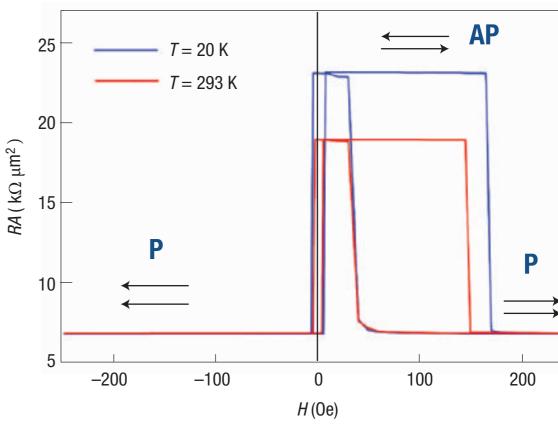
- Recall: spin-up and spin-down electrons do not have the same Fermi surface in ferromagnetic metals
 e.g. asymmetry leads to different scattering rates at interfaces
- In magnetic tunnel junctions, a thin insulating layer separates ferromagnetic electrodes
- Transport through this insulating layer is by quantum tunnelling
- Tunnelling for spin-up and spin-down electrons is also asymmetric!



Tunnel magnetoresistance

- Similarly to all metallic case, transport through insulator layer is spin-dependent i.e. spin-up and spin-down electrons do not see the same barrier height
- Tunnel magnetoresistance (TMR) describes tunnelling resistance that depends on relative magnetization orientation (e.g., of a trilayer system)





Fe/MgO/Fe

Miyazaki et al, J Magn Magn Mater **139**, L231 (1995)

Yuasa et al, Nat Mater 3, 868 (2004)

Quantum mechanical tunnelling

 In quantum physics, a particle can exist in or tunnel through a region where E < V₀

Outside the barrier region, we have propagating plane waves

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}|\psi(x)\rangle = E|\psi(x)\rangle \qquad \qquad |\psi(x)\rangle = e^{ikx-\omega t} \qquad \qquad k = \pm \sqrt{\frac{2mE}{\hbar^2}}$$
Plane waves

Inside the barrier region, we have evanescent waves

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}|\psi(x)\rangle = (E - V_0)|\psi(x)\rangle \qquad |\psi(x)\rangle_b = e^{qx - i\omega t} \qquad q = \pm \sqrt{\frac{2m\Delta E}{\hbar^2}}$$

Evanescent waves

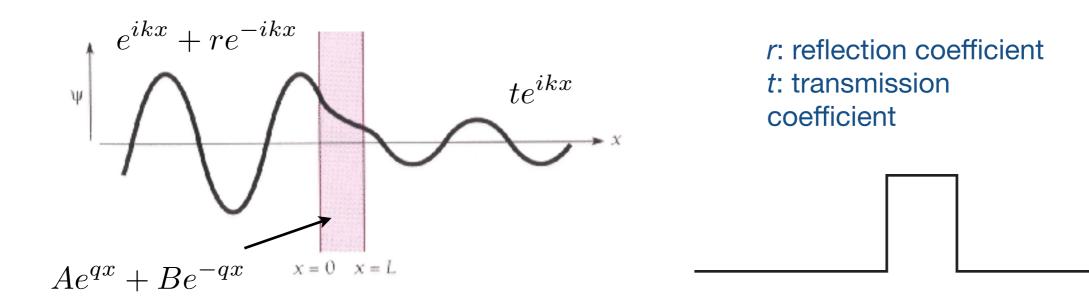
23

 V_0

.....

Quantum mechanical tunnelling

Need to ensure continuity of wavefunction and its derivative at the interfaces



Tunneling probability is given by probability of finding the particle in region 2

$$P = \psi_2^* \psi_2 = t^* t = |t|^2$$

$$P \simeq \frac{16k^2q^2}{(k^2 + q^2)^2} e^{-2qL}$$

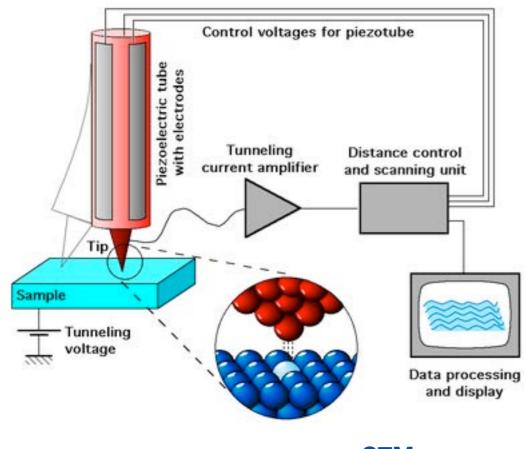
Probability decreases exponentially as a function of the barrier width *L*

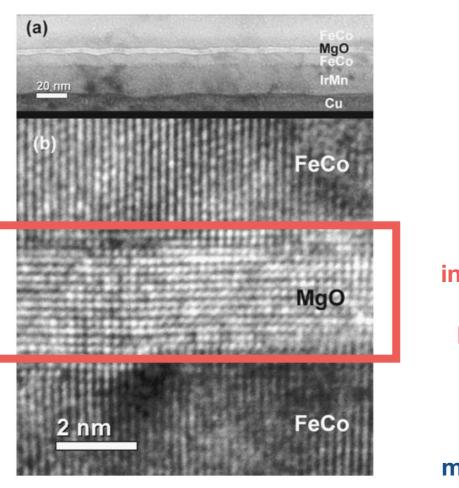
Quantum mechanical tunnelling

What is the typical "penetration depth" into the barrier?

$$q = \pm \sqrt{\frac{2m\Delta E}{\hbar^2}}$$

Therefore, to observe tunneling effects, one requires barrier widths to be on the nanometre scale.





