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Describes: 
The influence of magnetic field or spontaneous magnetization 

on the emission and propagation  
of light in matter
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recorded at the highest possible field, but with the overall
image brightness kept at that of the zero-field state. It is seen
that, in contrast to the domains in Fig. 2, all the images
recorded with stabilization have equally remarkable contrast
and the complete magnetization process can be traced
continuously.

The example shown in Fig. 5 further demonstrates the
importance of Faraday-corrected domain imaging. In Fig.
5(a), the optical hysteresis loop on a thin (4 nm) FePt film
was measured in polar sensitivity with no Faraday compen-
sation. As in case of the FePd/FePt/FePd film discussed ear-
lier, the parasitic Faraday effect in the objective lens
dominates the whole loop, and subtraction of the linear part
or a cosine fit [Fig. 5(b)] does not lead to satisfactory results.
Measuring the same loop with a motorized analyzer with the
reference mirror on top of the sample [as shown in Fig. 3(f)]

and subsequently subtracting the small linear slope that is
induced in the glass substrate of the mirror lead to a sharp
hysteresis loop with distinct switching- and saturating fields
[Fig. 5(c)]. The evolution of domains shown in the difference
images in Fig. 5(d) with the background image taken at neg-
ative saturation proceeds by domain nucleation [Fig 5(c),
d-2] upon the application of a positive field. The following
growth of the domains with magnetization vector along the
applied field [Fig. 5(d-2!3)] is expected to persist until the
saturation field is reached at which the magnetization within
the whole sample is aligned with the field [Fig. 5(d-4)].
However, some contrast remains even in fields well beyond
the saturation field [Fig. 5(d-5)]. The origin of this unex-
pected contrast is the presence of non-magnetic inclusions in
the magnetic film, which are formed during the pulsed laser
deposition process. As those inclusion areas are not

FIG. 4. Domain images obtained in the polar mode on the same FePd/FePt/FePd multilayer as in Fig. 3, obtained by difference imaging with the background
image recorded at highest possible field during an external magnetic field sweep with in-situ Faraday compensation. As reference area for domain observation,
the whole visible sample surface was used, while for the MOKE loop a mirror was placed on top.

153906-6 I. V. Soldatov and R. Sch€afer J. Appl. Phys. 122, 153906 (2017)Magnetometry and domain imaging

From: I. Soldatov, R.S., J. Appl. Phys. 122, 153906 (2017) 
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Commonality of all those mo effects: 
they lead to transformation of linearly polarized light into rotated, elliptically 

polarized light in dependence on magnetization direction
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Electrodynamic theory E : electric field
D : displacement field
H : magnetic field
B : magnetic induction
M : magnetization
P : electric polarization
j : electric current density
ρ : electric charge density
σ : electric conductivity
ϵr : relative electr. permittivity 
ϵ0 : electr. permitt. of free space 
µr : relative magn. permeability 
µ0 : permeability of free space

Maxwell equations Material equations

divD = ∇ ·D = ρ 
divB = ∇ ·B = 0 
rotE = ∇×E = – Ḃ 
rotH = ∇×H = j + Ḋ 

D = ϵ0ϵrE = ϵ0E + P
B = µ0 µr H = µ0 (H + M)
j = σE

∇ denotes 3-dimensional gradient operator,  
∇⋅ denotes divergence operator, 
∇× denotes curl operator 
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Electrodynamic theory
Remarks:

1) Conventional Magnet-Optics: Visible light

⟹

Magnetic moments cannot follow the alternating 
magnetic field of light wave

⟹

µr ≈ 1 B
M

Frequency of visible light (~ 500 THz) >> Larmor frequency (~ 100 GHz)

, only electric field component relevant

Nonetheless, all magnetic information is acounted for (see later) 

∾⟹ D = ϵ0ϵrE is relevant (not B = µ0 µr H)

Increasing frequency in Hz

Increasing wavelength in m

Increasing wavelength in nm

Outline – Lecture I – General Overview

2

� Introduction – phenomenology
� Electronic information vs. structural information 

• Electronic structure picture of materials
� Theory/understanding of light-matter interactions

• The classical fields’ description
• Quantum theory with classical fields
• Complete quantum field theory

www.socrates.org
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2) ϵr  is tensor 
⟹ D (= elect. field in material) must not be in direction of incoming E
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Once somehow momentarily disturbed, an electron bound in this 
way will oscillate about its equilibrium position with a natural or 
resonant frequency given by v0 = 1kE>me, where me is its 
mass. This is the oscillatory frequency of the undriven system and 
so F = -v2

0 me 

x. Using v0, which is observable, we can get rid of 
kE which was a figment of the spring model.

A material medium is envisioned as an assemblage, in vacu-
um, of a very great many polarizable atoms, each of which is 
small (by comparison to the wavelength of light) and close to its 
neighbors. When a lightwave impinges on such a medium, each 
atom can be thought of as a classical forced oscillator being 
driven by the time-varying electric field E(t) of the wave, which 
is assumed here to be applied in the x-direction. Figure 3.38b is 
a mechanical representation of just such an oscillator in an iso-
tropic medium where the negatively charged shell is fastened to 
a stationary positive nucleus by identical springs. Even under 
the illumination of bright sunlight, the amplitude of the oscilla-
tions will be no greater than about 10-17 m. The force (FE)  
exerted on an electron of charge qe by the E(t) field of a har-
monic wave of frequency v is of the form

 FE = qeE(t) = qeE0 cos vt (3.63)

Notice that if the driving force is in one direction the restoring 
force is in the opposite direction, which is why it has a minus 

In contrast, electrons have little inertia and can continue to 
follow the field, contributing to KE(v) even at optical frequencies 
(of about 5 * 1014 Hz). Thus the dependence of n on v is gov-
erned by the interplay of the various electric polarization mecha-
nisms contributing at the particular frequency. With this in mind, 
it is possible to derive an analytical expression for n(v) in terms 
of what’s happening within the medium on an atomic level.

The electron cloud of the atom is bound to the positive nucleus 
by an attractive electric force that sustains it in some sort of equi-
librium configuration. Without knowing much more about the de-
tails of all the internal atomic interactions, we can anticipate that, 
like other stable mechanical systems, which are not totally disrupt-
ed by small perturbations, a net force, F, must exist that returns the 
system to equilibrium. Moreover, we can reasonably expect that 
for very small displacements, x, from equilibrium (where F = 0), 
the force will be linear in x. In other words, a plot of F(x) versus x 
will cross the x-axis at the equilibrium point (x = 0) and will be a 
straight line very close on either side. Thus for small displacements 
it can be supposed that the restoring force has the form F = -kE 

x, 
where kE is a kind of elastic constant much like a spring constant. 
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directions.
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springs of differing stiffness (i.e., having different spring con-
stants). An electron that is displaced from equilibrium along a 
direction parallel to one set of “springs” will evidently oscillate 
with a different characteristic frequency than it would were it 
displaced in some other direction. 

As was pointed out previously, light propagates through a 
transparent substance by exciting the atoms within the  medium. 
The electrons are driven by the E$-field, and they reradiate; 
these secondary wavelets recombine, and the resultant  refracted 
wave moves on. The speed of the wave, and therefore the index 
of refraction, is determined by the difference between the 
 frequency of the E$-field and the natural frequency of the  atoms. 
An anisotropy in the binding force will be manifest in an 
 anisotropy in the refractive index. For example, if !-state light 
was to move through some hypothetical crystal so that it en-
countered electrons that could be represented by Fig. 8.17, its 
speed would be governed by the orientation of E$ . If E$  was 
parallel to the stiff springs, that is, in a direction of strong bind-
ing, here along the x-axis, the electron’s natural frequency 
would be high (proportional to the square root of the spring 
constant). In contrast, with E$  along the y-axis, where the bind-
ing force is weaker, the natural frequency would be somewhat 
lower. Keeping in mind our earlier discussion of dispersion and 
the n(v) curve of Fig. 3.41, the appropriate indices of refrac-
tion might look like those in Fig. 8.18. A material of this sort, 
which displays two different indices of refraction, is said to be 
birefringent.*

If the crystal is such that the frequency of the incident light ap-
pears in the vicinity of vd, in Fig. 8.18, it resides in the absorption 
band of ny(v). A crystal so illuminated will be strongly absorbing 
for one polarization direction (y) and transparent for the other (x). 
A birefringent material that absorbs one of the orthogonal !-states, 
passing on the other, is dichroic. Furthermore, suppose that the 
crystal symmetry is such that the binding forces in the y- and  
z-directions are identical; in other words, each of these springs has 
the same natural frequency and they are equally lossy. The x-axis 
now defines the direction of the optic axis. Inasmuch as a crystal 
can be represented by an array of these oriented anisotropic 
charged oscillators, the optic axis is actually a direction and not 
merely a single line. The model works rather nicely for dichroic 
crystals, since if light was to propagate along the optic axis (E$ in 
the yz-plane), it would be strongly absorbed, and if it moved 
 normal to that axis, it would emerge linearly polarized.

Often the natural frequencies of birefringent crystals are 
above the optical range, and they appear colorless. This is 
 represented by Fig. 8.18, where the incident light is now con-
sidered to have frequencies in the region of vb. Two different 
indices are  apparent, but absorption for either polarization is 
negligible. Equation (3.71) shows that n(v) varies inversely 
with the natural frequency. This means that a large effective 

Polaroid vectograph is a commercial material at one time 
 designed to be incorporated in a process for making three- 
dimensional photographs. The stuff never was successful at its 
intended purpose, but it can be used to produce some rather 
thought-provoking, if not mystifying, demonstrations. Vecto-
graph film is a water-clear plastic laminate of two sheets of poly-
vinyl alcohol arranged so that their stretch directions are at right 
angles to each other. In this form there are no conduction elec-
trons available, and the film is not a polarizer. Using an iodine 
solution, imagine that we draw an X on one side of the film and a 
Y overlapping it on the other. Under natural illumination the light 
passing through the X will be in a !-state perpendicular to the  
!-state light coming from the Y. In other words, the painted 
 regions form two crossed polarizers. They will be seen superim-
posed on each other. Now, if the vectograph is viewed through a 
linear polarizer that can be rotated, either the X, the Y, or both will 
be seen. Obviously, more imaginative drawings can be made. (One 
need only remember to make the one on the far side backward.)

8.4 Birefringence

Many crystalline substances (i.e., solids whose atoms are 
 arranged in some sort of regular repetitive array) are optically 
anisotropic. Their optical properties are not the same in all 
 directions within any given sample. The dichroic crystals of the 
previous section are but one special subgroup. We saw there 
that if the crystal’s lattice atoms were not completely symmetri-
cally arrayed, the binding forces on the electrons would be 
anisotropic. Earlier, in Fig. 3.38b we represented the isotropic 
oscillator using the simple mechanical model of a spherical 
charged shell bound by identical springs to a fixed point. This 
was fine for optically isotropic substances (amorphous solids, 
such as glass and plastic, are usually, but not always, isotropic). 
Figure 8.17 shows another charged shell, this one bound by 

+

x

Electron
cloud

z

y

Figure 8.17  Mechanical model depicting a negatively charged shell 
bound to a positive nucleus by pairs of springs having different stiffness.

