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ted experiment (1820 - Copenhagen)

Lodestone-magnetite Fe3O4 known in antic Greece 

and ancient China (spoon-shape compass) 

Described by Lucrecia in de natura rerum 

Medieval times to seventeenth century: 

Pierre de Maricourt (1269), B. E. W. Gilbert (1600), R. Descartes (≈1600)…  

Properties of south/north poles, earth is a magnet, compass, perpetual motion 

Modern developments:  

H. C. Oersted, A. M. Ampère, M. Faraday, J. C. Maxwell, H. A. Lorentz… 

Unification of magnetism and electricity, field and forces description 

20th century: P. Curie, P. Weiss, L. Néel, N. Bohr, W. Heisenberg, W. Pauli, P. Dirac… 

Para-ferro-antiferro-magnetism, molecular field, domains,  

(relativistic) quantum theory, spin… 

A bit of history 

Introduction 

Gilbert 

Oersted 
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Introduction 

At fundamental level: Inspiring or verifying lots of model systems, especially in theory of 

phase transition and concept of symmetry breaking (ex. Ising model) 

 

Large variety of behaviors: dia/para/ferro/antiferro/ferrimagnetism, phase transitions, spin 

liquid, spin glass, spin ice, skyrmions, magnetostriction, magnetoresistivity, magnetocaloric, 

magnetoelectric effects, multiferroism, exchange bias…  

in different materials: metals, insulators, semi-conductors, oxides, molecular magnets,.., films, 

nanoparticles, bulk... 

 

Magnetism is a quantum phenomenon but phenomenological models are commonly used to 

treat classically matter as a continuum 

 

Many applications in everyday life 

 

 

Magnetism: 
 

science of cooperative effects of orbital and spin moments in matter 
 

Wide subject expanding over physics, chemistry, geophysics, life science. 
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Introduction 

Magnetic materials all around us : the earth, cars, audio, video, telecommunication, electric 

motors, medical imaging, computer technology… 

Hard Disk Drive 

Disk

Write Head

Discrete Components :

Transformer

Filter

Inductor

Flat 

Rotary Motor

Voice Coil 

Linear Motor

Read Head
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Magnetoscience 
… 

•  Magnetic frustration: complex magnetic (dis)ordered ground states 

•  Molecular magnetism: photo-switchable, quantum tunneling 

•  Mesoscopic scale (from quantum to classical)  quantum computer 

•  Quantum phase transition (at T=0) 

•  Low dimensional systems: Haldane, Bose-Einstein condensate, Luttinger liquids 

•  Magnetic topological matter 

•  Multiferroism: coexisting ferroic orders (magnetic, electric…) 

•  Magnetism and superconductivity 

•  Nanomaterials: thin films, multilayers, nanoparticles 

•  Spintronics: use of the spin of the electrons in electronic devices 

•  Skyrmionics: new media for encoding information  

•  Magnetic fluids: ferrofluids 

•  Magnetoscience: magnetic field effects  

     on physics, chemistry, biology … 

 

 

1.0

d e

90 nm

Introduction 
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Topical research fields in magnetism 
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Atomic magnetic moment: classical 

✔ An electric current is the source of a magnetic field B 

✔  Magnetic moment/magnetic field generated by a single-turn coil 

 

~B =
µ0

4⇡

Z
C

Id~l

r2
×

~r

r

m =
~B =

µ0

4⇡
[3
(~m.~r)~r

r5
−

~m

r3
] with ~m = IS~n

d~l
d ~B

Magnetic moment 
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Atomic magnetic moment: classical 

e- orbiting  

around the nucleus 

Nucleus Ze ⇥µ` =
⇥I.⇥S =

−ev

2πr
πr2⇥n =

−evr

2
⇥n

✔  Orbiting electron is equivalent to a magnetic moment  
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Atomic magnetic moment: classical 

Orbital magnetic moment 

Gyromagnetic ratio 

✔  Orbiting electron is equivalent to a magnetic moment  

  

⇥µ` =
⇥I.⇥S =

−ev

2πr
πr2⇥n =

−evr

2
⇥n

!L = !r × !p = !r ×m!v

⇥µ` =
−e

2m
⇥L = γ⇥L

gyroscope 

e- orbiting  

around the nucleus 

Nucleus Ze 

https://en.wikipedia.org/ 

Wiki/Angular_momentum 

✔  The magnetic moment is related to the angular momentum 
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✔  The magnetic moment is related to the angular momentum 

Atomic magnetic moment: classical 

✔  Orbiting electron is equivalent to a magnetic moment  

  

⇥µ` =
⇥I.⇥S =

−ev

2πr
πr2⇥n =

−evr

2
⇥n

!L = !r × !p = !r ×m!v

⇥µ` =
−e

2m
⇥L = γ⇥L

Einstein-de Haas effect (1915): suspended ferromagnetic rod magnetized by magnetic field  

 rotation of rod to conserve total angular momentum 

https://fr.wikipedia.org/wiki/Effet_Einstein-de_Haas 
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Atomic magnetic moment: classical 

✔  The magnetic moment is related to the angular momentum: consequence Larmor precession.  

induced by rotation. Both phenomena demonstrate that magnetic moments are

associated with angular momentum.