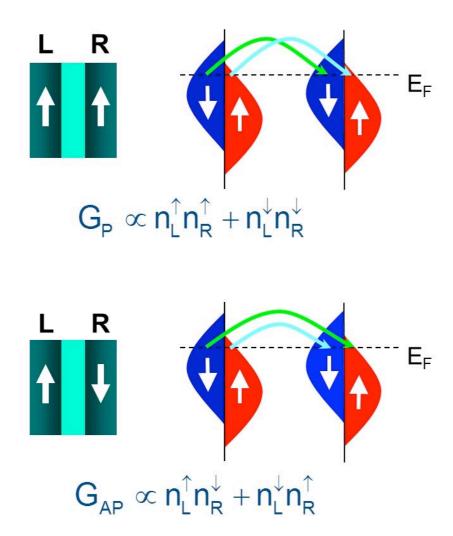
insulator/ tunnel barrier

magnetic tunnel junction

STM

Jullière model

- 1. Assume no spin flips when electrons tunnel through barrier
 - Two independent conduction channels for spin-up and spin-down
 - Tunneling of spin state from first film into second film is determined by unfilled states of same spin in second film
- Assume conductance G for a spin channel is given by the product of the effective density of states n of the two ferromagnetic electrodes



$$G^{\sigma} = n_L^{\sigma} n_R^{\sigma} \qquad \quad G = G^{\uparrow} + G^{\downarrow}$$

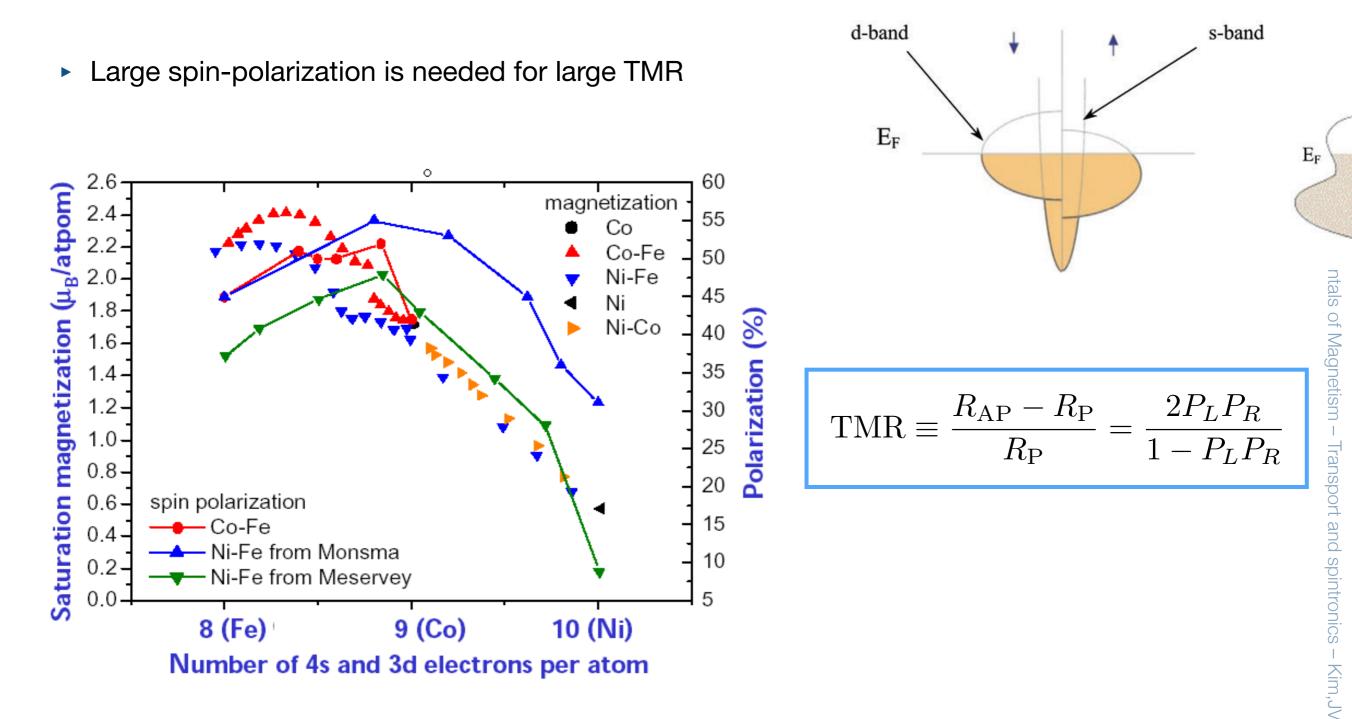
conductances

$$= \frac{n^{\uparrow} - n^{\downarrow}}{n^{\uparrow} + n^{\downarrow}} \qquad \text{spin polarization}$$

P

$$\mathrm{TMR} \equiv \frac{R_{\mathrm{AP}} - R_{\mathrm{P}}}{R_{\mathrm{P}}} = \frac{2P_L P_R}{1 - P_L P_R}$$