*The word refringence used to be used instead of our present-day term refraction. 
It comes from the Latin refractus by way of an etymological route beginning with 
frangere, meaning to break.
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Electrodynamic theory
Remarks:

1) Conventional Magnet-Optics: Visible light

⟹

Magnetic moments cannot follow the alternating 
magnetic field of light wave

⟹

µr ≈ 1 B
M

Frequency of visible light (~ 500 THz) >> Larmor frequency (~ 100 GHz)

, only electric field component relevant

Nonetheless, all magnetic information is acounted for (see later) 

∾⟹ D = ϵ0ϵrE is relevant (not B = µ0 µr H)
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2) ϵr  is tensor 
⟹ D (= elect. field in material) must not be in direction of incoming E
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Once somehow momentarily disturbed, an electron bound in this 
way will oscillate about its equilibrium position with a natural or 
resonant frequency given by v0 = 1kE>me, where me is its 
mass. This is the oscillatory frequency of the undriven system and 
so F = -v2

0 me 

x. Using v0, which is observable, we can get rid of 
kE which was a figment of the spring model.

A material medium is envisioned as an assemblage, in vacu-
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small (by comparison to the wavelength of light) and close to its 
neighbors. When a lightwave impinges on such a medium, each 
atom can be thought of as a classical forced oscillator being 
driven by the time-varying electric field E(t) of the wave, which 
is assumed here to be applied in the x-direction. Figure 3.38b is 
a mechanical representation of just such an oscillator in an iso-
tropic medium where the negatively charged shell is fastened to 
a stationary positive nucleus by identical springs. Even under 
the illumination of bright sunlight, the amplitude of the oscilla-
tions will be no greater than about 10-17 m. The force (FE)  
exerted on an electron of charge qe by the E(t) field of a har-
monic wave of frequency v is of the form

 FE = qeE(t) = qeE0 cos vt (3.63)

Notice that if the driving force is in one direction the restoring 
force is in the opposite direction, which is why it has a minus 

In contrast, electrons have little inertia and can continue to 
follow the field, contributing to KE(v) even at optical frequencies 
(of about 5 * 1014 Hz). Thus the dependence of n on v is gov-
erned by the interplay of the various electric polarization mecha-
nisms contributing at the particular frequency. With this in mind, 
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by an attractive electric force that sustains it in some sort of equi-
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like other stable mechanical systems, which are not totally disrupt-
ed by small perturbations, a net force, F, must exist that returns the 
system to equilibrium. Moreover, we can reasonably expect that 
for very small displacements, x, from equilibrium (where F = 0), 
the force will be linear in x. In other words, a plot of F(x) versus x 
will cross the x-axis at the equilibrium point (x = 0) and will be a 
straight line very close on either side. Thus for small displacements 
it can be supposed that the restoring force has the form F = -kE 

x, 
where kE is a kind of elastic constant much like a spring constant. 
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Figure 3.37  Assorted molecules and their dipole moments ( p ). The 
dipole moment of an object is the charge on either end times the separa-
tion of those charges.
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Figure 3.38  (a) Distortion of the electron cloud in response to an applied 
E$-field. (b) The mechanical oscillator model for an isotropic medium—all 
the springs are the same, and the oscillator can vibrate equally in all  
directions.
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springs of differing stiffness (i.e., having different spring con-
stants). An electron that is displaced from equilibrium along a 
direction parallel to one set of “springs” will evidently oscillate 
with a different characteristic frequency than it would were it 
displaced in some other direction. 

As was pointed out previously, light propagates through a 
transparent substance by exciting the atoms within the  medium. 
The electrons are driven by the E$-field, and they reradiate; 
these secondary wavelets recombine, and the resultant  refracted 
wave moves on. The speed of the wave, and therefore the index 
of refraction, is determined by the difference between the 
 frequency of the E$-field and the natural frequency of the  atoms. 
An anisotropy in the binding force will be manifest in an 
 anisotropy in the refractive index. For example, if !-state light 
was to move through some hypothetical crystal so that it en-
countered electrons that could be represented by Fig. 8.17, its 
speed would be governed by the orientation of E$ . If E$  was 
parallel to the stiff springs, that is, in a direction of strong bind-
ing, here along the x-axis, the electron’s natural frequency 
would be high (proportional to the square root of the spring 
constant). In contrast, with E$  along the y-axis, where the bind-
ing force is weaker, the natural frequency would be somewhat 
lower. Keeping in mind our earlier discussion of dispersion and 
the n(v) curve of Fig. 3.41, the appropriate indices of refrac-
tion might look like those in Fig. 8.18. A material of this sort, 
which displays two different indices of refraction, is said to be 
birefringent.*

If the crystal is such that the frequency of the incident light ap-
pears in the vicinity of vd, in Fig. 8.18, it resides in the absorption 
band of ny(v). A crystal so illuminated will be strongly absorbing 
for one polarization direction (y) and transparent for the other (x). 
A birefringent material that absorbs one of the orthogonal !-states, 
passing on the other, is dichroic. Furthermore, suppose that the 
crystal symmetry is such that the binding forces in the y- and  
z-directions are identical; in other words, each of these springs has 
the same natural frequency and they are equally lossy. The x-axis 
now defines the direction of the optic axis. Inasmuch as a crystal 
can be represented by an array of these oriented anisotropic 
charged oscillators, the optic axis is actually a direction and not 
merely a single line. The model works rather nicely for dichroic 
crystals, since if light was to propagate along the optic axis (E$ in 
the yz-plane), it would be strongly absorbed, and if it moved 
 normal to that axis, it would emerge linearly polarized.

Often the natural frequencies of birefringent crystals are 
above the optical range, and they appear colorless. This is 
 represented by Fig. 8.18, where the incident light is now con-
sidered to have frequencies in the region of vb. Two different 
indices are  apparent, but absorption for either polarization is 
negligible. Equation (3.71) shows that n(v) varies inversely 
with the natural frequency. This means that a large effective 

Polaroid vectograph is a commercial material at one time 
 designed to be incorporated in a process for making three- 
dimensional photographs. The stuff never was successful at its 
intended purpose, but it can be used to produce some rather 
thought-provoking, if not mystifying, demonstrations. Vecto-
graph film is a water-clear plastic laminate of two sheets of poly-
vinyl alcohol arranged so that their stretch directions are at right 
angles to each other. In this form there are no conduction elec-
trons available, and the film is not a polarizer. Using an iodine 
solution, imagine that we draw an X on one side of the film and a 
Y overlapping it on the other. Under natural illumination the light 
passing through the X will be in a !-state perpendicular to the  
!-state light coming from the Y. In other words, the painted 
 regions form two crossed polarizers. They will be seen superim-
posed on each other. Now, if the vectograph is viewed through a 
linear polarizer that can be rotated, either the X, the Y, or both will 
be seen. Obviously, more imaginative drawings can be made. (One 
need only remember to make the one on the far side backward.)

8.4 Birefringence

Many crystalline substances (i.e., solids whose atoms are 
 arranged in some sort of regular repetitive array) are optically 
anisotropic. Their optical properties are not the same in all 
 directions within any given sample. The dichroic crystals of the 
previous section are but one special subgroup. We saw there 
that if the crystal’s lattice atoms were not completely symmetri-
cally arrayed, the binding forces on the electrons would be 
anisotropic. Earlier, in Fig. 3.38b we represented the isotropic 
oscillator using the simple mechanical model of a spherical 
charged shell bound by identical springs to a fixed point. This 
was fine for optically isotropic substances (amorphous solids, 
such as glass and plastic, are usually, but not always, isotropic). 
Figure 8.17 shows another charged shell, this one bound by 
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Figure 8.17  Mechanical model depicting a negatively charged shell 
bound to a positive nucleus by pairs of springs having different stiffness.

*The word refringence used to be used instead of our present-day term refraction. 
It comes from the Latin refractus by way of an etymological route beginning with 
frangere, meaning to break.
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Electrodynamic theory
Remarks:

1) Conventional Magnet-Optics: Visible light

⟹

Magnetic moments cannot follow the alternating 
magnetic field of light wave

⟹

µr ≈ 1 B
M

Frequency of visible light (~ 500 THz) >> Larmor frequency (~ 100 GHz)

, only electric field component relevant

Nonetheless, all magnetic information is acounted for (see later) 

∾⟹ D = ϵ0ϵrE is relevant (not B = µ0 µr H)

n (ω )   ≈  √ ϵr (ω )
3) ϵr and n are frequency-dependent 

⟹ propagation of wave is dispersive https://de.wikipedia.org/
wiki/Dispersion_(Physik)
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Electrodynamic theory

• Light is transverse electromagnetic wave, described by 
oscillating electric and magnetic fields 

• Electric field acts much stronger with matter ⟹ polarization 
direction of light wave is conventionally described by its E-
vector or by its D-vector in case of anisotropic media 

• All relations, derived by electrodynmaic theory, are valid for 
both, transparent (dielectric) media as well as absorbing 
(conductive) materials 

• Conductivity is simply taken into account by introducing complex 
dielectric constant and refraction index 

• Due to transverse nature: variation of E-vector is confined to 
plane perpendicular to k ⟹ express wave in 2D-basis with x-and 
y-directions as unit vectors …

k
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Equal amplitude and equal phase:  
⟹ linearly polarized wave along x-axis 

Equal amplitude, but different phase:  
⟹ linearly polarized wave along tilted axis 

Phase difference: caused by different 
refraction indices for partial waves 
⟹ different velocities 

In general, a material that  
displays two different indices  
of refraction is said to be birefringent 

Interpretation of polarized light: superposition of right- and left-handed circularly polarized waves
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Interpretation of polarized light: superposition of right- and left-handed circularly polarized waves

Same phase, but different amplitude:  
⟹ elliptically polarized wave along x-axis 

Amplitude difference:  
caused by different absorption of circular partial waves 
In general, a material that displays different absorption 
of partial waves is said to be dichroic 

Different phase and different amplitude:  
⟹ rotated elliptically polarized wave 
⟹ dichroism and birefringence
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of the detector (e.g., a photocell) will be unchanged because of 
the complete symmetry of unpolarized light. Keep in mind that 
we are dealing with waves, but because of the very high fre-
quency of light, our detector will measure only the incident ir-
radiance. Since the irradiance is proportional to the square of 
the amplitude of the electric field [Eq. (3.44)], we need only 
concern ourselves with that amplitude.

Now suppose that we introduce a second identical ideal lin-
ear polarizer, or analyzer, whose transmission axis is vertical 
(Fig. 8.14). If the amplitude of the electric field transmitted by 
the first polarizer is E01, only its component, E01 cos u, parallel 
to the transmission axis of the analyzer will be passed on to the 
detector (assuming no absorption). According to Eq. (3.44), the 
irradiance reaching the detector is then given by

 I(u) =
cP0

2
 E2

01 cos2 u (8.23)

The maximum irradiance, I(0 ) = cP0 E2
01>2 = I1, occurs when 

the angle u between the transmission axes of the analyzer and 
 polarizer is zero. Equation (8.23) can be rewritten as

 I(u) = I(0 ) cos2 u (8.24)

This is known as Malus’s Law, having first been published in 
1809 by Étienne Malus, military engineer and captain in the 
army of Napoleon.

8.2 Polarizers

Now that we have some idea of what polarized light is, the next 
logical step is to develop an understanding of the techniques 
used to generate, change, and manipulate it to fit our needs. An 
optical device whose input is natural light and whose output is 
some form of polarized light is a polarizer. For example, recall 
that one possible representation of unpolarized light is the su-
perposition of two equal-amplitude, incoherent, orthogonal  
!-states. An instrument that separates these two components, 
discarding one and passing on the other, is known as a linear 
polarizer. Depending on the form of the output, we could also 
have circular or elliptical polarizers. All these devices vary in 
effectiveness down to what might be called leaky or partial  
polarizers.