1.1 Magnetic moments 3

Fig. 1.3 A magnetic moment u in a magnetic

field B has an energy equal to —u . B =

—uB cos 0.

1
 For an electric dipole p, in an electric field

£, the energy is £ = — p . E and the torque

is G = p x E. A stationary electric dipole

moment is just two separated stationary elec-

tric charges; it is not associated with any

angular momentum, so if £ is not aligned

with p, the torque G will tend to turn p

towards E. A stationary magnetic moment

is associated with angular momentum and so

behaves differently.

2
Imagine a top spinning with its axis inclined

to the vertical. The weight of the top, acting

downwards, exerts a (horizontal) torque on

the top. If it were not spinning it would just

fall over. But because it is spinning, it has

angular momentum parallel to its spinning

axis, and the torque causes the axis of the

spinning top to move parallel to the torque,

in a horizontal plane. The spinning top pre-

cesses.

Fig. 1.4 A magnetic moment u in a magnetic

field B precesses around the magnetic field at

the Larmor precession frequency, y B, where

y is the gyromagnetic ratio. The magnetic

field B lies along the z-axis and the magnetic

moment is initially in the xz-plane at an an-

gle 0 to B. The magnetic moment precesses

around a cone of semi-angle 0.

Joseph Larmor (1857-1942)

so that uz is constant with time and ux and uy both oscillate. Solving these

differential equations leads to

where

is called the Larmor precession frequency.

Example 1.1

Consider the case in which B is along the z direction and u is initially at an

angle of 6 to B and in the xz plane (see Fig. 1.4). Then

1.1.2 Precession

We now consider a magnetic moment u in a magnetic field B as shown in

Fig. 1.3. The energy E of the magnetic moment is given by

(see Appendix B) so that the energy is minimized when the magnetic moment

lies along the magnetic field. There will be a torque G on the magnetic moment

given by

(see Appendix B) which, if the magnetic moment were not associated with

any angular momentum, would tend to turn the magnetic moment towards the

magnetic field.
1

However, since the magnetic moment is associated with the angular mo-

mentum L by eqn 1.3, and because torque is equal to rate of change of angular

momentum, eqn 1.5 can be rewritten as

This means that the change in u is perpendicular to both u and to B. Rather

than turning u towards B, the magnetic field causes the direction of u to

precess around B. Equation 1.6 also implies that \u\ is time-independent. Note

that this situation is exactly analogous to the spinning of a gyroscope or a

spinning top.
2

In the following example, eqn 1.6 will be solved in detail for a particular

case.

E = −~µ. ~B

~G = ~µ×
~B

d~µ

dt
= γ~µ×

~B

ωL = |γ|B

Energy 

Torque applied to the moment  

Equation of motion  

Variation of the magnetic moment (hyp. no dissipation) 

10 

✔  The magnetic moment precesses about the field at the Larmor frequency 
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Atomic magnetic moment: classical to quantum 

Consequences:  
 

✔ Orbital motion, magnetic moment and angular momentum are antiparallel  

 

✔ Calculations with magnetic moment using formalism of angular momentum 

 

No work produced by a magnetic field on a moving e- 

hence a magnetic field cannot modify its energy  

and cannot produce a magnetic moment. 

 

11 

~f = −e(~v × ~B)
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Atomic magnetic moment: classical to quantum 

Consequences:  
 

✔ Magnetic moment and angular momentum are antiparallel  

 

✔ Calculations with magnetic moment using formalism of angular momentum 

 

In a classical system, there is no thermal equilibrium magnetization! 

(Bohr-van Leeuwen theorem) 

 

 Need of quantum mechanics 

 
QUANTUM MECHANICS

THE KEY TO UNDERSTANDING MAGNETISM

Nobel Lecture, 8 December, 1977

J . H .  V A N  V L E C K

Harvard University, Cambridge, Massachusetts, USA

L(x) :x,

12 
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Atomic magnetic moment: classical to quantum 

Reminder of Quantum Mechanics 

 

13 

Wavefunction        and operator  Âφi = aiφi

|ψ|2 = ψ∗ψ

ψ Â hÂi =

Z
dτψ∗Âψ

ψ =

X

i

ciφi hÂi =
X

i

|ci|
2
ai

[Â, B̂] = ÂB̂ − B̂Â

Ĥψ = i~
dψ

dt

~~̂L = ~̂r ⇥ ~̂p = −i~~̂r ⇥r

Commutator 

Schrödinger equation 

Angular momentum operator 

Ĥφi = Eiφi

E ⇡ Ek + hφk|V̂ |φki+
X

i 6=k

|hφi|V̂ |φki|
2

Ek − Ei

Perturbation theory 



ESM 2019, Brno 

Magnetism in quantum mechanics: 

    