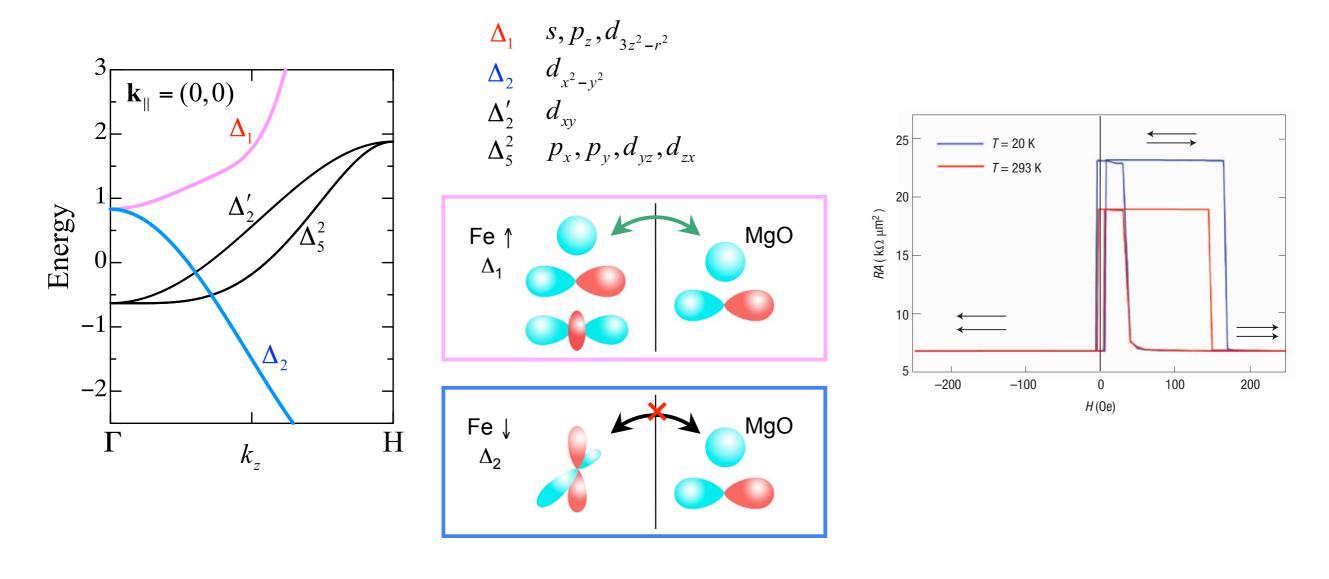
Jullière model



Assuming 50% spin polarization, Jullière's model predicts TMR of ~67%

Fe/Mg0/Fe: Example of symmetry filtering

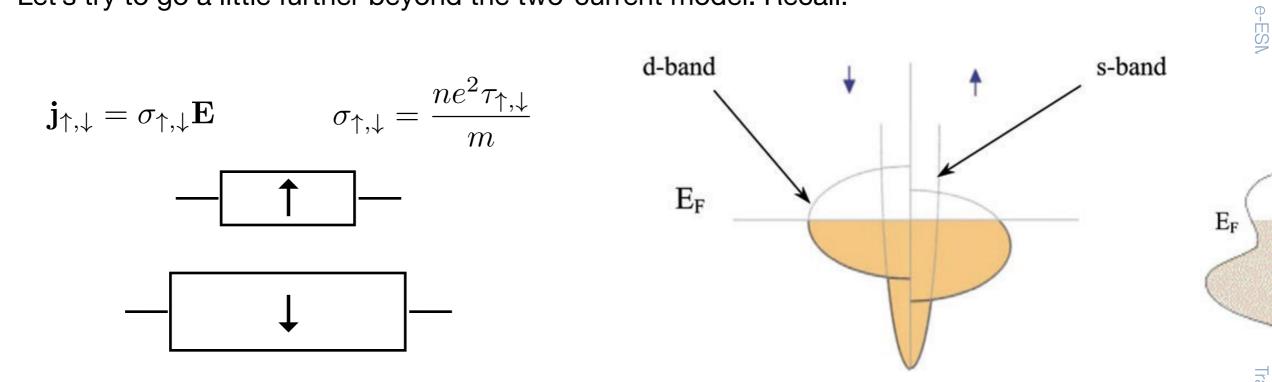
High quality crystalline Fe/MgO/Fe: spin filtering based on band symmetry



	Junctions	MR Ratios (%)	
		LT	RT
MgO is also good tunnel barrier	CoFeB/MgO/CoFeB	1010	500
5 5	Co ₂ Cr _{0.6} Fe _{0.4} /MgO/Co ₅₀ Fe ₅₀	317	109
for Co-based alloys	Co ₂ FeAl _{0.5} Si _{0.5} /MgO/Co ₂ FeAl _{0.5} Si _{0.5}	390	220
	Co ₂ MnGe/MgO/Co ₅₀ Fe ₅₀	376	160

Spin diffusion

Let's try to go a little further beyond the two-current model. Recall:

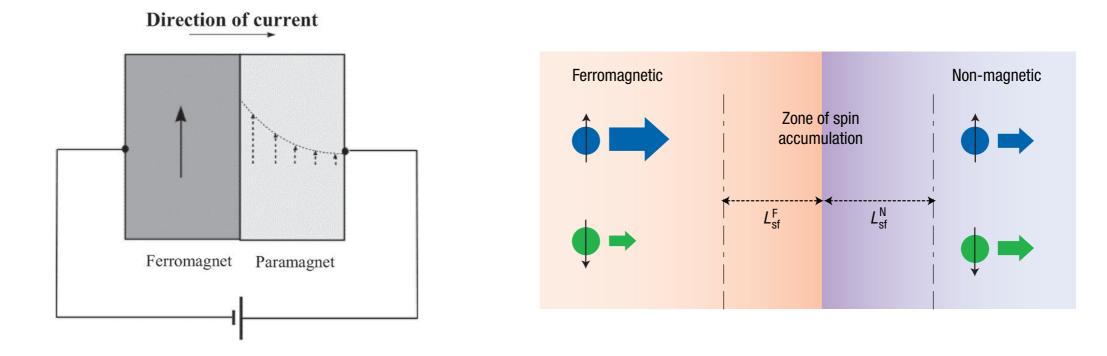


Express current in terms of <u>spin-dependent conductivity</u> and <u>electrochemical</u> potential:

$$j_{\uparrow,\downarrow}(x) = \frac{\sigma_{\uparrow,\downarrow}}{e} \frac{\partial \mu_{\uparrow,\downarrow}(x)}{\partial x} \qquad \qquad \tau_{\uparrow\downarrow} \gg \tau_{\uparrow,\downarrow}$$

Microscopic picture at F/N interface

Let's take a closer look at spin transport near ferromagnet/normal metal interface

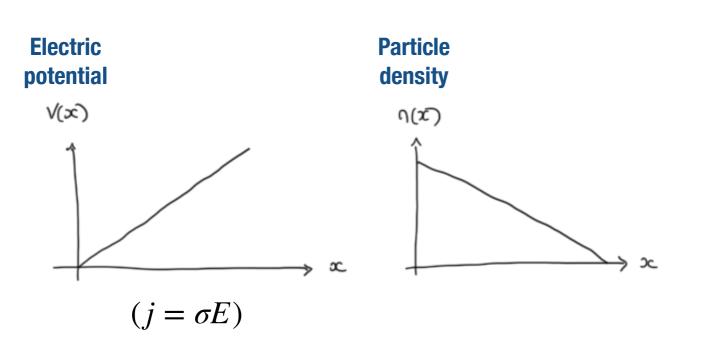


- Transition from spin polarized current in F to unpolarized current in NM occurs over finite distance around interface
- Concept of spin electrochemical potential, μ

$$\mu(x) = -eV(x) + \frac{e^2D}{\sigma}n(x) \qquad \qquad j(x) = \frac{\sigma}{e}\frac{\partial\mu(x)}{\partial x}$$

Electrochemical potential

$$\mu(x) = -eV(x) + \frac{e^2D}{\sigma}n(x)$$



$$j(x) = \frac{\sigma}{e} \frac{\partial \mu(x)}{\partial x}$$

Both potentials lead to current flow toward the right

Assume spin-dependent conductivity and electrochemical potential

$$j_{\uparrow,\downarrow}(x) = \frac{\sigma_{\uparrow,\downarrow}}{e} \frac{\partial \mu_{\uparrow,\downarrow}(x)}{\partial x} \qquad \qquad \tau_{\uparrow\downarrow} \gg \tau_{\uparrow,\downarrow}$$

Diffusion equations

- Transport across arbitrary multilayer can obtained using conservation conditions:
 - 1. Conservation of current

$$\frac{\partial j}{\partial x} = \frac{\partial j_{\uparrow}}{\partial x} + \frac{\partial j_{\downarrow}}{\partial x} = 0 \qquad \Rightarrow \frac{\sigma_{\uparrow}}{e} \frac{\partial^2 \mu_{\uparrow}}{\partial x^2} + \frac{\sigma_{\downarrow}}{e} \frac{\partial^2 \mu_{\downarrow}}{\partial x^2} = 0$$