Polarizers come in many different configurations, but they 
are all based on one of four fundamental physical mechanisms: 
dichroism, or selective absorption; reflection; scattering; and 
birefringence, or double refraction. There is, however, one un-
derlying property that they all share: there must be some form of 
asymmetry associated with the process. This is certainly under-
standable, since the polarizer must somehow select a particular 
polarization state and discard all others. In truth, the asymmetry 
may be a subtle one related to the incident or viewing angle, but 
usually it is an obvious anisotropy in the material of the polar-
izer itself.

8.2.1 Malus’s Law

One matter needs to be settled before we go on: how do we 
determine experimentally whether or not a device is actually a 
linear polarizer?

By definition, if natural light is incident on an ideal linear 
polarizer, as in Fig. 8.13, only light in a !-state will be trans-
mitted. That !-state will have an orientation parallel to a spe-
cific direction called the transmission axis of the polarizer. 
Only the component of the optical field parallel to the transmis-
sion axis will pass through the device essentially unaffected. If 
the polarizer in Fig 8.13 is rotated about the z-axis, the reading 
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Figure 8.13  Natural light incident on a linear polarizer tilted at an angle 
u with respect to the vertical.

E01
E01

I0

I(0 )

I(u)

u

E02
= E

01
co

s u

E02

E02

E01

E01
cos u

u

Natural
light Polarizer

Analyzer Detector

Figure 8.14  A linear polarizer and  
analyzer—Malus’s Law. Natural light of 
irradiance I0 is incident on a linear polarizer 
tilted at an angle u with respect to the ver-
tical. The irradiance leaving the first linear 
polarizer is I1 = I(0). The irradiance leaving 
the second linear polarizer (which makes 
an angle u with the first) is I(u).
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of the detector (e.g., a photocell) will be unchanged because of 
the complete symmetry of unpolarized light. Keep in mind that 
we are dealing with waves, but because of the very high fre-
quency of light, our detector will measure only the incident ir-
radiance. Since the irradiance is proportional to the square of 
the amplitude of the electric field [Eq. (3.44)], we need only 
concern ourselves with that amplitude.

Now suppose that we introduce a second identical ideal lin-
ear polarizer, or analyzer, whose transmission axis is vertical 
(Fig. 8.14). If the amplitude of the electric field transmitted by 
the first polarizer is E01, only its component, E01 cos u, parallel 
to the transmission axis of the analyzer will be passed on to the 
detector (assuming no absorption). According to Eq. (3.44), the 
irradiance reaching the detector is then given by

 I(u) =
cP0

2
 E2

01 cos2 u (8.23)

The maximum irradiance, I(0 ) = cP0 E2
01>2 = I1, occurs when 

the angle u between the transmission axes of the analyzer and 
 polarizer is zero. Equation (8.23) can be rewritten as

 I(u) = I(0 ) cos2 u (8.24)

This is known as Malus’s Law, having first been published in 
1809 by Étienne Malus, military engineer and captain in the 
army of Napoleon.

8.2 Polarizers

Now that we have some idea of what polarized light is, the next 
logical step is to develop an understanding of the techniques 
used to generate, change, and manipulate it to fit our needs. An 
optical device whose input is natural light and whose output is 
some form of polarized light is a polarizer. For example, recall 
that one possible representation of unpolarized light is the su-
perposition of two equal-amplitude, incoherent, orthogonal  
!-states. An instrument that separates these two components, 
discarding one and passing on the other, is known as a linear 
polarizer. Depending on the form of the output, we could also 
have circular or elliptical polarizers. All these devices vary in 
effectiveness down to what might be called leaky or partial  
polarizers.

Polarizers come in many different configurations, but they 
are all based on one of four fundamental physical mechanisms: 
dichroism, or selective absorption; reflection; scattering; and 
birefringence, or double refraction. There is, however, one un-
derlying property that they all share: there must be some form of 
asymmetry associated with the process. This is certainly under-
standable, since the polarizer must somehow select a particular 
polarization state and discard all others. In truth, the asymmetry 
may be a subtle one related to the incident or viewing angle, but 
usually it is an obvious anisotropy in the material of the polar-
izer itself.

8.2.1 Malus’s Law

One matter needs to be settled before we go on: how do we 
determine experimentally whether or not a device is actually a 
linear polarizer?

By definition, if natural light is incident on an ideal linear 
polarizer, as in Fig. 8.13, only light in a !-state will be trans-
mitted. That !-state will have an orientation parallel to a spe-
cific direction called the transmission axis of the polarizer. 
Only the component of the optical field parallel to the transmis-
sion axis will pass through the device essentially unaffected. If 
the polarizer in Fig 8.13 is rotated about the z-axis, the reading 
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of the detector (e.g., a photocell) will be unchanged because of 
the complete symmetry of unpolarized light. Keep in mind that 
we are dealing with waves, but because of the very high fre-
quency of light, our detector will measure only the incident ir-
radiance. Since the irradiance is proportional to the square of 
the amplitude of the electric field [Eq. (3.44)], we need only 
concern ourselves with that amplitude.

Now suppose that we introduce a second identical ideal lin-
ear polarizer, or analyzer, whose transmission axis is vertical 
(Fig. 8.14). If the amplitude of the electric field transmitted by 
the first polarizer is E01, only its component, E01 cos u, parallel 
to the transmission axis of the analyzer will be passed on to the 
detector (assuming no absorption). According to Eq. (3.44), the 
irradiance reaching the detector is then given by

 I(u) =
cP0

2
 E2

01 cos2 u (8.23)

The maximum irradiance, I(0 ) = cP0 E2
01>2 = I1, occurs when 

the angle u between the transmission axes of the analyzer and 
 polarizer is zero. Equation (8.23) can be rewritten as

 I(u) = I(0 ) cos2 u (8.24)

This is known as Malus’s Law, having first been published in 
1809 by Étienne Malus, military engineer and captain in the 
army of Napoleon.

8.2 Polarizers

Now that we have some idea of what polarized light is, the next 
logical step is to develop an understanding of the techniques 
used to generate, change, and manipulate it to fit our needs. An 
optical device whose input is natural light and whose output is 
some form of polarized light is a polarizer. For example, recall 
that one possible representation of unpolarized light is the su-
perposition of two equal-amplitude, incoherent, orthogonal  
!-states. An instrument that separates these two components, 
discarding one and passing on the other, is known as a linear 
polarizer. Depending on the form of the output, we could also 
have circular or elliptical polarizers. All these devices vary in 
effectiveness down to what might be called leaky or partial  
polarizers.

Polarizers come in many different configurations, but they 
are all based on one of four fundamental physical mechanisms: 
dichroism, or selective absorption; reflection; scattering; and 
birefringence, or double refraction. There is, however, one un-
derlying property that they all share: there must be some form of 
asymmetry associated with the process. This is certainly under-
standable, since the polarizer must somehow select a particular 
polarization state and discard all others. In truth, the asymmetry 
may be a subtle one related to the incident or viewing angle, but 
usually it is an obvious anisotropy in the material of the polar-
izer itself.

8.2.1 Malus’s Law

One matter needs to be settled before we go on: how do we 
determine experimentally whether or not a device is actually a 
linear polarizer?

By definition, if natural light is incident on an ideal linear 
polarizer, as in Fig. 8.13, only light in a !-state will be trans-
mitted. That !-state will have an orientation parallel to a spe-
cific direction called the transmission axis of the polarizer. 
Only the component of the optical field parallel to the transmis-
sion axis will pass through the device essentially unaffected. If 
the polarizer in Fig 8.13 is rotated about the z-axis, the reading 
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Figure 8.13  Natural light incident on a linear polarizer tilted at an angle 
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Components for magneto-optical experiment
Linear polarizer:

Example: wire-grid polarizer

• grid of parallel conducting wires 
• resolve E-field into 2 orthogonal components (∥ and ⊥ to wires) 
•Ey drives conduction electrons along wire length ⟹ Ey-component is reflected back 

• little electron motion along Ex ⟹ Ex is unaltered and goes trough 
⟹ Transmission axis ⊥ to wires 

• Similar principle for Absorptive Polarizers (stretched plastic foils with aligned molecule chains)
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and so

I2 = 250 W>m2

The light emerges linearly polarized, oscillating at -80.0° in 
the second and fourth quadrants. Notice that the order of 
 passage through the polarizers is crucial.

8.3 Dichroism

In its broadest sense, the term dichroism refers to the selective 
absorption of one of the two orthogonal "-state components of 
an incident beam. The dichroic polarizer itself is physically 
anisotropic, producing a strong asymmetrical or preferential 
 absorption of one field component while being essentially 
transparent to the other.

8.3.1 The Wire-Grid Polarizer

The simplest device of this sort is a grid of parallel conducting 
wires, as shown in Fig. 8.15. Imagine that an unpolarized elec-
tromagnetic wave impinges on the grid from the left. The  electric 
field can be resolved into the usual two orthogonal components, 
in this case, one chosen to be parallel to the wires and the 
 other perpendicular to them. The y-component of the field drives 
the conduction electrons along the length of each wire, thus 
 generating a current. The electrons in turn collide with lattice 
atoms, imparting energy to them and thereby heating the 
wires  ( joule heat). In this manner energy is transferred from 
the field to the grid. In addition, electrons accelerating along the 
 y-axis radiate in both the forward and backward directions. As 
should be expected, the incident wave tends to be canceled by 
the wave reradiated in the forward direction, resulting in little or 
no transmission of the y-component of the field. The radiation 
propagating in the backward direction simply appears as a 
 reflected wave. In contrast, the electrons are not free to move 
very far in the z-direction, and the corresponding field  component 
of the wave is essentially unaltered as it propagates through the 

Keep in mind that I(0 ) is the irradiance arriving on the ana-
lyzer. Thus, if 1000 W>m2  of natural light impinges on the first 
linear polarizer in Fig. 8.14, assuming that polarizer is ideal, it 
will pass 500 W>m2 of linear light on to the analyzer; that’s  
I(0 ). Depending on u, we can use Eq. (8.24) to calculate the 
transmitted irradiance I(u). Alternatively, suppose the incident 
beam is 1000 W>m2  of linear light parallel to the transmission 
axis of the first polarizer. In that case I(0 ) = 1000 W>m2.

Observe that I(9 0 °) = 0. This arises from the fact that the 
electric field that passed through the polarizer is perpendicular 
to the transmission axis of the analyzer (the two devices so 
 arranged are said to be crossed ). The field is therefore parallel 
to what is called the extinction axis of the analyzer and has no 
component along the transmission axis. We can use the setup of 
Fig. 8.14 along with Malus’s Law to determine whether a 
 particular device is a linear polarizer. 

As we’ll see presently, the most common kind of linear polar-
izer used today is the Polaroid filter. And although you certainly 
can confirm Malus’s Law with two ordinary Polaroids, you’ll 
have to be careful to use light in the range from ≈450 nm to  
≈ 650 nm. Ordinary Polaroids are not very good at polarizing IR.

EXAMPLE 8.3

The electric field of a 1000 W>m2 linearly polarized lightbeam 
oscillates at +10.0° from the vertical in the first and third quad-
rants. The beam passes perpendicularly through two consecu-
tive ideal linear polarizers. The transmission axis of the first is 
at -80.0° from the vertical in the second and fourth quadrants. 
And that of the second is at +55.0° from the vertical in the 
first and third quadrants. (a) How much light emerges from the 
second polarizer? (b) Now interchange the two polarizers with-
out altering their orientations and determine the amount of light 
that emerges. Explain your answers.