Atomic magnetic moment: quantum 

Distribution of electrons on atomic orbitals, which minimizes the energy  

 Building of atomic magnetic moments 

The electronic wavefunction                   is characterized by 3 quantum numbers (spin ignored) 

l=0 

l=1 

l=2 

Eigenstate

go

Radial part Spherical  

harmonics 

14 

Ψn`m`

`

`

`

H = −
~
2

2me

r
2
−

Ze
2

4⇡✏0r

HΨi = EiΨi

Ψn`m`
(~r) = Rn`(r).Y

m

` (✓, φ)
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  : principal quantum number (electronic shell) 

  : orbital angular momentum quantum number 

   

 

 

 

     : magnetic quantum number 

Magnetism in quantum mechanics: 

    

Atomic magnetic moment: quantum 

Distribution of electrons on atomic orbitals, which minimizes the energy  

 Building of atomic magnetic moments 

15 

The electronic wavefunction                   is characterized by 3 quantum numbers (spin ignored) Ψn`m`



ESM 2019, Brno 

Magnetism in quantum mechanics: quantized orbital angular momentum 

 

    

The magnitude of the orbital momentum is 

The component of the orbital angular momentum along the z axis is 

     is the angular momentum operator 
 

Electronic orbitals are eigenstates of        and   

Atomic magnetic moment: quantum 

16 

`
2

~̀

`z

`
2Ψn`m`

= ~
2
`(`+ 1)Ψn`m`

`z = ~m`Ψn`m`
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Magnetism in quantum mechanics: quantized orbital angular momentum 

 

    

The magnitude of the orbital momentum is 

The component of the orbital angular momentum along the z axis is 

 

Degeneracy               , can be lifted by magnetic field (Zeeman effect) 

     is the angular momentum operator 
 

Electronic orbitals are eigenstates of        and   

Atomic magnetic moment: quantum 

Ex. vector model for l=2 

2`+ 1

17 

`
2

~̀

`z

`
2Ψn`m`

= ~
2
`(`+ 1)Ψn`m`

`z = ~m`Ψn`m`

`
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Magnetism in quantum mechanics: spin angular momentum of pure quantum origin 

 

    

The magnitude of the spin angular momentum is 

With the quantum numbers :  

Nucleus Ze 

Atomic magnetic moment: quantum 

The component of the spin angular momentum along the z axis is 

 

18 

szΨs = ~msΨs

s
2Ψs = ~

2
s(s+ 1)Ψs

~s



ESM 2019, Brno 

Magnetism in quantum mechanics: spin angular momentum of pure quantum origin 

 

    

-1/2

 1/2

M
S

s = 1/2

-

2µ
0
µ
B
H

The magnitude of the spin angular momentum is 

With the quantum numbers :  

Atomic magnetic moment: quantum 

The component of the spin angular momentum along the z axis is 

 

Degeneracy                         , can be lifted by magnetic field 2s+ 1 = 2

19 

szΨs = ~msΨs

s
2Ψs = ~

2
s(s+ 1)Ψs

~s

z

g√[s(s+1)]ħ2

H 1/2

 1/2

-

-ħ/2

  ħ/2
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Magnetism in quantum mechanics:  
 

Magnetic moment associated to 1 electron in the atom 

Two contributions: spin and orbit 
 

    Magnetic moments 

With                 and 

 

and the Bohr magneton 

Nucleus Ze 

Atomic magnetic moment: quantum 

)
= 2 +O(10−3)

µB =
~e

2me

= 9.27.10−24J.T−1

20 

~µ` = −g`µB
~l

~µs = −gsµB~s
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Magnetism in quantum mechanics: several e- in an atom  

 

     

 

 

Atomic magnetic moment: quantum 

21 

What are the ground state values of J, L and S ? (How to fill the atomic shells

Semi-empirical rules: Pauli principle, minimize Coulomb interaction and finally spin-

1  règle: Distributions des électrons sur tous les états d'orbit

+ principe de Pauli              projection maximale de spi

Ex : 4f2

sz

3210-1-2-3m
S 

m
l
 

m
s
 

? 
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Magnetism in quantum mechanics: several e- in an atom  

 

     

 

 

Combination of the orbital and spin angular momenta of the different electrons: 

related to the filling of the electronic shells in order to minimize  

the electrostatic energy and fulfill the Pauli exclusion principle (one e- at most in quantum state)  

Atomic magnetic moment: quantum 

22 

~L =

X

ne
−

~̀ ~S =

X

ne
−

~s
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Magnetism in quantum mechanics: several e- in an atom  

 

     

 

 

Combination of the orbital and spin angular momenta of the different electrons: 

related to the filling of the electronic shells in order to minimize  

the electrostatic energy and fulfill the Pauli exclusion principle (one e- at most in quantum state)  

Spin-orbit coupling:  

 
 

   Total angular momentum 

 

  A given atomic shell (multiplet) is defined by 4 quantum numbers :  

                    with 

Atomic magnetic moment: quantum 

23 

~L =

X

ne
−

~̀ ~S =

X

ne
−

~s

λ~L.~S

~J = ~L+ ~S

L, S, J,MJ −J < MJ < J
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Spin-orbit Hamiltonian 
 

λ increases with atomic number Z4 

Consequence:          and          are no longer good quantum numbers (                       instead) 

+Ze 

-e 

!v
!

me 

S

!