2. Conservation of spin

$$\frac{\partial j_{\uparrow}}{\partial x} - \frac{\partial j_{\downarrow}}{\partial x} = e\left(\frac{n_{\uparrow} - n_{\downarrow}}{\tau_{\uparrow\downarrow}}\right) \qquad \qquad \frac{\partial^2 \mu_{\uparrow}}{\partial x^2} = \frac{e^2}{2\sigma_{\uparrow}}\left(\frac{n_{\uparrow} - n_{\downarrow}}{\tau_{\uparrow\downarrow}}\right)$$

spin relaxation time

3. Charge neutrality (screen is very efficient in metals)

$$n_c = n_\uparrow + n_\downarrow = 0$$

Combining all these leads to equation for spin diffusion

$$D_F \frac{\partial^2 (\mu_{\uparrow} - \mu_{\downarrow})}{\partial x^2} = \frac{\mu_{\uparrow} - \mu_{\downarrow}}{\tau_{\uparrow\downarrow}}$$

$$D_F = \frac{\sigma_{\uparrow} D_{\downarrow} + \sigma_{\downarrow} D_{\uparrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}}$$

➤ X

Spin diffusion and spin accumulation

 The previous result allows us to write the diffusion in a compact form

$$\frac{\partial^2(\mu_{\uparrow}-\mu_{\downarrow})}{\partial x^2} = \frac{\mu_{\uparrow}-\mu_{\downarrow}}{l_{\rm sf}^2}$$

Define spin accumulation as

$$\Delta \mu = \mu_{\uparrow} - \mu_{\downarrow}$$

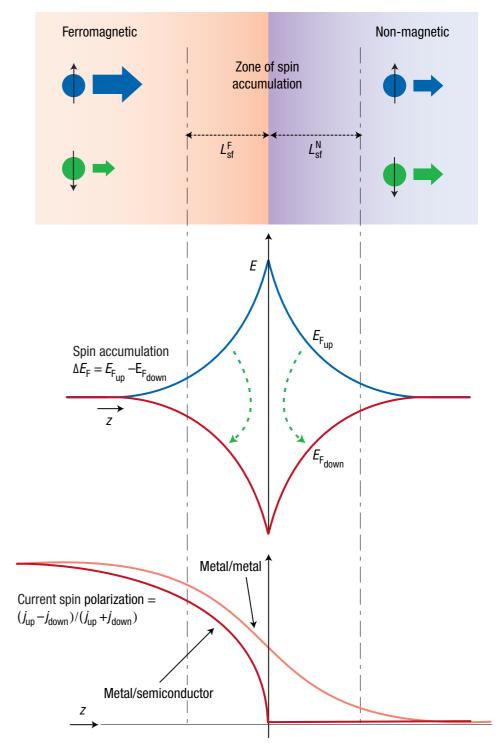
Thus, spin accumulation is governed by a simple diffusive process

$$\frac{\partial^2 \Delta \mu}{\partial x^2} = \frac{\Delta \mu}{l_{\rm sf}^2} \qquad \Delta \mu \sim e^{\pm x/l_{\rm sf}}$$

Metal (300 K)	l _{sf} (nm)
Cu	10 ² -10 ³
Au	60
Со	~38
Permalloy	~3

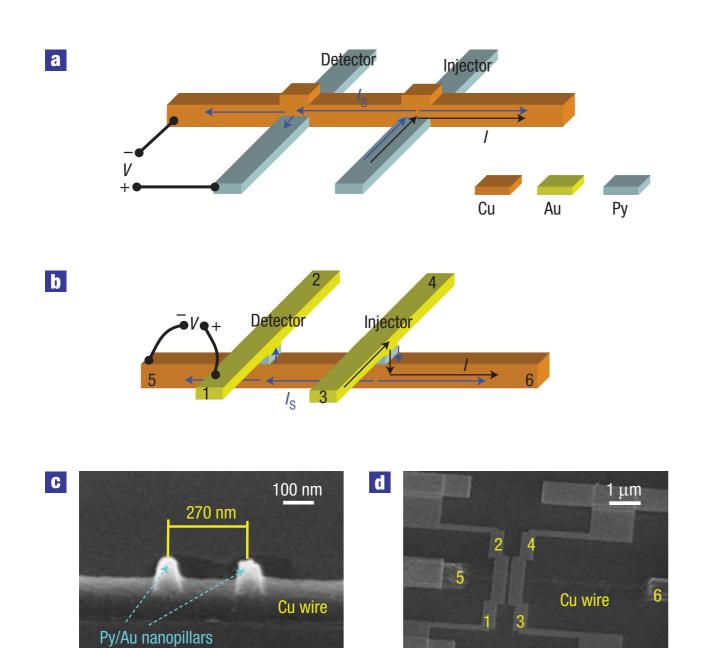
Bass & Pratt, J Phys: Condens Matter **9**, 183201 (2007) (Check for updated values in the literature!)

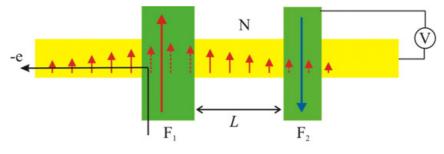
Chappert et al, Nat Mater 6, 813 (2007)