SOLUTION 

(a) The incident light (at +10°) is perpendicular to the 
transmission axis of the first polarizer (at -80°) and so no light 
leaves it and no light leaves the second polarizer. (b) With the 
polarizers interchanged, the light now oscillates at 45.0° to the 
transmission axis of the first polarizer, which, via Malus’s Law, 
passes (I1) where

I(u) = I(0 ) cos2u

and so here

I1 = (1000 W>m2) cos2 45.0°

Hence

I1 = 500 W>m2

This light, oscillating at +55.0°, makes an angle of 45.0° with 
the transmission axis of the new second polarizer. Therefore the 
irradiance emerging from it (I2) is

I2 = (500 W>m2)  cos2 45.0°

E!

y

z

Figure 8.15  A wire-grid polarizer. The grid eliminates the vertical compo-
nent (i.e., the one parallel to the wires) of the E-field and passes the hori-
zontal component.
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Example: 
Kerr contrast 

m

Malus’ law: I (Θ) = I (Θ)cos2Θ
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of the detector (e.g., a photocell) will be unchanged because of 
the complete symmetry of unpolarized light. Keep in mind that 
we are dealing with waves, but because of the very high fre-
quency of light, our detector will measure only the incident ir-
radiance. Since the irradiance is proportional to the square of 
the amplitude of the electric field [Eq. (3.44)], we need only 
concern ourselves with that amplitude.

Now suppose that we introduce a second identical ideal lin-
ear polarizer, or analyzer, whose transmission axis is vertical 
(Fig. 8.14). If the amplitude of the electric field transmitted by 
the first polarizer is E01, only its component, E01 cos u, parallel 
to the transmission axis of the analyzer will be passed on to the 
detector (assuming no absorption). According to Eq. (3.44), the 
irradiance reaching the detector is then given by

 I(u) =
cP0

2
 E2

01 cos2 u (8.23)

The maximum irradiance, I(0 ) = cP0 E2
01>2 = I1, occurs when 

the angle u between the transmission axes of the analyzer and 
 polarizer is zero. Equation (8.23) can be rewritten as

 I(u) = I(0 ) cos2 u (8.24)

This is known as Malus’s Law, having first been published in 
1809 by Étienne Malus, military engineer and captain in the 
army of Napoleon.

8.2 Polarizers

Now that we have some idea of what polarized light is, the next 
logical step is to develop an understanding of the techniques 
used to generate, change, and manipulate it to fit our needs. An 
optical device whose input is natural light and whose output is 
some form of polarized light is a polarizer. For example, recall 
that one possible representation of unpolarized light is the su-
perposition of two equal-amplitude, incoherent, orthogonal  
!-states. An instrument that separates these two components, 
discarding one and passing on the other, is known as a linear 
polarizer. Depending on the form of the output, we could also 
have circular or elliptical polarizers. All these devices vary in 
effectiveness down to what might be called leaky or partial  
polarizers.

Polarizers come in many different configurations, but they 
are all based on one of four fundamental physical mechanisms: 
dichroism, or selective absorption; reflection; scattering; and 
birefringence, or double refraction. There is, however, one un-
derlying property that they all share: there must be some form of 
asymmetry associated with the process. This is certainly under-
standable, since the polarizer must somehow select a particular 
polarization state and discard all others. In truth, the asymmetry 
may be a subtle one related to the incident or viewing angle, but 
usually it is an obvious anisotropy in the material of the polar-
izer itself.

8.2.1 Malus’s Law

One matter needs to be settled before we go on: how do we 
determine experimentally whether or not a device is actually a 
linear polarizer?

By definition, if natural light is incident on an ideal linear 
polarizer, as in Fig. 8.13, only light in a !-state will be trans-
mitted. That !-state will have an orientation parallel to a spe-
cific direction called the transmission axis of the polarizer. 
Only the component of the optical field parallel to the transmis-
sion axis will pass through the device essentially unaffected. If 
the polarizer in Fig 8.13 is rotated about the z-axis, the reading 
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Figure 8.13  Natural light incident on a linear polarizer tilted at an angle 
u with respect to the vertical.
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tical. The irradiance leaving the first linear 
polarizer is I1 = I(0). The irradiance leaving 
the second linear polarizer (which makes 
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Compensator

Fast 
axis

Elliptically 
polarized 

light

Linearly 
polarized 

light

Sample

Example: Quarter-wave plate

E

k

Quarter-wave 
plate

Linearly 
polarized 

light

Circularly 
polarized 

light

Fast axis

Slow axis

π
2

Θ • birefringent, uniaxial crystal (like quartz, mica) 
• incident light is decomposed into 2 rays that are 

mutually perpendicularly polarized (ordinary and 
extra-ordinary rays) 

• both rays feel different refraction indices              
⟹  fast and slow axes 

• retardation R (Θ) = —sin(2Θ) 
• example: Θ = 45° ⟹ R (Θ) =  90° ⟹ circular light 
• inversely: any phase shift can be linearized           

or otherwise adjusted
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Description by Jones matrix algebra

Quarter-wave plate:

𝜞comp = ( )cosαcomp sinαcomp

–sinαcomp cosαcomp( )cos(–αcomp) sin(–αcomp)
–sin(–αcomp) cos(–αcomp) ( )e

iπ
4

– —

e
iπ
4

+ —

0

0
Jones matrix 
of retartation  

plate

Coordinate transformation 
from xy-coordinates to  
eo-coordinates of plate

Coordinate 
transformation  

back to xy-coordinates

) = 𝜞comp 𝜞an(Ex
‚

Ey
‚) (Ex

Ey

Emerging 
light

Incident 
light

Jones matrices 
of optical elements

𝜞an = ( )cosαap sinαap

–sinαap cosαap( )0
0
1

1( )cosαap –sinαap

sinαap cosαap

Analyser:

x Polarizer
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y

z
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Compensator
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axis
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anα
Slow 
axis

x

x

x

•

kapα polα anα= + 90° +
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Description by Jones matrix algebra

) = 𝜞comp 𝜞an(Ex
‚

Ey
‚) (Ex

Ey

Jones matrices 
of optical elements

Incident light λ/4 plate Analyser

left  
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Here R and T are the reflection and transmission matrices, respectively, and
the matrix elements rij and tij are the reflection and transmission coe�cients
for the electrical field amplitudes. The first index, i, describes the reflected or
transmitted component, the second index, j, is for the corresponding compo-
nents of the incident light. Expressions for the diagonal coe�cients are given
in the next section. The transfer matrices contain the complete information
about the optical properties of a sample including the magneto-optical prop-
erties. We will return to such description in Sect. 2.4A.

2.2.5 Reflection and Transmission of Polarized Light

In the previous sections we have seen that any polarization state of an elec-
tromagnetic wave, propagating along the z-axis, can be treated by resolving
its E-field into components along the x- and y-axes and by discussing these
constituents separately. In polarization microscopy with a chosen angle of in-
cidence it is convenient to switch to the (s, p, k)-coordinate system (Fig. 2.3)
and treat an electromagnetic wave in terms of the components parallel (p)
and perpendicular (s) to the plane of incidence. Figure 2.9a illustrates the
two cases.

In Sect. 2.3 we will describe how the light propagates within a magnetic
sample and how it is influenced by the magnetization. This will finally lead to
the magneto-optical e↵ects. Before the light can propagate within the sample,
however, it has to enter the material and, after some interaction, leave it again
for detection. Although the physical properties (characterized by the dielectric
tensor ✏ and the magnetic permeability tensor µ) may change abruptly across
the interface, there exist continuity relationships for some of the components
of the field vectors at the boundary, which can be directly derived from the
Maxwell equations [?]. These boundary conditions require that the tangential
components of the electric field E are always continuous across the interface.
In other words, the total tangential component of E on one side (consisting
of the incident and reflected amplitudes E

in and E
refl, respectively — see

Fig. 2.9) must be equal to that on the other side (the transmitted amplitude
E

trans). The same condition applies to the magnetic field H. For the dielec-
tric displacement vector D and for the magnetic flux density B the normal

components are continuous across the interface.
From the boundary conditions of electromagnetic theory the reflection and

transmission coe�cients for the two principal cases of p- and s-polarization can
be derived [?, ?]. For optically isotropic media (i.e. ignoring magneto-optical
e↵ects or other optical activity for the moment) only the diagonal terms, rpp
and rss, appear in the reflection and transmission matrices (2.51). Pure s- and
pure p-waves therefore remain linearly polarized on reflection with the plane
of polarization being along the same direction as that of the incident light.
The reflection coe�cients for the two cases are given by

r
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✓
E

refl

Ein

◆

p

=
ni cos#j � nj cos#i

ni cos#j + nj cos#i
= |rpp| exp(i�rp)
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Fig. 2.9. (a) The two standard situations of (s)- and (p) polarized plane waves
incident on the boundary between two homogenous and isotropic media. The waves
are represented by their electrical field, where Ein, Erefl and Etrans are the incident,
reflected and transmitted light amplitudes, respectively. On the left, the E-field of
the incoming wave is parallel to the plane-of-incidence (the yz-plane), on the right it
is normal. The component of E normal to the plane of incidence undergoes a phase
shift of 180� upon reflection when the incident medium has a lower refraction index
than the transmitting medium. Under this condition no phase shift occurs for field
components parallel to the incidence plane (note that two fields in the incidence
plane are in-phase if their z-components are parallel). (b) Real and imaginary parts
of the wave vector in an absorbing material, illustrating the di↵erence between the
directions of phase propagation and amplitude damping
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=
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ni cos#i + nj cos#j
= |rss| exp(i�rs) , (2.52)

and the transmission coe�cients by

t
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t
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These so-called Fresnel equations can be generally applied to dielectric as
well as absorbing materials (remember: for the latter the refraction index and
refraction angle of the absorbing medium have to be taken complex. A complex
angle has no simple physical meaning, though). Index i represents the layer
from which the light originates. This can be a ferromagnetic or dielectric layer
in a multilayer system, or an environment like air or immersion oil. The light
then enters (and is reflected from) from layer j that is in direct contact to layer
i. Each layer is characterized by its (in general complex) index of refraction,
ni or nj . The constants r