Beff 

Atomic magnetic moment: quantum 

Origin of spin-orbit coupling: change of rest frame + special relativity 

~E = −

~r

r

dV (r)

dr

Hso = λ~S.~L

+Ze 
-e 

v

!
Ch

lectron feels an effective magnetic 

r

!

~Bnuc

~Bnuc =

~E × ~v

c2
with 

msm` L, S, J,MJ

24 

Hso = µB
~S. ~Bnuc = µB

1

c2r

dV (r)

dr
~S(~r.× ~v) = µB

~

mc2r

dV (r)

dr
~S.~L
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Magnetism in quantum mechanics: several e- in an atom  

    

Hund’s rules for the ground state 

 
 

1st rule                                         maximum 

 

 

2nd rule                                           maximum in agreement with the 1st rule 

 

3rd rule from spin-orbit coupling 

 

 
  

     for less than ½ filled shell      for more than ½ filled shell 

Atomic magnetic moment: quantum 

25 

Hso = λ~S.~L
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Magnetism in quantum mechanics: several e- in an atom  

    

Hund’s rules for the ground state 

 
 

1st rule                                         maximum 

 

 

2nd rule                                           maximum in agreement with the 1st rule 

 

3rd rule from spin-orbit coupling 

 

 
  

     for less than ½ filled shell      for more than ½ filled shell 
 

Degeneracy 2J+1, can be lifted by a magnetic field 

Atomic magnetic moment: quantum 

Atomic term  

labeling the ground state: 

 
 

  

With 

 

2S+1
LJ

L = S, P,D...

26 

Hso = λ~S.~L
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Application of Hund’s rule : L and S are zero for filled shells 

 
 

Ex. Lu3+ is 4f14, 14 electron to put in 14 boxes (   = 3) 

Atomic magnetic moment: quantum 

27 

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓ ↓ ↓ ↓ ↓ ↓

so L = 0 and S = 0, J = 0 
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Application of Hund’s rule : L and S are zero for filled shells 

 

Example of unfilled shell 
 

Ce3+ is 4f1, 1 electron to put in 14 boxes (   = 3) 

so L = 3 and S = 1/2 
 

The spin-orbit coupling applies for less than ½ filled shell 

so J = 5/2 and -5/2 < MJ < 5/2 
 

The ground state is 6-fold degenerate 

Atomic magnetic moment: quantum 

28 

Eso = hLS|Hso|LSi = λ



X

i,up

h~Li.
~Ski −

X

i,down

h~Li.
~Ski

]
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Application of Hund’s rule : L and S are zero for filled shells 

 

Example of unfilled shell 
 

Tb3+ is 4f8, 8 electrons to put in 14 boxes (   = 3) 

Atomic magnetic moment: quantum 

29 

so L = 3 and S = 3 
 

The spin-orbit coupling applies for more than ½ filled shell 

so J = 6 and -6 < MJ < 6 
 

The ground state is 13-fold degenerate 
Eso = hLS|Hso|LSi = λ



X

i,up

h~Li.
~Ski −

X

i,down

h~Li.
~Ski

]
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Atomic magnetic moment: quantum 

The Zeeman interaction: 

 

Hyp.                        Wigner-Eckart theorem (projection theorem), 1st order perturbation theory 

   

 

Hz = µB(~L+ 2~S). ~B ≈ µBgJ ~J. ~B

With the Landé gJ -factor gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

Hence the Zeeman energy is                                       with   

and the level separation with                              is 

of the order of 1 K ≈ 0.1 meV  
 

∆MJ = ±1 gJµBB

Ez = gJµBMJB

HZ << Hso

30 

MJ ∈ {−J, J}

~µ = −µB(~L+ 2~S)

In the J multiplet basis 
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Summary: Total magnetic moment of the unfilled shell 

µ = gJµB

p

J(J + 1)

Atomic magnetic moment: quantum 

31 

Example Tb3+, J=6, gJ= 3/2  

so that the magnetic moment is 9 µB  

~µ = −µB(~L+ 2~S)

~µJ = −gJµB
~J
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Atomic magnetic moment: quantum 

Summary of atomic magnetism 

32 

  Electrons in central potential (nucleus + central part of e-e interactions) 

  fundamental electronic configuration, degeneracy 2n2, energies labeled by n  

 ΔE≈108 K 

  Add non-central part of e-e interactions  

 separates the energies in different terms labeled by (L, S), degeneracy (2L+1)(2S+1) 

 ΔE≈104 K 

  Add spin-orbit coupling 

  each term decomposed in multiplets characterized by J (and L, S), degeneracy 2J+1 

 ΔE≈100-1000 K for 3d ions, 1000-10000 K for 4f ions 

  Add magnetic field: lift multiplet’s degeneracy, ΔE≈1 K 
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Atomic magnetic moment: quantum 

Summary of atomic magnetism 
Ex. free ion Co2+ 3d7, S=3/2, L=3, J=9/2 

↓ ↓

Ground state 

33 

= 2, 10 boxes to fill 
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Atomic magnetic moment: quantum 

M
J

L = 1 S = 

J = L − S = 

J = L + S = 

L = 3 S = 

−

−

−

−

free

.