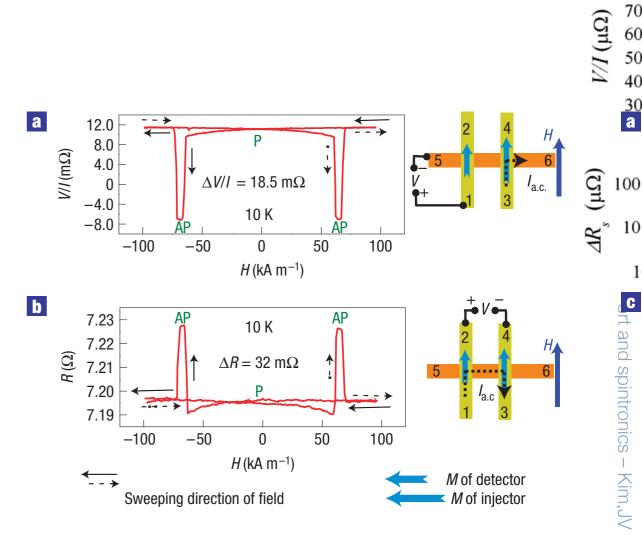
Lateral spin valves

 Spin diffusion can be exploited in lateral geometries with spin valve effect





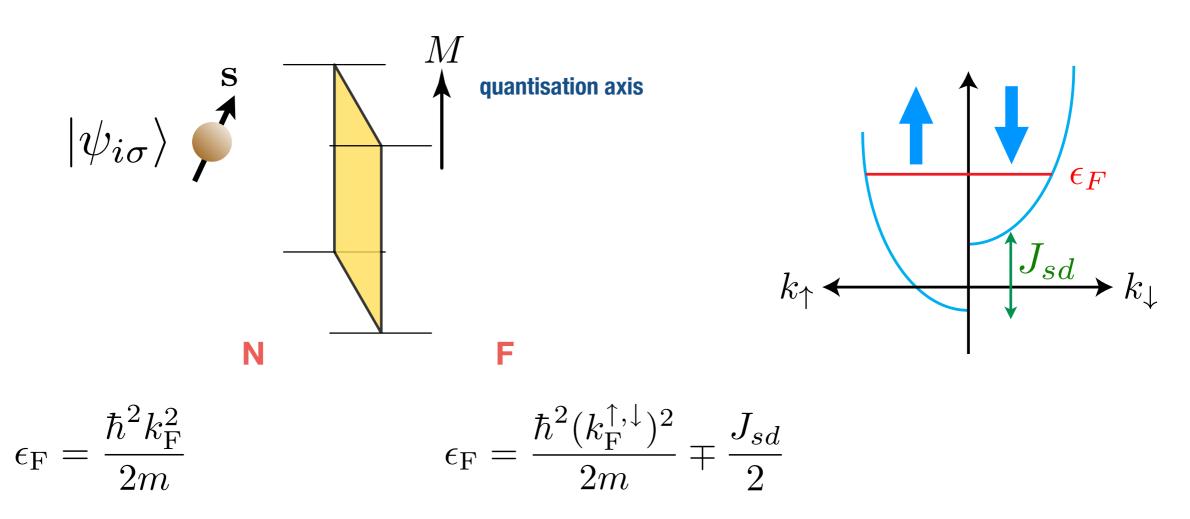
Ji et al, J Phys D: Appl Phys 40, 1280 (2007)



Yang et al, Nat Phys 4, 851 (2008)

Single electron at N/F interface

 Consider a free electron in the normal metal arriving at the normal metal (N)/ ferromagnet (F) interface. Solve 1D Schrödinger equation



 Because the bands in the ferromagnet are spin-split, there is a spin-dependent step potential at the interface

$$k_{
m F}^{\downarrow} < k_{
m F}^{\uparrow}$$

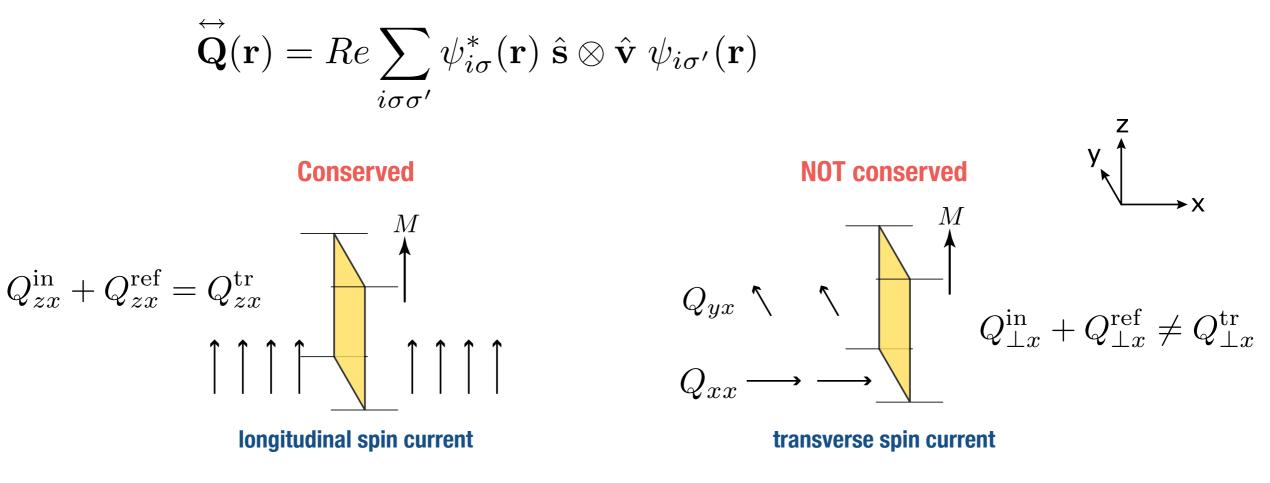
Single electron at N/F interface

$$\begin{split} \psi^{\mathrm{in}} &= e^{ik_x x} e^{i\mathbf{k}_{||}\cdot\mathbf{r}_{||}} \begin{pmatrix} \cos(\theta/2)e^{-i\phi/2}|\uparrow\rangle\\\sin(\theta/2)e^{i\phi/2}|\downarrow\rangle \end{pmatrix} & \underset{\mathrm{ncident wavefunction}}{\overset{\mathrm{outdent wavefunction}}{\overset{\mathrm{ou$$

- Assume constant effective mass
- Apply usual quantum mechanical matching conditions across interface to obtain reflection and transmission coefficients

e-ESM 2020: Fundamentals of Magnetism – Transport and spintronics – Kim, JV

Let's look at the spin current through this interface. What is conserved?



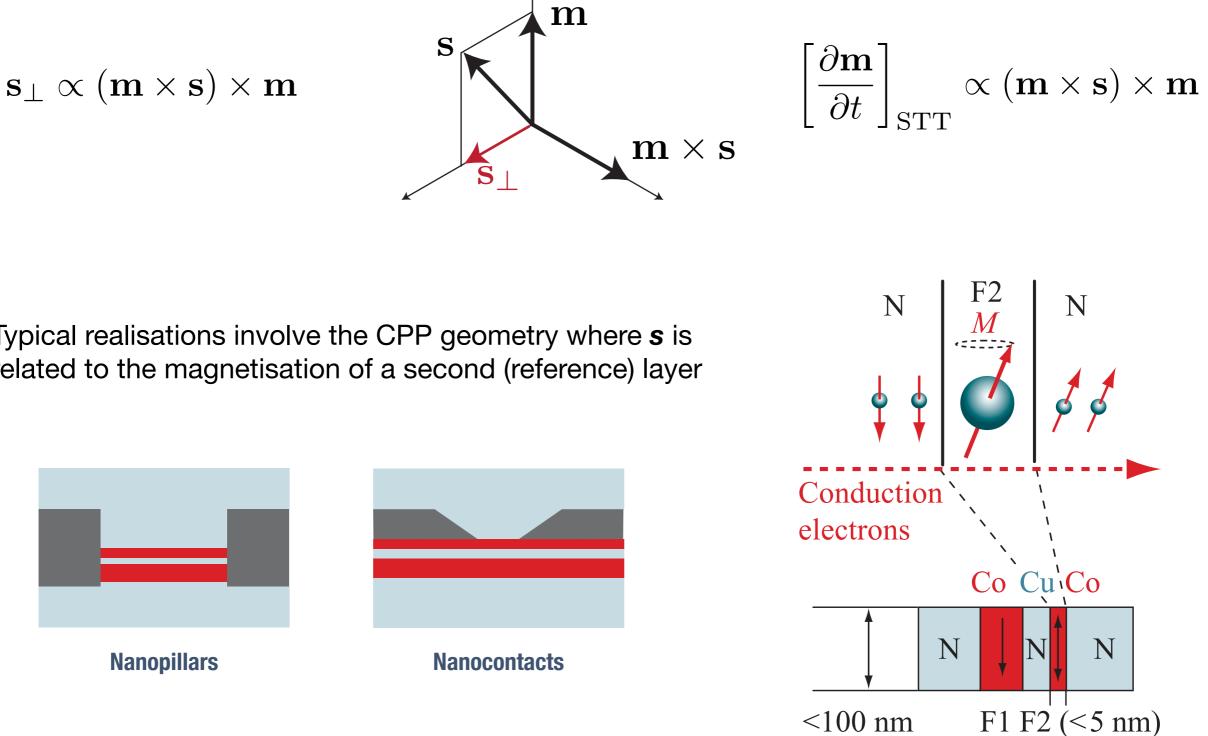
 From conservation of spin angular momentum, argue that missing transverse spin current is transferred to ferromagnet M