ij
pp and r

ij
ss are the amplitude reflection coe�cients

from layer i to layer j for parallel and perpendicular polarization, and t
ij
pp
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is normal. The component of E normal to the plane of incidence undergoes a phase
shift of 180� upon reflection when the incident medium has a lower refraction index
than the transmitting medium. Under this condition no phase shift occurs for field
components parallel to the incidence plane (note that two fields in the incidence
plane are in-phase if their z-components are parallel). (b) Real and imaginary parts
of the wave vector in an absorbing material, illustrating the di↵erence between the
directions of phase propagation and amplitude damping
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of the wave vector in an absorbing material, illustrating the di↵erence between the
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Fig. 2.9. (a) The two standard situations of (s)- and (p) polarized plane waves
incident on the boundary between two homogenous and isotropic media. The waves
are represented by their electrical field, where Ein, Erefl and Etrans are the incident,
reflected and transmitted light amplitudes, respectively. On the left, the E-field of
the incoming wave is parallel to the plane-of-incidence (the yz-plane), on the right it
is normal. The component of E normal to the plane of incidence undergoes a phase
shift of 180� upon reflection when the incident medium has a lower refraction index
than the transmitting medium. Under this condition no phase shift occurs for field
components parallel to the incidence plane (note that two fields in the incidence
plane are in-phase if their z-components are parallel). (b) Real and imaginary parts
of the wave vector in an absorbing material, illustrating the di↵erence between the
directions of phase propagation and amplitude damping
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incident on the boundary between two homogenous and isotropic media. The waves
are represented by their electrical field, where Ein, Erefl and Etrans are the incident,
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the incoming wave is parallel to the plane-of-incidence (the yz-plane), on the right it
is normal. The component of E normal to the plane of incidence undergoes a phase
shift of 180� upon reflection when the incident medium has a lower refraction index
than the transmitting medium. Under this condition no phase shift occurs for field
components parallel to the incidence plane (note that two fields in the incidence
plane are in-phase if their z-components are parallel). (b) Real and imaginary parts
of the wave vector in an absorbing material, illustrating the di↵erence between the
directions of phase propagation and amplitude damping
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are represented by their electrical field, where Ein, Erefl and Etrans are the incident,
reflected and transmitted light amplitudes, respectively. On the left, the E-field of
the incoming wave is parallel to the plane-of-incidence (the yz-plane), on the right it
is normal. The component of E normal to the plane of incidence undergoes a phase
shift of 180� upon reflection when the incident medium has a lower refraction index
than the transmitting medium. Under this condition no phase shift occurs for field
components parallel to the incidence plane (note that two fields in the incidence
plane are in-phase if their z-components are parallel). (b) Real and imaginary parts
of the wave vector in an absorbing material, illustrating the di↵erence between the
directions of phase propagation and amplitude damping
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These so-called Fresnel equations can be generally applied to dielectric as
well as absorbing materials (remember: for the latter the refraction index and
refraction angle of the absorbing medium have to be taken complex. A complex
angle has no simple physical meaning, though). Index i represents the layer
from which the light originates. This can be a ferromagnetic or dielectric layer
in a multilayer system, or an environment like air or immersion oil. The light
then enters (and is reflected from) from layer j that is in direct contact to layer
i. Each layer is characterized by its (in general complex) index of refraction,
ni or nj . The constants r

ij
pp and r

ij
ss are the amplitude reflection coe�cients

from layer i to layer j for parallel and perpendicular polarization, and t
ij
pp
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[164, 166]. For optically isotropic media (i.e. ignoring magneto-optical effects or
other optical activity for the moment) only the diagonal terms, rpp and rss, appear in
the reflection and transmission matrices (2.51). Pure s- and pure p-waves therefore
remain linearly polarized on reflection with the plane of polarization being along the
same direction as that of the incident light. The reflection coefficients for the two
cases are given by

r ij
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E in

)

p
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ni cos ϑj + nj cos ϑi
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and the transmission coefficients by
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ni cos ϑi + nj cos ϑj
= |tss| exp(iδts). (2.53)

These so-called Fresnel equations can be generally applied to dielectric as well as
absorbing materials (remember: for the latter the refraction index and refraction
angle of the absorbing medium have to be taken complex. A complex angle has no
simple physical meaning, though). Index i represents the layer from which the light
originates. This can be a ferromagnetic or dielectric layer in a multilayer system,
or an environment like air or immersion oil. The light then enters (and is reflected
from) from layer j that is in direct contact to layer i . Each layer is characterized by
its (in general complex) index of refraction, ni or nj. The constants r ij

pp and r ij
ss are the

amplitude reflection coefficients from layer i to layer j for parallel and perpendicular
polarization, and t i j

pp and t i j
ss are the corresponding transmission coefficients from

layer i to layer j. These coefficients describe the fraction of wave amplitude that is
reflected and transmitted, respectively, by passing the interface between layer i and j.
The coefficient t i j

pp, for instance, represents the wave fraction transmitted on entering
layer j from layer i , and t ji

pp represents the fraction transmitted when a wave leaves
layer j again across the same interface. The angles of incidence in layer i and j, ϑi
respectively ϑj, are related to the refraction indices by Snell’s law:

ni sin ϑi = nj sin ϑj. (2.54)

The absolutes of the reflection and transmission coefficients in (2.52, 2.53) spec-
ify the amplitude changes and the δ’s the associated phase shifts on reflection or
transmission. For absorbing materials (metals), s- and p-polarized light experiences
different phase shifts on reflection (compare the two cases in Fig. 2.9a). The light is
therefore reflected elliptically when the incident light has both, s- and p-components.
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1. Optical Basics

Summary:

Maxwell and material equations

General wave equation, 
solutions of which describe propagable light waves in medium

All material-specific properties of light propagation  
(including absorption, dispersion, optical anisotropy and optical activity, 

as well as the magneto-optical effects)  
are completely included in the complex dielectric ε-tensor

D =∊E
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2. Magneto-Optical Effects – 2.1 Dielectric Tensor

2. 
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50 2 Magneto-Optical E↵ects

The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Faraday and Kerr effects (Intrinsic) Voigt effect

For materials with cubic crystal symmetry:

and      : complex (i.e.                             etc.) and frequency-dependent parameters
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For isotropic and amorphous materials B1 and B2 are identical. The constants
QV, B1 and B2 are generally frequency-dependent and complex numbers (i.e.
QV = Q

0
V + iQ00

V etc.), for which the real part is usually dominating. Exact
numbers for the constants are insu�ciently known — the absolute values for
QV are of the order of 10�2 and for B around 10�4.

2.3.2 Solutions

The system of linear equations (2.16) or (2.18), derived from the general wave
equation (2.6), has non-trivial solutions if the determinant of its coe�cient ma-
trix vanishes. This leads to a characteristic equation for the components of the
wave vector as a function of the elements of the dielectric tensor, which finally
defines the “allowed” propagation directions (eigenmodes) of the light waves
in the magnetic medium. Due to the degree of freedom of a selectable light
incidence, the characteristic equation is initially not unique. For a selected
direction of incidence, however, the lateral components of the wave vector
are defined by Snell’s refraction law (2.54). For the remaining component of
the wave vector an equation of fourth order is obtained in the most general
case. The associated four (complex) solutions describe generalized elliptically
polarized waves, for which the directions of phase propagation and ampli-
tude damping do not coincide in case of oblique incidence, i.e. inhomogeneous
waves (see Fig. 2.9b). Always, however, two waves can be assigned to forwardly
propagating light and two to retrogradely advancing light (Fig. 2.10). For light
incidence obliquely on the surface of the medium rather annoying algebraic
equations are obtained due to the inhomogenous character of the waves (see
Sect. 2.2.5F). For simple geometries, however, the characteristic equations and
associated eigenmodes can be easily specified. This is presented here exem-
plarily for the so-called “polar” (Faraday or Kerr) e↵ect, where a homogenous
wave (real and imaginary part of k parallel to each other) is propagating along
the direction of M , and for the quadratic e↵ect (Voigt e↵ect) occurring when
a homogeneous wave propagates at right angles to M . For a thorough review
of such solutions, also for other geometries, see Vǐsňovský’s book [?].
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Fig. 2.10. Illustration of the eigenmodes
of the light wave in a magnetized medium
for a given wave vector kin. Four waves
with di↵erent wave vectors add to the
electric field at the boundary between the
non-magnetic and magnetic media. The
two retrograde waves (3 and 4) would not
occur in case of a single boundary, but
have to be considered in films and multi-
layers. (After [?])
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matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏
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active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
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33). The light would then interact with the matter with-
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the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:
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The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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For isotropic and amorphous materials B1 and B2 are identical. The constants
QV, B1 and B2 are generally frequency-dependent and complex numbers (i.e.
QV = Q

0
V + iQ00

V etc.), for which the real part is usually dominating. Exact
numbers for the constants are insu�ciently known — the absolute values for
QV are of the order of 10�2 and for B around 10�4.

2.3.2 Solutions

The system of linear equations (2.16) or (2.18), derived from the general wave
equation (2.6), has non-trivial solutions if the determinant of its coe�cient ma-
trix vanishes. This leads to a characteristic equation for the components of the
wave vector as a function of the elements of the dielectric tensor, which finally
defines the “allowed” propagation directions (eigenmodes) of the light waves
in the magnetic medium. Due to the degree of freedom of a selectable light
incidence, the characteristic equation is initially not unique. For a selected
direction of incidence, however, the lateral components of the wave vector
are defined by Snell’s refraction law (2.54). For the remaining component of
the wave vector an equation of fourth order is obtained in the most general
case. The associated four (complex) solutions describe generalized elliptically
polarized waves, for which the directions of phase propagation and ampli-
tude damping do not coincide in case of oblique incidence, i.e. inhomogeneous
waves (see Fig. 2.9b). Always, however, two waves can be assigned to forwardly
propagating light and two to retrogradely advancing light (Fig. 2.10). For light
incidence obliquely on the surface of the medium rather annoying algebraic
equations are obtained due to the inhomogenous character of the waves (see
Sect. 2.2.5F). For simple geometries, however, the characteristic equations and
associated eigenmodes can be easily specified. This is presented here exem-
plarily for the so-called “polar” (Faraday or Kerr) e↵ect, where a homogenous
wave (real and imaginary part of k parallel to each other) is propagating along
the direction of M , and for the quadratic e↵ect (Voigt e↵ect) occurring when
a homogeneous wave propagates at right angles to M . For a thorough review
of such solutions, also for other geometries, see Vǐsňovský’s book [?].
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Fig. 2.10. Illustration of the eigenmodes
of the light wave in a magnetized medium
for a given wave vector kin. Four waves
with di↵erent wave vectors add to the
electric field at the boundary between the
non-magnetic and magnetic media. The
two retrograde waves (3 and 4) would not
occur in case of a single boundary, but
have to be considered in films and multi-
layers. (After [?])
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:
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The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
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9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)

50 2 Magneto-Optical E↵ects

The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso

0

@
1 �iQVm3 iQVm2

iQVm3 1 �iQVm1

�iQVm2 iQVm1 1

1

A+

+

0

@
B1m

2
1 B2m1m2 B2m1m3

B2m1m2 B1m
2
2 B2m2m3

B2m1m3 B2m2m3 B1m
2
3

1

A . (2.58)
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
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9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
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For isotropic and amorphous materials B1 and B2 are identical. The constants
QV, B1 and B2 are generally frequency-dependent and complex numbers (i.e.
QV = Q

0
V + iQ00

V etc.), for which the real part is usually dominating. Exact
numbers for the constants are insu�ciently known — the absolute values for
QV are of the order of 10�2 and for B around 10�4.

2.3.2 Solutions

The system of linear equations (2.16) or (2.18), derived from the general wave
equation (2.6), has non-trivial solutions if the determinant of its coe�cient ma-
trix vanishes. This leads to a characteristic equation for the components of the
wave vector as a function of the elements of the dielectric tensor, which finally
defines the “allowed” propagation directions (eigenmodes) of the light waves
in the magnetic medium. Due to the degree of freedom of a selectable light
incidence, the characteristic equation is initially not unique. For a selected
direction of incidence, however, the lateral components of the wave vector
are defined by Snell’s refraction law (2.54). For the remaining component of
the wave vector an equation of fourth order is obtained in the most general
case. The associated four (complex) solutions describe generalized elliptically
polarized waves, for which the directions of phase propagation and ampli-
tude damping do not coincide in case of oblique incidence, i.e. inhomogeneous
waves (see Fig. 2.9b). Always, however, two waves can be assigned to forwardly
propagating light and two to retrogradely advancing light (Fig. 2.10). For light
incidence obliquely on the surface of the medium rather annoying algebraic
equations are obtained due to the inhomogenous character of the waves (see
Sect. 2.2.5F). For simple geometries, however, the characteristic equations and
associated eigenmodes can be easily specified. This is presented here exem-
plarily for the so-called “polar” (Faraday or Kerr) e↵ect, where a homogenous
wave (real and imaginary part of k parallel to each other) is propagating along
the direction of M , and for the quadratic e↵ect (Voigt e↵ect) occurring when
a homogeneous wave propagates at right angles to M . For a thorough review
of such solutions, also for other geometries, see Vǐsňovský’s book [?].
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Fig. 2.10. Illustration of the eigenmodes
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for a given wave vector kin. Four waves
with di↵erent wave vectors add to the
electric field at the boundary between the
non-magnetic and magnetic media. The
two retrograde waves (3 and 4) would not
occur in case of a single boundary, but
have to be considered in films and multi-
layers. (After [?])
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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of the illuminating plane light wave with the induced dielectric displacement
vector D. We will present this tensor for the magneto-optical Faraday-, Kerr-,
and Voigt e↵ects in Sect. 2.3A. In isotropic media all tensors reduce to scalars.