Summary of atomic magnetism 

↓ ↓

Hee(

Hso

HZ

Ground state 

1st, 2nd Hund’s rules 

3rd Hund’s rules 

(eV) 

(10 meV) 

(0.1 meV) 

34 

(2S+1)(2L+1) 

(2J+1) 

Ex. free ion Co2+ 3d7, S=3/2, L=3, J=9/2 
Fundamental  

configuration 
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Atomic magnetic moment in matter 

Magnetism is a property of unfilled electronic shells: 

Most atoms (bold) are concerned but ≈22 are magnetic in condensed matter 

Magnetic Periodic Table 

35 
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Atomic magnetic moment in matter 

Atom in matter: 
 

✔ Chemical bonding  filled e- shells : no magnetic moments 

     

H 

Magnetic         Non Magnetic         

H H H 

e- 
e- 

e- 

36 
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Atomic magnetic moment in matter 

4f electrons: inner shell (localized moment) 

3d electrons: outer shell (more delocalized, less screened) 

Atom in matter: 
 

✔ Chemical bonding  filled e- shells : no magnetic moments, exceptions: 

     

Rare-earth element Transition-metal element 

37 
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Validity of empirical Hund’s rules:   

 

L-S (Russel-Saunders) coupling scheme assumes spin-orbit coupling << electrostatic interactions:  

L and S combined separately, then apply spin-orbit coupling. 

 

No more valid for high Z (large spin-orbit coupling) j-j coupling scheme:  

s and   coupled first for each e-, then couple each electronic j. 

 

Atomic magnetic moment in matter 

38 

`
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Validity of empirical Hund’s rules:  good for 4f 

34 Isolated magnetic moments

The present chapter deals only with free

atoms or ions. Things will change when the

atoms are put in a crystalline environment.

The changes are quite large for 3d ions, as

may be seen in chapter 3.

Fig. 2.14 S, L and J for 3d and 4f ions

according to Hund's rules. In these graphs «

is the number of electrons in the subshell (3d

or 4f).

From eqn 2.44 we have found that a measurement of the susceptibility

allows one to deduce the effective moment. This effective moment can be

expressed in units of the Bohr magneton uB as

the 3d ions).
13

 S rises and becomes a maximum in the middle of each group. L

and 7 have maxima at roughly the quarter and three-quarter positions, although

for J there is an asymmetry between these maxima which reflects the differing

rules for being in a shell which is less than or more than half full.

Table 2.2 Magnetic ground states for 4f ions using Hund's rules.

For each ion, the shell configuration and the predicted values of

S, L and J for the ground state are listed. Also shown is the

calculated value of p = ueff /uB
 =

 8 J [ J ( J + 1)]
1
/
2
 using these

Hund's rules predictions. The next column lists the experimental

value pexp and shows very good agreement, except for Sm and Eu.

The experimental values are obtained from measurements of the

susceptibility of paramagnetic salts at temperatures kBT » ECEF

where ECEF is
 a
 crystal field energy.

ion

Ce
3
+

Pr3+

Nd
3
+

Pm
3
+

Sm
3
+

Eu
3
+

Gd
3
+

Tb
3
+

Dy
3
+

Ho
3
+

Er
3
+

Tm
3
+

Yb
3
+

Lu
3
+

shell

4f 1

4f
2

4f
3

4f 4

4f
5

4f
6

4f
 7

4f 8

4f
9

4f
10

4f
ll

4f
l2

4f
13

4f
l4

S

2

1

3

2

5

3

7

3

5

2

3

1

1/2

0

L

3

5

6

6

5

3

0

3

5

6

6

5

3

0

J

5

4

9

4

5
1

0

7

6

15/2

8

¥
6

7

0

term

2
F5/2

3
H4

4
I9/2

5
I4

6
I5/2

7
F0

8
S7/2

7
F6

6
H15/2

5
I8

4
Il5/2

3
H6

2
F7/2

1
S0

p

2.54

3.58

3.62

2.68

0.85

0.0

7.94

9.72

10.63

10.60

9.59

7.57

4.53

0

Pexp

2.51

3.56

3.3-3.7

-

1.74

3.4

7.98

9.77

10.63

10.4

9.5

7.61

4.5

0

Atomic magnetic moment in matter 

39 

ique

Bilan de l'a

és

!  

ions:

 total

J = L+S

J = L+S-1

peff = gJ
p

J(J + 1)µB

except forEu, Sm: contribution from higher (L, S) levels 

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu3+ 
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Validity of empirical Hund’s rules:  good for 4f but less good for 3d (due to crystal field) 

Atomic magnetic moment in matter 

For 3d ions works better if J is replaced by S 

(influence of crystal field) 

34 Isolated magnetic moments

The present chapter deals only with free

atoms or ions. Things will change when the

atoms are put in a crystalline environment.

The changes are quite large for 3d ions, as

may be seen in chapter 3.

Fig. 2.14 S, L and J for 3d and 4f ions

according to Hund's rules. In these graphs «

is the number of electrons in the subshell (3d

or 4f).