$$\left[\frac{\partial \mathbf{m}}{\partial t}\right]_{\mathrm{STT}} \propto \mathbf{s}_{\perp}$$

Spin transfer torques

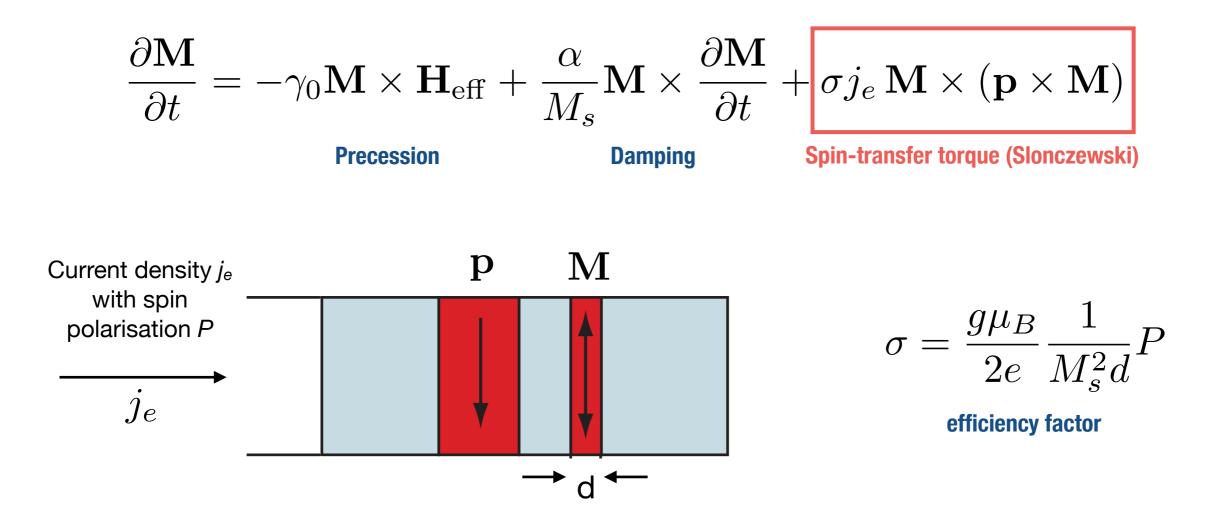
Express transverse spin component in terms of vector products

Typical realisations involve the CPP geometry where **s** is related to the magnetisation of a second (reference) layer



Slonczewski model of CPP torques

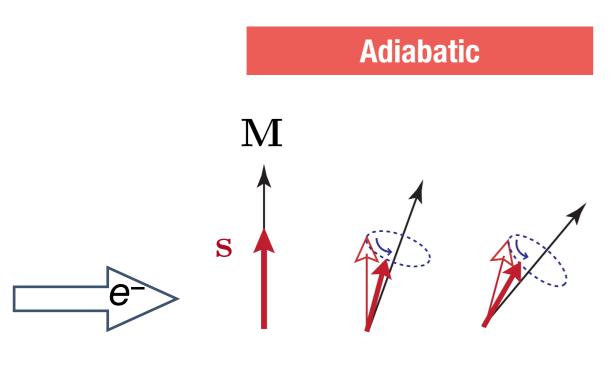
Accounting for transport properties, obtain <u>Slonczewski</u> term for spin-transfer torques



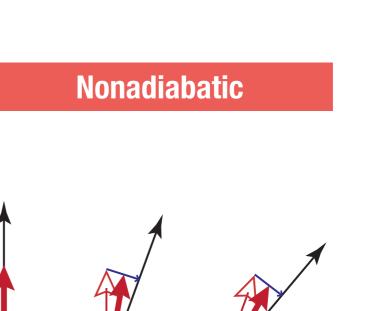
- Current density matters, not currents. We did not observe STT before the advent of nanofabrication
- Need typical densities of 10¹² A/m²: 1 mA for 1000 nm², 1 000 000 A for 1 mm²

Current-in-plane torques

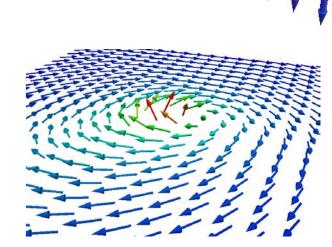
- Spin-transfer torques also occur in continuous systems in which there are <u>gradients</u> in the magnetisation
- Important for micromagnetic states like domain walls, vortices, skyrmions
- Torques determined by how well the conduction electron spin tracks the local magnetisation
- Like CPP case, spin transfer involves the <u>absorption of transverse</u> <u>component of spin current</u>



Conduction electron spin precesses about *sd* field



Conduction electron spin relaxes toward *sd* field



~//

Zhang-Li model of CIP torques

S Zhang & Z Li Phys Rev Lett **93**, 127204 (2004)