With the material and Maxwell equations a general wave equation for the
E field is obtained by taking the curl of (2.1c), the time derivative of (2.1d)
and by eliminating H [?, ?, ?]:

r⇥ (r⇥E) = r⇥ (�Ḃ) = �µ0µ(r⇥ Ḣ)

= �µ0µ
@

@t
(j + Ḋ) = �µ0µ(�

@E

@t
+ ✏0✏

@
2
E

@t2
) . (2.5)

In the case of dielectric media the term proportional to ✏ is of importance,
whereas for conducting materials the term proportional to � becomes signifi-
cant. The vector triple product in (2.5) can be simplified by using the operator
identity r⇥ (r⇥E) = r(r ·E)� (r ·r)E, arriving at the wave equation:

r(r ·E)�r2
E + µ0µ(�

@E

@t
+ ✏0✏

@
2
E

@t2
) = 0 . (2.6)

The wave equation can be solved by assuming a (homogeneous) plane wave3

solution for the electromagnetic wave, which is harmonic both in time, t, and
position, r:

E = E
0 exp[i(k · r � !t)] . (2.7)

The frequency of light and the amplitude of the electric field are represented
by ! and E

0, respectively. The propagation vector k defines the direction of
the planes of constant phase for the light wave. The phase notation (k ·r�!t)
with positive spatial-dependent and negative time-dependent parts represents
a wave that propagates in the direction of the wave vector with a positive
phase velocity. Due to the relations given above, also the fields D and B are
described by plane waves.

The magnitude |k|, the wave propagation number, is connected to the
index of refraction n by

|k| = nk0 (2.8)

with

k0 = !/c0 = 2⇡/�0 . (2.9)

Here k0 is the wave propagation number in vacuum with �0 being the vacuum
wavelength of the (assumed) monochromatic, illuminating light. Analogous to
(2.9), the wave propagation number in any material is described by |k| = !/v

3 For linearly- (or plane)-polarized light the orientation of the electric field is con-
stant, while its magnitude and sign vary in time
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(j + Ḋ) = �µ0µ(�

@E

@t
+ ✏0✏

@
2
E

@t2
) . (2.5)

In the case of dielectric media the term proportional to ✏ is of importance,
whereas for conducting materials the term proportional to � becomes signifi-
cant. The vector triple product in (2.5) can be simplified by using the operator
identity r⇥ (r⇥E) = r(r ·E)� (r ·r)E, arriving at the wave equation:

r(r ·E)�r2
E + µ0µ(�

@E

@t
+ ✏0✏

@
2
E

@t2
) = 0 . (2.6)

The wave equation can be solved by assuming a (homogeneous) plane wave3

solution for the electromagnetic wave, which is harmonic both in time, t, and
position, r:

E = E
0 exp[i(k · r � !t)] . (2.7)

The frequency of light and the amplitude of the electric field are represented
by ! and E

0, respectively. The propagation vector k defines the direction of
the planes of constant phase for the light wave. The phase notation (k ·r�!t)
with positive spatial-dependent and negative time-dependent parts represents
a wave that propagates in the direction of the wave vector with a positive
phase velocity. Due to the relations given above, also the fields D and B are
described by plane waves.

The magnitude |k|, the wave propagation number, is connected to the
index of refraction n by

|k| = nk0 (2.8)

with

k0 = !/c0 = 2⇡/�0 . (2.9)

Here k0 is the wave propagation number in vacuum with �0 being the vacuum
wavelength of the (assumed) monochromatic, illuminating light. Analogous to
(2.9), the wave propagation number in any material is described by |k| = !/v

3 For linearly- (or plane)-polarized light the orientation of the electric field is con-
stant, while its magnitude and sign vary in time

28 2 Magneto-Optical E↵ects

where v is the speed of the light in the medium, which in general is di↵erent
from that in vacuum. With (2.8) the wave velocity v is given by

v =
1

n
c0 . (2.10)

The refraction index obviously describes the fact that the apparent wave ve-
locity of light is di↵erent in di↵erent materials.

Absorption in conductive media is, as mentioned, formally expressed by
considering a complex index of refraction in the electrodynamics theory. To
recognize the relevance of complex quantities for the wave propagation, it is
advantageous to rewrite the wave equation. With the ansatz (2.7) the di↵er-
ential operators can be replaced by algebraic functions: r· ) ik·, r⇥ ) ik⇥
and @

@t ) �i!, so that the Maxwell equations are simplified to a set of alge-
braic amplitude equations:

k ·D = �i⇢ (2.11a)

k ·B = 0 (2.11b)

k ⇥E = !B (2.11c)

k ⇥H = �ij � !D = �!✏0(✏+
i�

✏0!
)E . (2.11d)

With Ohm’s law (2.3c) and the continuity equation (2.2a), now written as
k · j � !⇢ = 0, equation (2.11a) can be transformed to

k · ✏0(✏+
i�

✏0!
)E = k · ✏0e✏E = k · eD = 0 . (2.12)

The term

✏+ i�/(✏0!) = e✏ (2.13)

represents an e↵ective complex premittivity that consists of the true permit-
tivity ✏ and the conductivity �. The imaginary part of e✏ corresponds to the
real part of �. By the algebraic connections also the other quantities (like the

dielectric displacement eD and propagation vector ek) become complex in case
of absorbing (i.e. electrically conductive) materials. Thus

ek = k
0 + ik00

, (2.14)

where k
0 and k

00 are real vectors.
With the algebraic functions, the wave equation (2.6) can be re-written as

(ek ·E)ek � ek
2
E + µ0✏0µ!

2 e✏E = 0 . (2.15)

Here ek
2
= ek · ek is a dyadic product, i.e. a tensor with the components kikj.

By setting µ = 1, which is justified as mentioned, and with (2.9) equation
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(2.15) can then be further simplified and written as a system of three linear
equations for the three vector components Ei of the E-field amplitude:

eki(ek ·E)� ek
2
Ei +

3X

j=1

k
2
0 e✏ij Ej = 0 . (2.16)

With the now complex index of refraction [see (2.8)]

en = f|k|/k0 =
p

ek · ek/k0 , (2.17)

equation (2.16) becomes [?, ?]

eki(ek ·E)

k
2
0

� en2
Ei +

3X

j=1

e✏ij Ej = 0 . (2.18)

The non-trivial solutions for E to this system of linear equations, the so-
called eigenmodes, describe the propagable light waves in the medium. In order
to find them, the determinant of the corresponding coe�cient matrix must
vanish. Under this condition a characteristic equation for the components ki

of the wave vector ek as a function of the elements of the dielectric tensor is
obtained. Once these ki, and with them the “allowed” propagation directions
are determined, the electrical amplitudes of the propagable waves are obtained
as solutions of (2.18). The directional dependence of the refractive index on
the real and imaginary parts of the wave vector leads to rather annoying
algebraic problems when one considers light incidence obliquely on the surface
of the medium. For perpendicular incidence, however, solutions of the wave
equation can be easily obtained. We will present them in Section 2.3 for the
examples of the polar Faraday e↵ect and the Voigt e↵ect by considering the
proper magneto-optical dielectric tensors. When the electrical amplitudes of
the propagable waves are known, their magnetic amplitudes are readily given
by

! µ0 H = (ek ⇥E) . (2.19)

Now back to the complex refractive index and its connection to absorption.
In complex notation the index is written as

en = n
0 + in00

, (2.20)

where n
0 and n

00 are real numbers. The real part of the refractive index is
the true refractive index and the imaginary part is the so-called extinction

coe�cient . This can be seen by entering (2.20) into the plane wave equation
(2.7). With (2.9) and (2.17) the plane wave (2.7) is expressed by

E = E
0ei[

!
c0

(n0+in00)z�!t] = E
0e�

!
c0

n00zei[
!
c0

n0z�!t]
. (2.21)
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of the illuminating plane light wave with the induced dielectric displacement
vector D. We will present this tensor for the magneto-optical Faraday-, Kerr-,
and Voigt e↵ects in Sect. 2.3A. In isotropic media all tensors reduce to scalars.
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In the case of dielectric media the term proportional to ✏ is of importance,
whereas for conducting materials the term proportional to � becomes signifi-
cant. The vector triple product in (2.5) can be simplified by using the operator
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The wave equation can be solved by assuming a (homogeneous) plane wave3

solution for the electromagnetic wave, which is harmonic both in time, t, and
position, r:

E = E
0 exp[i(k · r � !t)] . (2.7)

The frequency of light and the amplitude of the electric field are represented
by ! and E

0, respectively. The propagation vector k defines the direction of
the planes of constant phase for the light wave. The phase notation (k ·r�!t)
with positive spatial-dependent and negative time-dependent parts represents
a wave that propagates in the direction of the wave vector with a positive
phase velocity. Due to the relations given above, also the fields D and B are
described by plane waves.

The magnitude |k|, the wave propagation number, is connected to the
index of refraction n by

|k| = nk0 (2.8)

with
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Here k0 is the wave propagation number in vacuum with �0 being the vacuum
wavelength of the (assumed) monochromatic, illuminating light. Analogous to
(2.9), the wave propagation number in any material is described by |k| = !/v

3 For linearly- (or plane)-polarized light the orientation of the electric field is con-
stant, while its magnitude and sign vary in time
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by ! and E

0, respectively. The propagation vector k defines the direction of
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with positive spatial-dependent and negative time-dependent parts represents
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3 For linearly- (or plane)-polarized light the orientation of the electric field is con-
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where v is the speed of the light in the medium, which in general is di↵erent
from that in vacuum. With (2.8) the wave velocity v is given by

v =
1

n
c0 . (2.10)

The refraction index obviously describes the fact that the apparent wave ve-
locity of light is di↵erent in di↵erent materials.

Absorption in conductive media is, as mentioned, formally expressed by
considering a complex index of refraction in the electrodynamics theory. To
recognize the relevance of complex quantities for the wave propagation, it is
advantageous to rewrite the wave equation. With the ansatz (2.7) the di↵er-
ential operators can be replaced by algebraic functions: r· ) ik·, r⇥ ) ik⇥
and @

@t ) �i!, so that the Maxwell equations are simplified to a set of alge-
braic amplitude equations:

k ·D = �i⇢ (2.11a)

k ·B = 0 (2.11b)

k ⇥E = !B (2.11c)

k ⇥H = �ij � !D = �!✏0(✏+
i�

✏0!
)E . (2.11d)

With Ohm’s law (2.3c) and the continuity equation (2.2a), now written as
k · j � !⇢ = 0, equation (2.11a) can be transformed to

k · ✏0(✏+
i�

✏0!
)E = k · ✏0e✏E = k · eD = 0 . (2.12)

The term

✏+ i�/(✏0!) = e✏ (2.13)

represents an e↵ective complex premittivity that consists of the true permit-
tivity ✏ and the conductivity �. The imaginary part of e✏ corresponds to the
real part of �. By the algebraic connections also the other quantities (like the

dielectric displacement eD and propagation vector ek) become complex in case
of absorbing (i.e. electrically conductive) materials. Thus

ek = k
0 + ik00

, (2.14)

where k
0 and k

00 are real vectors.
With the algebraic functions, the wave equation (2.6) can be re-written as

(ek ·E)ek � ek
2
E + µ0✏0µ!