From eqn 2.44 we have found that a measurement of the susceptibility

allows one to deduce the effective moment. This effective moment can be

expressed in units of the Bohr magneton uB as

the 3d ions).
13

 S rises and becomes a maximum in the middle of each group. L

and 7 have maxima at roughly the quarter and three-quarter positions, although

for J there is an asymmetry between these maxima which reflects the differing

rules for being in a shell which is less than or more than half full.

Table 2.2 Magnetic ground states for 4f ions using Hund's rules.

For each ion, the shell configuration and the predicted values of

S, L and J for the ground state are listed. Also shown is the

calculated value of p = ueff /uB
 =

 8 J [ J ( J + 1)]
1
/
2
 using these

Hund's rules predictions. The next column lists the experimental

value pexp and shows very good agreement, except for Sm and Eu.

The experimental values are obtained from measurements of the

susceptibility of paramagnetic salts at temperatures kBT » ECEF

where ECEF is
 a
 crystal field energy.

ion

Ce
3
+

Pr3+

Nd
3
+

Pm
3
+

Sm
3
+

Eu
3
+

Gd
3
+

Tb
3
+

Dy
3
+

Ho
3
+

Er
3
+

Tm
3
+

Yb
3
+

Lu
3
+

shell

4f 1

4f
2

4f
3

4f 4

4f
5

4f
6

4f
 7

4f 8

4f
9

4f
10

4f
ll

4f
l2

4f
13

4f
l4

S

2

1

3

2

5

3

7

3

5

2

3

1

1/2

0

L

3

5

6

6

5

3

0

3

5

6

6

5

3

0

J

5

4

9

4

5
1

0

7

6

15/2

8

¥
6

7

0

term

2
F5/2

3
H4

4
I9/2

5
I4

6
I5/2

7
F0

8
S7/2

7
F6

6
H15/2

5
I8

4
Il5/2

3
H6

2
F7/2

1
S0

p

2.54

3.58

3.62

2.68

0.85

0.0

7.94

9.72

10.63

10.60

9.59

7.57

4.53

0

Pexp

2.51

3.56

3.3-3.7

-

1.74

3.4

7.98

9.77

10.63

10.4

9.5

7.61

4.5

0
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Sc Ti  V Cr Mn Fe Co Ni Cu Zn2+ 
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Summary 
 

  Magnetism is a quantum phenomenon 

  Magnetic moments are associated to angular momenta 

  Orbital and Spin magnetic moments can be coupled (spin-orbit coupling)  

 yielding the total magnetic moment (Hund’s rules) 

  Magnetic moment in 3d and 4f atoms have different behaviors 

 

Atomic magnetic moment in matter 

41 
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Measurable quantities: 

 
 

Magnetization : magnetic moment per unit volume (A/m) 

       derivative of the free energy w. r. t. the magnetic field 
 

 

 

 

 

 

Susceptibility: derivative of magnetization w. r. t. magnetic field, 

     alternatively, ratio of the magnetization on the field in the linear regime (unitless) 

Assembly of non-interacting magnetic moments 

M = −

∂F

∂B

χ = µ0

∂M

∂B
≈ µ0

(M

B

)

lin

µ0 = 4π10
−7

42 
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N atomic moments in a magnetic field B 
 

 a field B, how will the 

=0K 
B

!"

 : saturated magnetiz

0K B

!"

<M : compétition between

~B = 0

Non-interacting  

magnetic moments 

At T=0 K 

M=Ms saturated magnetization 

At T≠0 K, M<Ms, competition  

between Zeeman energy  

and entropy term  

43 

Assembly of non-interacting magnetic moments 
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N atomic moments in a magnetic field B 
 

with 

 a field B, how will the 

=0K 
B

!"

 : saturated magnetiz

0K B

!"

<M : compétition between

~B = 0

Non-interacting  

magnetic moments 

Calculation of magnetization and susceptibility 

Thermal average (Boltzmann statistics) + perturbation theory 

44 

β = 1/kBT

At T=0 K 

M=Ms saturated magnetization 

At T≠0 K, M<Ms, competition  

between Zeeman energy  

and entropy term  

Assembly of non-interacting magnetic moments 
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~A(~r) =
~B × ~r

2
With the magnetic vector potential (Coulomb gauge) 

H =
X

i

✓

p2
i

2me

+ Vi(ri)

◆

+ µB(~L+ 2~S). ~B +
e2

8me

X

i

( ~B × ~ri)
2

45 

One atomic moment in a magnetic field B  

Zeeman hamiltonian: coupling of total magnetic moment with the magnetic field 

  

Diamagnetic hamiltonian: induced orbital moment by the external magnetic field  

Assembly of non-interacting magnetic moments 

~B = r⇥ ~AH =

Z
X

i=1

✓

(~pi − e ~A(~ri))
2

2me

+ Vi(ri)

◆

+ gµB
~B.~S
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Diamagnetic term for N atoms: 

 

 

 

 

due to the induced moment by the magnetic field 

 

 Larmor diamagnetism 

 negative weak susceptibility, concerns all e- of the atom, T-independent 

 Large anisotropic diamagnetism found in planar systems  

     with delocalized e- (ex. graphite, benzene) 

perpendicular to the field 

Energy: EB = µB(~L+ 2~S). ~B +
e2

8me

X

i

( ~B × ~ri)
2

χ = −

N

V
µ0

e2

4me

< r2
⊥
>

46 

22 Isolated magnetic moments

Fig. 2.2 The measured diamagnetic molar

susceptibilities Xm of various ions plotted

against Zeffr
2
, where Zeff is the number of

electrons in the ion and r is a measured ionic

radius.