In the drift-diffusion limit

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma_0 \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_s} \mathbf{M} \times \frac{\partial \mathbf{M}}{\partial t} + \mathbf{T}_{\text{CIP}}$$

$$\mathbf{T}_{\text{CIP}} = -\frac{b_J}{\mu_0 M_s^2} \mathbf{M} \times \left[\mathbf{M} \times (\mathbf{j}_e \cdot \nabla) \mathbf{M} \right] - \frac{c_J}{\mu_0 M_s} \mathbf{M} \times (\mathbf{j}_e \cdot \nabla) \mathbf{M}$$

adiabatic nonadiabatic

$$b_J = \frac{P\mu_B}{eM_s(1+\xi^2)} \qquad c_J = \frac{P\mu_B\xi}{eM_s(1+\xi^2)} \qquad P: \text{spin polarisation}$$

In this model, nonadiabaticity is a ratio between sd-exchange and spin flip time scales

$$\xi = \frac{\tau_{ex}}{\tau_{sf}}$$
 $\tau_{sf} \sim 10^{-12} \,\mathrm{s}$ $\tau_{ex} \sim 10^{-15} \,\mathrm{s}$

Many other theories have been proposed to describe this parameter

Re-interpreting Zhang-Li

By recognising that the pre-factors in the CIP torques and the current density je can be expressed in terms of an <u>effective spin-drift velocity</u> u

$$\mathbf{u} = P \frac{g\mu_B}{2e} \frac{1}{M_s} \mathbf{j}_e = P \frac{\hbar}{2e} \frac{1}{M_s} \mathbf{j}_e \qquad [\mathbf{u}] = \mathbf{m/s}$$

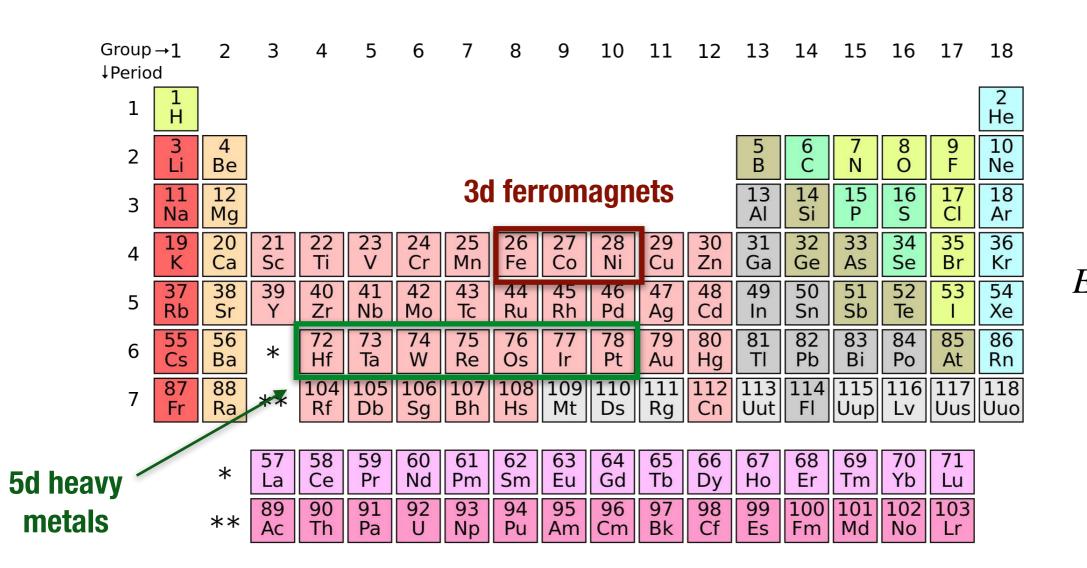
$$\frac{d\mathbf{M}}{dt} = -\gamma_0 \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_s} \mathbf{M} \times \frac{d\mathbf{M}}{dt} - (\mathbf{u} \cdot \nabla) \mathbf{M} + \frac{\beta}{M_s} \mathbf{M} \times [(\mathbf{u} \cdot \nabla) \mathbf{M}]$$
precession damping adiabatic nonadiabatic

Rearranging into a more suggestive form:

$$\begin{pmatrix} \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \end{pmatrix} \mathbf{M} = -\gamma_0 \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_s} \mathbf{M} \times \left(\frac{\partial}{\partial t} + \frac{\beta}{\alpha} \mathbf{u} \cdot \nabla \right) \mathbf{M}$$
Convective derivative

Spin-orbit coupling

 In magnetic multilayered structures, metallic ferromagnets in contact with 5d transition metals ("heavy metals") exhibit strong effects due to spin-orbit coupling



e-ESM 2020: Fundamentals of Magnetism – Transport and spintronics – Kim, JV

Spin-orbit coupling

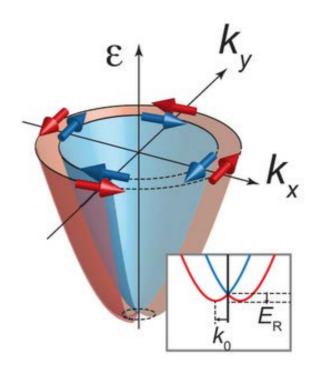
 Examples (often interesting for inducing perpendicular magnetic anisotropy – PMA):

Pt | Co (0.4 - 1 nm) | AlOx

(Ta, W, Hf) | CoFeB (1 nm) | MgO

Pt | [Co (0.4 nm) | Ni (0.6 nm)]_n

 Lack of inversion symmetry, allows for a class of spin-orbit interactions seen in two-dimensional systems, e.g. <u>Rashba interaction</u>



Wave vector dependent effective Rashba field

$$\mathscr{H}_R = \alpha_R \left(\boldsymbol{\sigma} \times \mathbf{p} \right) \cdot \hat{\mathbf{z}}$$

Rashba Hamiltonian

$$\mathcal{H}_{\rm el} = \frac{\mathbf{p}^2}{2m} + \mathcal{H}_R$$

Free electron + Rashba

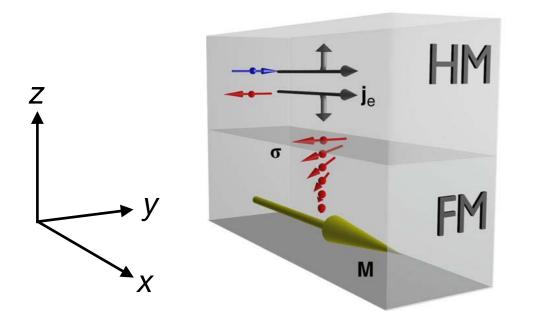
Spin-orbit torques

 Such spin-orbit effects due to the heavy metal (HM) give rise to spin-orbit torques on the ferromagnet (FM)