2 e✏E = 0 . (2.15)

Here ek
2
= ek · ek is a dyadic product, i.e. a tensor with the components kikj.

By setting µ = 1, which is justified as mentioned, and with (2.9) equation
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(2.15) can then be further simplified and written as a system of three linear
equations for the three vector components Ei of the E-field amplitude:

eki(ek ·E)� ek
2
Ei +

3X

j=1

k
2
0 e✏ij Ej = 0 . (2.16)

With the now complex index of refraction [see (2.8)]

en = f|k|/k0 =
p

ek · ek/k0 , (2.17)

equation (2.16) becomes [?, ?]

eki(ek ·E)

k
2
0

� en2
Ei +

3X

j=1

e✏ij Ej = 0 . (2.18)

The non-trivial solutions for E to this system of linear equations, the so-
called eigenmodes, describe the propagable light waves in the medium. In order
to find them, the determinant of the corresponding coe�cient matrix must
vanish. Under this condition a characteristic equation for the components ki

of the wave vector ek as a function of the elements of the dielectric tensor is
obtained. Once these ki, and with them the “allowed” propagation directions
are determined, the electrical amplitudes of the propagable waves are obtained
as solutions of (2.18). The directional dependence of the refractive index on
the real and imaginary parts of the wave vector leads to rather annoying
algebraic problems when one considers light incidence obliquely on the surface
of the medium. For perpendicular incidence, however, solutions of the wave
equation can be easily obtained. We will present them in Section 2.3 for the
examples of the polar Faraday e↵ect and the Voigt e↵ect by considering the
proper magneto-optical dielectric tensors. When the electrical amplitudes of
the propagable waves are known, their magnetic amplitudes are readily given
by

! µ0 H = (ek ⇥E) . (2.19)

Now back to the complex refractive index and its connection to absorption.
In complex notation the index is written as

en = n
0 + in00

, (2.20)

where n
0 and n

00 are real numbers. The real part of the refractive index is
the true refractive index and the imaginary part is the so-called extinction

coe�cient . This can be seen by entering (2.20) into the plane wave equation
(2.7). With (2.9) and (2.17) the plane wave (2.7) is expressed by

E = E
0ei[

!
c0

(n0+in00)z�!t] = E
0e�

!
c0

n00zei[
!
c0

n0z�!t]
. (2.21)
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E = E
0ei[
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n00zei[
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. (2.21)

Assumption: light incidence, m and surface normal || z-axis
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain
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0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
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✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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2. Magneto-optical effects: Solutions

Wave equation: 

⟹

with
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where v is the speed of the light in the medium, which in general is di↵erent
from that in vacuum. With (2.8) the wave velocity v is given by

v =
1

n
c0 . (2.10)

The refraction index obviously describes the fact that the apparent wave ve-
locity of light is di↵erent in di↵erent materials.

Absorption in conductive media is, as mentioned, formally expressed by
considering a complex index of refraction in the electrodynamics theory. To
recognize the relevance of complex quantities for the wave propagation, it is
advantageous to rewrite the wave equation. With the ansatz (2.7) the di↵er-
ential operators can be replaced by algebraic functions: r· ) ik·, r⇥ ) ik⇥
and @

@t ) �i!, so that the Maxwell equations are simplified to a set of alge-
braic amplitude equations:

k ·D = �i⇢ (2.11a)

k ·B = 0 (2.11b)

k ⇥E = !B (2.11c)

k ⇥H = �ij � !D = �!✏0(✏+
i�

✏0!
)E . (2.11d)

With Ohm’s law (2.3c) and the continuity equation (2.2a), now written as
k · j � !⇢ = 0, equation (2.11a) can be transformed to

k · ✏0(✏+
i�

✏0!
)E = k · ✏0e✏E = k · eD = 0 . (2.12)

The term

✏+ i�/(✏0!) = e✏ (2.13)

represents an e↵ective complex premittivity that consists of the true permit-
tivity ✏ and the conductivity �. The imaginary part of e✏ corresponds to the
real part of �. By the algebraic connections also the other quantities (like the

dielectric displacement eD and propagation vector ek) become complex in case
of absorbing (i.e. electrically conductive) materials. Thus

ek = k
0 + ik00

, (2.14)

where k
0 and k

00 are real vectors.
With the algebraic functions, the wave equation (2.6) can be re-written as

(ek ·E)ek � ek
2
E + µ0✏0µ!

2 e✏E = 0 . (2.15)

Here ek
2
= ek · ek is a dyadic product, i.e. a tensor with the components kikj.

By setting µ = 1, which is justified as mentioned, and with (2.9) equation
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(2.15) can then be further simplified and written as a system of three linear
equations for the three vector components Ei of the E-field amplitude:

eki(ek ·E)� ek
2
Ei +

3X

j=1

k
2
0 e✏ij Ej = 0 . (2.16)

With the now complex index of refraction [see (2.8)]

en = f|k|/k0 =
p

ek · ek/k0 , (2.17)

equation (2.16) becomes [?, ?]

eki(ek ·E)

k
2
0

� en2
Ei +

3X

j=1

e✏ij Ej = 0 . (2.18)

The non-trivial solutions for E to this system of linear equations, the so-
called eigenmodes, describe the propagable light waves in the medium. In order
to find them, the determinant of the corresponding coe�cient matrix must
vanish. Under this condition a characteristic equation for the components ki

of the wave vector ek as a function of the elements of the dielectric tensor is
obtained. Once these ki, and with them the “allowed” propagation directions
are determined, the electrical amplitudes of the propagable waves are obtained
as solutions of (2.18). The directional dependence of the refractive index on
the real and imaginary parts of the wave vector leads to rather annoying
algebraic problems when one considers light incidence obliquely on the surface
of the medium. For perpendicular incidence, however, solutions of the wave
equation can be easily obtained. We will present them in Section 2.3 for the
examples of the polar Faraday e↵ect and the Voigt e↵ect by considering the
proper magneto-optical dielectric tensors. When the electrical amplitudes of
the propagable waves are known, their magnetic amplitudes are readily given
by

! µ0 H = (ek ⇥E) . (2.19)

Now back to the complex refractive index and its connection to absorption.
In complex notation the index is written as

en = n
0 + in00

, (2.20)

where n
0 and n

00 are real numbers. The real part of the refractive index is
the true refractive index and the imaginary part is the so-called extinction

coe�cient . This can be seen by entering (2.20) into the plane wave equation
(2.7). With (2.9) and (2.17) the plane wave (2.7) is expressed by

E = E
0ei[
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c0

(n0+in00)z�!t] = E
0e�
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n00zei[
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n0z�!t]
. (2.21)

Assumption: light incidence, m and surface normal || z-axis
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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with magneto-optical tensors
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso

0
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A . (2.58)

Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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2. Magneto-optical effects: Solutions

Wave equation: 

⟹

with
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where v is the speed of the light in the medium, which in general is di↵erent
from that in vacuum. With (2.8) the wave velocity v is given by

v =
1

n
c0 . (2.10)

The refraction index obviously describes the fact that the apparent wave ve-
locity of light is di↵erent in di↵erent materials.

Absorption in conductive media is, as mentioned, formally expressed by
considering a complex index of refraction in the electrodynamics theory. To
recognize the relevance of complex quantities for the wave propagation, it is
advantageous to rewrite the wave equation. With the ansatz (2.7) the di↵er-
ential operators can be replaced by algebraic functions: r· ) ik·, r⇥ ) ik⇥
and @

@t ) �i!, so that the Maxwell equations are simplified to a set of alge-
braic amplitude equations:

k ·D = �i⇢ (2.11a)

k ·B = 0 (2.11b)

k ⇥E = !B (2.11c)

k ⇥H = �ij � !D = �!✏0(✏+
i�

✏0!
)E . (2.11d)

With Ohm’s law (2.3c) and the continuity equation (2.2a), now written as
k · j � !⇢ = 0, equation (2.11a) can be transformed to

k · ✏0(✏+
i�

✏0!
)E = k · ✏0e✏E = k · eD = 0 . (2.12)

The term

✏+ i�/(✏0!) = e✏ (2.13)

represents an e↵ective complex premittivity that consists of the true permit-
tivity ✏ and the conductivity �. The imaginary part of e✏ corresponds to the
real part of �. By the algebraic connections also the other quantities (like the

dielectric displacement eD and propagation vector ek) become complex in case
of absorbing (i.e. electrically conductive) materials. Thus

ek = k
0 + ik00

, (2.14)

where k
0 and k

00 are real vectors.
With the algebraic functions, the wave equation (2.6) can be re-written as

(ek ·E)ek � ek
2
E + µ0✏0µ!

2 e✏E = 0 . (2.15)

Here ek
2
= ek · ek is a dyadic product, i.e. a tensor with the components kikj.

By setting µ = 1, which is justified as mentioned, and with (2.9) equation
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(2.15) can then be further simplified and written as a system of three linear
equations for the three vector components Ei of the E-field amplitude:

eki(ek ·E)� ek
2
Ei +

3X

j=1

k
2
0 e✏ij Ej = 0 . (2.16)

With the now complex index of refraction [see (2.8)]

en = f|k|/k0 =
p

ek · ek/k0 , (2.17)

equation (2.16) becomes [?, ?]

eki(ek ·E)

k
2
0

� en2
Ei +

3X

j=1

e✏ij Ej = 0 . (2.18)

The non-trivial solutions for E to this system of linear equations, the so-
called eigenmodes, describe the propagable light waves in the medium. In order
to find them, the determinant of the corresponding coe�cient matrix must
vanish. Under this condition a characteristic equation for the components ki

of the wave vector ek as a function of the elements of the dielectric tensor is
obtained. Once these ki, and with them the “allowed” propagation directions
are determined, the electrical amplitudes of the propagable waves are obtained
as solutions of (2.18). The directional dependence of the refractive index on
the real and imaginary parts of the wave vector leads to rather annoying
algebraic problems when one considers light incidence obliquely on the surface
of the medium. For perpendicular incidence, however, solutions of the wave
equation can be easily obtained. We will present them in Section 2.3 for the
examples of the polar Faraday e↵ect and the Voigt e↵ect by considering the
proper magneto-optical dielectric tensors. When the electrical amplitudes of
the propagable waves are known, their magnetic amplitudes are readily given
by

! µ0 H = (ek ⇥E) . (2.19)

Now back to the complex refractive index and its connection to absorption.
In complex notation the index is written as

en = n
0 + in00

, (2.20)

where n
0 and n

00 are real numbers. The real part of the refractive index is
the true refractive index and the imaginary part is the so-called extinction

coe�cient . This can be seen by entering (2.20) into the plane wave equation
(2.7). With (2.9) and (2.17) the plane wave (2.7) is expressed by

E = E
0ei[

!
c0

(n0+in00)z�!t] = E
0e�

!
c0

n00zei[
!
c0

n0z�!t]
. (2.21)

⟹

non-trivial solutions if determinant of coefficient matrix vanishes
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E
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0✏isoiQVE
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y + 0 · E0
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2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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(characteristic equation for kz)

Assumption: light incidence, m and surface normal || z-axis
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With these two refractive indices, the two forward and two retrograde circular
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with magneto-optical tensors
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso

0
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Wave equation: 
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where v is the speed of the light in the medium, which in general is di↵erent
from that in vacuum. With (2.8) the wave velocity v is given by

v =
1

n
c0 . (2.10)

The refraction index obviously describes the fact that the apparent wave ve-
locity of light is di↵erent in di↵erent materials.