Fig. 2.3 (a) Naphthalene consists of two

fused benzene rings. (b) Graphite consists

of sheets of hexagonal layers. The carbon

atoms are shown as black blobs. The carbon

atoms are in registry in alternate, not adjacent

planes (as shown by the vertical dotted lines).

The effective ring diameter is several times larger than an atomic diameter and

so the effect is large. This is also true for graphite which consists of loosely

bound sheets of hexagonal layers (Fig. 2.3(b)). The diamagnetic susceptibility

is much larger if the magnetic field is applied perpendicular to the layers than

if it is applied in the parallel direction.

Diamagnetism is present in all materials, but it is a weak effect which can

either be ignored or is a small correction to a larger effect.

Assembly of non-interacting magnetic moments 

HB
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Paramagnetic term for N atoms : 

and the Brillouin function: 

EB = µB(~L+ 2~S). ~B +
e2

8me

X

i

( ~B × ~ri)
2Energy: 

47 

Assembly of non-interacting magnetic moments 

HB

with 
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Paramagnetic term 

 

Brillouin functions for different J values,  

Limit x >> 1 i.e. B >> kBT 

 

Saturation magnetization Ms =

N

V
gJJµB

https://fr.wikipedia.org/wiki/

Fichier:Brillouin_Function.svg 

Classical limit 

48 

Assembly of non-interacting magnetic moments 
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Paramagnetic term 

 

Limit x << 1 i.e. kBT >> B 

 

 

Curie law: 

It works well for magnetic moments  

without interactions and negligible CEF:  

ex. Gd3+, Fe3+, Mn2+ (L=0) 

with C the Curie constant 

and the effective moment 

 

T (K)

 χ

 

 1/χ

χ =
N

V

(µBgJ)
2J(J + 1)

3kBT
=

N

V

p2eff

3kBT
=

C

T

49 

BJ(x) =
(J + 1)x

3J
+O(x3)

Assembly of non-interacting magnetic moments 

peff = gJ
p

J(J + 1)µB
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Summary of magnetic field response of non-interacting atomic moments  

Paramagnetic Paramagnetic – Curie law 

Diamagnetic Diamagnetic – independent of temperature 

M 

B 

χ 

T 

 versus magnetic field versus temperature 

Rmq: Another source of paramagnetism (2nd order perturbation theory, mixing with excited states)  

Van Vleck paramagnetism  weak positive and temperature independent 

50 

Assembly of non-interacting magnetic moments 
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Summary of magnetic field response of non-interacting atomic moments  

51 

20 Isolated magnetic moments

2.3 Diamagnetism

All materials show some degree of diamagnetism,
3
 a weak, negative mag-

netic susceptibility. For a diamagnetic substance, a magnetic field induces a
magnetic moment which opposes the applied magnetic field that caused it.

This effect is often discussed from a classical viewpoint: the action of a
magnetic field on the orbital motion of an electron causes a back e.m.f.,

4
 which

by Lenz's law opposes the magnetic field which causes it. However, the Bohr-

van Leeuwen theorem described in the previous chapter should make us wary

of such approaches which attempt to show that the application of a magnetic
field to a classical system can induce a magnetic moment.

5
 The phenomenon

of diamagnetism is entirely quantum mechanical and should be treated as such.
We can easily illustrate the effect using the quantum mechanical approach.

Consider the case of an atom with no unfilled electronic shells, so that the
paramagnetic term in eqn 2.8 can be ignored. If B is parallel to the z axis, then

B x ri = B(-y i,x i,0)and

Fig. 2.1 The mass susceptibility of the first 60 elements in the periodic table at room temperature, plotted as a function of the atomic number. Fe,

Co and Ni are ferromagnetic so that they have a spontaneous magnetization with no applied magnetic field.

so that the first-order shift in the ground state energy due to the diamagnetic
term is

The prefix dia means 'against' or 'across'

(and leads to words like diagonal and diame-

ter).

electromotive force

See the further reading.

paramagnetic 

diamagnetic 

Assembly of non-interacting magnetic moments 
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Adiabatic demagnetization: cooling a sample down to mK  

52 

Assembly of non-interacting magnetic moments 

2.6 Adiabatic demagnetization 37

the system probabilistically, we use the expression:

Alternatively, the equation for the entropy can be generated by computing

the Helmholtz free energy, F, via F = — Nk B T In Z and then using S —

-(0F/0T)B.
Let us now explore the consequences of eqn 2.59. In the absence of an

applied magnetic field, or at high temperatures, the system is completely

disordered and all values of mJ are equally likely with probability p ( m J ) =

1 / ( 2 J + 1) so that the entropy 5 reduces to

in agreement with eqn 2.57. As the temperature is reduced, states with

low energy become increasingly probable; the degree of alignment of the

magnetic moments parallel to an applied magnetic field (the magnetization)

increases and the entropy falls. At low temperatures, all the magnetic moments

will align with the magnetic field to save energy. In this case there is only

one way of arranging the system (with all spins aligned) so W = 1 and

S = 0.