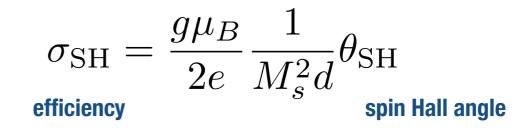


Spin-orbit torques

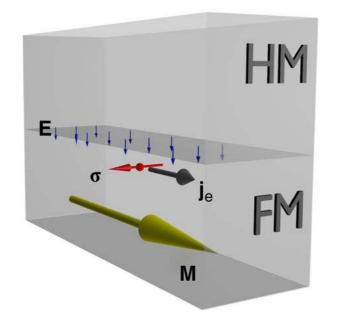
Torques due to the spin Hall effect can be described using the Slonczewski form



$$\mathbf{T}_{\rm SH} = \sigma_{\rm SH} j_e \, \mathbf{M} \times (\hat{\mathbf{y}} \times \mathbf{M})$$



Torques due to the Rashba effect can be assimilated to an effective field



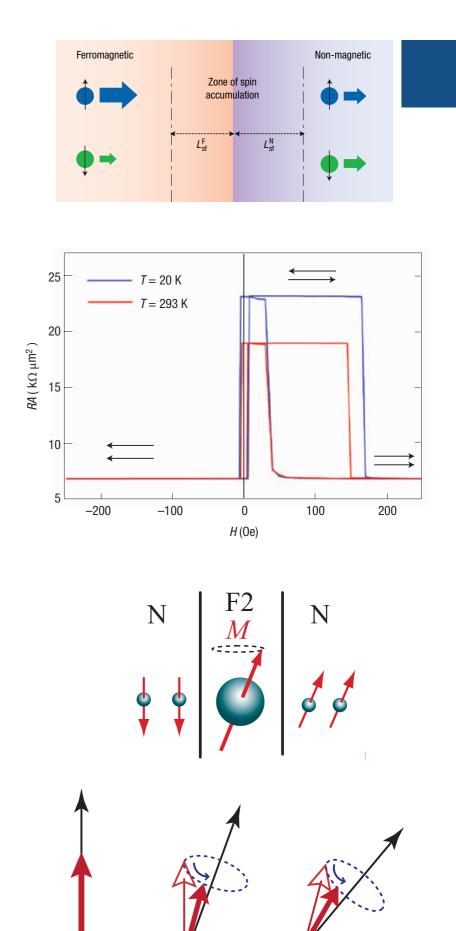
$$\mathbf{T}_{\mathrm{R}} = -\gamma_0 \mathbf{M} \times (H_R \, \hat{\mathbf{y}})$$

Summary

- Magnetism affects transport and vice versa
- Magnetoresistance and spin diffusion
 Spin polarized currents within two-current model
 Giant and tunnel magnetoresistance
 Lateral spin diffusion allows for "nonlocal" effects

Spin transport torques

Spin filtering at ferromagnet/normal metal interfaces Slonczewski model (CPP) Zhang-Li model (CIP) Spin-orbit torques



47

Further reading

Books

- Nanomagnetism and Spintronics, edited by T Shinjo (Elsevier, 2014), 2nd ed.
- Spin Current, edited by S Maekawa, S O Valenzuela, E Saitoh & T Kimura (Oxford Univ. Press, 2017), 2nd ed.
- Quantum Theory of Magnetism, R M White (Springer, 2006), 3rd ed.

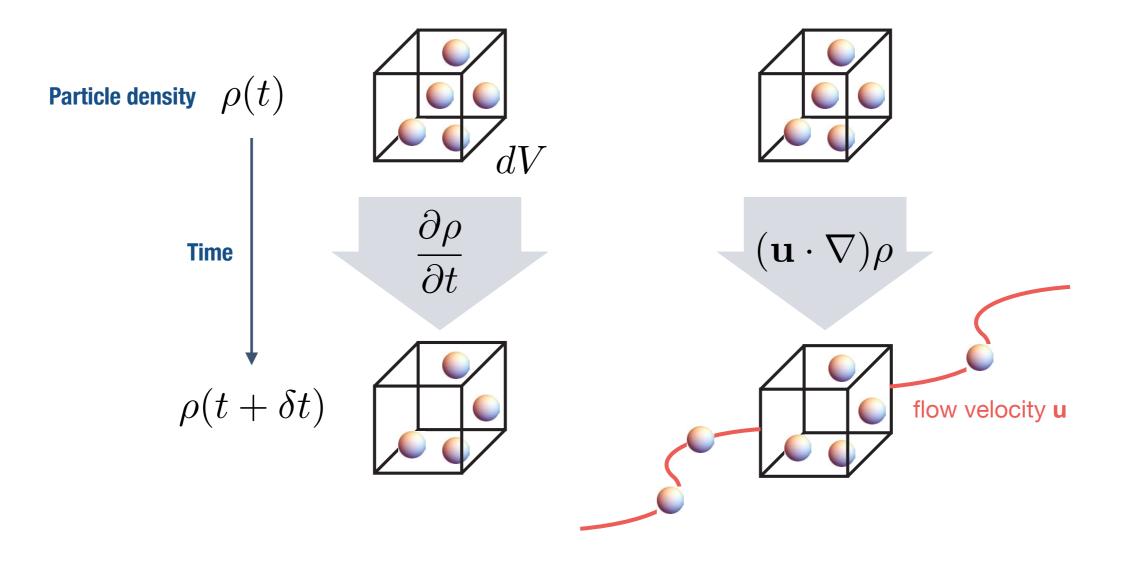
Review papers, book chapters

- J F Gregg et al, Spin electronics A review, J Phys D: Appl Phys 35, R121 (2002)
- C Chappert et al, *The emergence of spin electronics in data storage*, Nat Mater 6, 813 (2007)
- W H Butler and X-G Zhang, *Electron Transport in Magnetic Multilayers*, in *Ultrathin Magnetic Structures III*, edited by J A C Bland and B Heinrich (Springer, 2005)

Convective derivatives

- Consider time evolution of an element dV of a fluid
- Convective derivative D accounts for local variations and particle flow

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + (\mathbf{u} \cdot \nabla)$$



Analogy with fluid dynamics?

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \mathbf{M} = -\gamma_0 \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_s} \mathbf{M} \times \left(\frac{\partial}{\partial t} + \frac{\beta}{\alpha} \mathbf{u} \cdot \nabla\right) \mathbf{M}$$

This form can almost be obtained by replacing the time derivative of the usual Landau-Lifshitz equation

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma_0 \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_s} \mathbf{M} \times \frac{\partial \mathbf{M}}{\partial t}$$

with the convective derivative

$$\frac{\partial}{\partial t} \to \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right)$$

It almost works *except* for the β/a term. **u** therefore represents the average drift velocity of the magnetisation (under applied currents), which for ferromagnetic metals makes some sense.

 No consensus (theoretically and experimentally) over the ratio β/α, which can vary between 0.1 and 10 51