The principle of magnetically cooling a sample is as follows. The param-

agnet is first cooled to a low starting temperature using liquid helium. The

magnetic cooling then proceeds via two steps (see also Fig. 2.15).

Fig. 2.15 The entropy of a paramagnetic salt

as a function of temperature for several dif-

ferent applied magnetic fields between zero

and some maximum value which we will call

Bb. Magnetic cooling of a paramagnetic salt

from temperature Ti to Tf is accomplished

as indicated in two steps: first, isothermal

magnetization from a to b by increasing the

magnetic field from 0 to Bb at constant tem-

perature Ti; second, adiabatic demagnetiza-

tion from b to c. The S(T) curves have been

calculated assuming J = 1/2 (see eqn 2.76). A

term oc T
3
 has been added to these curves to

simulate the entropy of the lattice vibrations.

The curve for B = 0 is actually for B small

but non-zero to simulate the effect of a small

residual field.

The entropy is a monotonically decreasing function of B/T 

Two steps: 

a-b isothermal magnetization by applying a magnetic field  reduces the entropy 

b-c Removing the magnetic field adiabatically (at constant entropy) lower the temperature 
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Magnetism in metals 

Starting point: the free electron model, properties of Fermi surface, Fermi-Dirac statistics, 

electronic band structure 

Itinerant electrons 

k
x

k
y

k
F

Non-interacting electron waves confined in a box  

k-space: 

Each points is a possible state  

for one spin up and down 

Density of states at  

Fermi level (T=0) 

kF = (3π2
n)

1

3

D↑,↓(EF ) =
3n

4EF

E
n
e
rg

y,
 e

 

 E
n
e
rg
y,
 e
 

 

Density of states, D (e)

Fermi wavevector 

For a non-magnetic metal:  

same number of spins   and  

electrons at Fermi level 

↑ ↓
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Density of states, D (e)

E
n
e
rg

y,
 e

 

 

B

Applying a magnetic field 

(at T=0) 

Ez = gµBBms

∆E = 2µBB ≈ 10
−4eV

M =
gµB(n ↑ −n ↓)

2

M = µ2

B
D(EF )B

Spin-split bands  

by magnetic field 

 magnetization 

χP = µ0µ
2

B
D(EF )

Pauli paramagnetism (effect associated to spin of e-) 

Temperature independent > 0, weak effect. 

Small correction at finite temperature ∝ T
2
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EF

Itinerant electrons 

Magnetism in metals 
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The applied magnetic field results  

in Landau tubes of electronic states 

 

 

 Landau diamagnetism,  

     Temperature independent < 0 

 

 
 

 Oscillations of the magnetization (de Haas-van Alphen effect) 

Applying a magnetic field 

Pauli paramagnetism  

associated to spin of electrons 

 

Orbital response of e- gas to magnetic field 

χP = µ0µ
2

B
D(EF )

χL = −

1

3

✓

me

m∗

◆2

χP
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Itinerant electrons 

Magnetism in metals 

k
z

E
n
e
rg

y,
 e

  

B = 0

n = 0

n = 1

n = 2

n = 3

Wavevector, k
z
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Conclusion 

56 

Summary 
 

  Magnetism is a quantum phenomenon 

  Magnetic moments are associated to angular momenta 

  Orbital and Spin magnetic moments can be coupled (spin-orbit coupling) yielding the total 

magnetic moment (Hund’s rules) 

  Magnetic moment in 3d and 4f atoms have different behaviors 

  Various responses of non-interacting magnetic moments in applied magnetic field,  

 different for localized or delocalized electrons: 

 Curie-law/Pauli paramagnetism, Larmor/Landau diamagnetism 

 

But… does not explain spontaneous magnetization/magnetic order in absence of magnetic field, 

3d ions magnetism and anisotropic behaviors… 

 Next lectures will introduce missing ingredients: magnetic interactions and influence of the 

environment (crystal field) 
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Further reading 

•  Material borrowed from presentations of D. Givord, L. Ranno, Y. Gallais, Thanks to them! 

•  “Magnetism in Condensed Matter” by Stephen Blundell, Oxford University press (2003) 

•  “Introduction to magnetism” by Laurent Ranno, collection SFN 13, 01001 (2014), EDP 

Sciences, editors V. Simonet, B. Canals, J. Robert, S. Petit, H. Mutka,       

     free access DOI: http://dx.doi.org/10.1051/sfn/20141301001 

 

•  “Magnetism and Magnetic Materials” by J.M.D. Coey, Cambridge Univ. Press (2009) 

•  Lectures of Yann Gallais Website: www.mpq.univ-paris-diderot.fr/spip.php?rubrique260  

 

•  Any questions: virginie.simonet@neel.cnrs.fr 
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