Absorption in conductive media is, as mentioned, formally expressed by
considering a complex index of refraction in the electrodynamics theory. To
recognize the relevance of complex quantities for the wave propagation, it is
advantageous to rewrite the wave equation. With the ansatz (2.7) the di↵er-
ential operators can be replaced by algebraic functions: r· ) ik·, r⇥ ) ik⇥
and @

@t ) �i!, so that the Maxwell equations are simplified to a set of alge-
braic amplitude equations:

k ·D = �i⇢ (2.11a)

k ·B = 0 (2.11b)

k ⇥E = !B (2.11c)

k ⇥H = �ij � !D = �!✏0(✏+
i�

✏0!
)E . (2.11d)

With Ohm’s law (2.3c) and the continuity equation (2.2a), now written as
k · j � !⇢ = 0, equation (2.11a) can be transformed to

k · ✏0(✏+
i�

✏0!
)E = k · ✏0e✏E = k · eD = 0 . (2.12)

The term

✏+ i�/(✏0!) = e✏ (2.13)

represents an e↵ective complex premittivity that consists of the true permit-
tivity ✏ and the conductivity �. The imaginary part of e✏ corresponds to the
real part of �. By the algebraic connections also the other quantities (like the

dielectric displacement eD and propagation vector ek) become complex in case
of absorbing (i.e. electrically conductive) materials. Thus

ek = k
0 + ik00

, (2.14)

where k
0 and k

00 are real vectors.
With the algebraic functions, the wave equation (2.6) can be re-written as

(ek ·E)ek � ek
2
E + µ0✏0µ!

2 e✏E = 0 . (2.15)

Here ek
2
= ek · ek is a dyadic product, i.e. a tensor with the components kikj.

By setting µ = 1, which is justified as mentioned, and with (2.9) equation
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(2.15) can then be further simplified and written as a system of three linear
equations for the three vector components Ei of the E-field amplitude:

eki(ek ·E)� ek
2
Ei +

3X

j=1

k
2
0 e✏ij Ej = 0 . (2.16)

With the now complex index of refraction [see (2.8)]

en = f|k|/k0 =
p

ek · ek/k0 , (2.17)

equation (2.16) becomes [?, ?]

eki(ek ·E)

k
2
0

� en2
Ei +

3X

j=1

e✏ij Ej = 0 . (2.18)

The non-trivial solutions for E to this system of linear equations, the so-
called eigenmodes, describe the propagable light waves in the medium. In order
to find them, the determinant of the corresponding coe�cient matrix must
vanish. Under this condition a characteristic equation for the components ki

of the wave vector ek as a function of the elements of the dielectric tensor is
obtained. Once these ki, and with them the “allowed” propagation directions
are determined, the electrical amplitudes of the propagable waves are obtained
as solutions of (2.18). The directional dependence of the refractive index on
the real and imaginary parts of the wave vector leads to rather annoying
algebraic problems when one considers light incidence obliquely on the surface
of the medium. For perpendicular incidence, however, solutions of the wave
equation can be easily obtained. We will present them in Section 2.3 for the
examples of the polar Faraday e↵ect and the Voigt e↵ect by considering the
proper magneto-optical dielectric tensors. When the electrical amplitudes of
the propagable waves are known, their magnetic amplitudes are readily given
by

! µ0 H = (ek ⇥E) . (2.19)

Now back to the complex refractive index and its connection to absorption.
In complex notation the index is written as

en = n
0 + in00

, (2.20)

where n
0 and n

00 are real numbers. The real part of the refractive index is
the true refractive index and the imaginary part is the so-called extinction

coe�cient . This can be seen by entering (2.20) into the plane wave equation
(2.7). With (2.9) and (2.17) the plane wave (2.7) is expressed by

E = E
0ei[

!
c0

(n0+in00)z�!t] = E
0e�

!
c0

n00zei[
!
c0

n0z�!t]
. (2.21)

Assumption: light incidence, m and surface normal || z-axis (polar effect)
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
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0✏isoiQVE

0
y + 0 · E0
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2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
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2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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, (2.64)
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and

⟹

non-trivial solutions if determinant of coefficient matrix vanishes
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(characteristic equation for kz)
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
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Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso

0

@
1 �iQVm3 iQVm2

iQVm3 1 �iQVm1

�iQVm2 iQVm1 1

1

A+

+

0

@
B1m

2
1 B2m1m2 B2m1m3

B2m1m2 B1m
2
2 B2m2m3

B2m1m3 B2m2m3 B1m
2
3

1

A . (2.58)

Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.
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neglecting magnetization
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This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
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2. Magneto-optical effects: Solutions

z
xy

52 2 Magneto-Optical E↵ects
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The first plus and minus signs in (2.61b) correspond to waves propagating in
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by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
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and

⟹

non-trivial solutions if determinant of coefficient matrix vanishes
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(characteristic equation for kz)
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⟹

with magneto-optical tensors
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
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3X

k=1

Kijk mk +
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k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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⟹

with magneto-optical tensors

50 2 Magneto-Optical E↵ects

The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso

0

@
1 �iQVm3 iQVm2

iQVm3 1 �iQVm1

�iQVm2 iQVm1 1

1

A+

+

0

@
B1m

2
1 B2m1m2 B2m1m3

B2m1m2 B1m
2
2 B2m2m3

B2m1m3 B2m2m3 B1m
2
3

1

A . (2.58)

Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain
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by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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solution (                 )

Allowed propagation directions of wave (eigenmodes):

⟹
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and

⟹

non-trivial solutions if determinant of coefficient matrix vanishes
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(characteristic equation for kz)
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⟹

with magneto-optical tensors

50 2 Magneto-Optical E↵ects

The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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2. Magneto-optical effects: Solutions

z
xy
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solution (                 )

Allowed propagation directions of wave (eigenmodes):

⟹
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and

⟹

non-trivial solutions if determinant of coefficient matrix vanishes

52 2 Magneto-Optical E↵ects

For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
y + 0 · E0

z = 0 ,

k
2
0✏isoiQVE

0
x + (k20✏iso � k

2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]

E1,+ =
1p
2
(ex + iey)E

0
1 e

i(+k0n+z�!t)
,

E2,� =
1p
2
(ex � iey)E

0
2 e

i(+k0n�z�!t)
,

E3,+ =
1p
2
(ex + iey)E

0
1 e

i(�k0n+z�!t)
,

E4,� =
1p
2
(ex � iey)E

0
2 e

i(�k0n�z�!t)
, (2.64)

(characteristic equation for kz)
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with magneto-optical tensors
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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2. Magneto-optical effects: Solutions
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
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✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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2. Magneto-Optical Effects – 2.2 Solutions
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solution (                 )

Allowed propagation directions of wave (eigenmodes):

⟹
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⟹

non-trivial solutions if determinant of coefficient matrix vanishes
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(characteristic equation for kz)
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with magneto-optical tensors

50 2 Magneto-Optical E↵ects

The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso
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A . (2.58)

Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
y + 0 · E0

z = 0 ,

k
2
0✏isoiQVE

0
x + (k20✏iso � k

2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]

E1,+ =
1p
2
(ex + iey)E

0
1 e

i(+k0n+z�!t)
,

E2,� =
1p
2
(ex � iey)E

0
2 e

i(+k0n�z�!t)
,

E3,+ =
1p
2
(ex + iey)E

0
1 e

i(�k0n+z�!t)
,

E4,� =
1p
2
(ex � iey)E

0
2 e

i(�k0n�z�!t)
, (2.64)

m

polar effect

2. Magneto-Optical Effects – 2.2 Solutions
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Allowed propagation directions of wave (eigenmodes):
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Summary: 
• For light propagating along magnetization: normal modes 

are left- and right circularly polarized waves 
• They are propagating as though the magnetic material has 

refractive indices n+ for left- and n– for right-circularly 
polarized radiation
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obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
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x and E
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y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
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polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =
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✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:
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where n
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± and n
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± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
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A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.

and
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QV = 0), the solutions are obviously linearly polarized waves with polariza-
tion planes parallel and perpendicular to the magnetization direction. These
two waves see refraction indices nk and n?, respectively. For the Voigt e↵ect
derived from the gyroelectric tensor in (2.58) (i.e. QV 6= 0), the E-vector in
case of the perpendicular wave is not strictly perpendicular to the direction of
propagation though it is approximately so (remember that |iQV| ⌧ 1). This,
however, does not apply for D which is strictly perpendicular to k (for non-
absorbing media) as explained in Fig. 2.6. In any case, the two waves propagate
parallel and antiparallel to the incident wave like for the case of circular po-
larization. For the gyroelectric Voigt e↵ect the four waves are explicitly given
by [?] [compare (2.64)]

E1,3,k = exE
0
ke

i(±k0nkz�!t)
,

E2,4,? = (ey + eziQV)E
0
?e

i(±k0n?z�!t)
. (2.69)

2.4 Faraday- and Kerr-E↵ect

After having introduced the electromagnetic basics of the magneto-optical ef-
fects, we will now have a closer look at the circular magneto-optical birefrin-
gence — the Faraday e↵ects in transmission and the Kerr e↵ects in reflection.
The Kerr e↵ect applies to any metallic or otherwise light-absorbing magnetic
material, whereas the Faraday e↵ect occurs in optically transparent media.
Nevertheless, both are rotational e↵ects that follow the same phenomenology.
Therefore the two e↵ects are discussed together in this section with emphasize
on the Kerr e↵ects. Two approaches of phenomenological description will be
used: In Sect. 2.4.1 the discussion is based on circular polarization, leading fi-
nally to a derivation of the Kerr amplitude. In Sect. 2.4.2 the Kerr amplitude
is then used as one of the components of the electrical field on a cartesian
basis, which allows to derive the geometry of the Kerr e↵ects in a descriptive
way.

2.4.1 Phenomenological Description

The Faraday rotation and Faraday ellipticity can be interpreted as circular
birefringence and circular dichroisme↵ects, respectively, in the same sense as
optical activity introduced in Sect. 2.2.3C. This can be directly derived from
the electromagnetic treatment presented at the end of Sect. 2.3. From equa-
tion (2.62) we have seen that for light propagating along the magnetization
the normal modes are two oppositely rotating circular polarizations. Linearly
polarized light entering the medium is resolved into these two modes which
travel along without interaction. Each circular mode has its own index of re-
fraction n+ and n� as given in (2.63). If the wave has a wavelength of �0 in
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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m

Assumption: light propagates perpendicular to m
and
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
magnetization the normal modes are two oppositely rotating, circularly po-
larized waves. They are propagating as though the magnetic material has
refractive indices n+ =

p
✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
p
✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E

0
y relative to E

0
x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:

n± = n
0
± + in00

± , (2.65)

where n
0
± and n

0
± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields

(✏iso +B1 � n
2)E0

x + 0 · E0
y + 0 · E0

z = 0 ,

0 · E0
x + (✏iso � n

2)E0
y � ✏iso iQVE

0
z = 0 ,

0 · E0
x + ✏iso iQVE

0
y + ✏isoE

0
z = 0 , (2.66)

with the characteristic equation

(✏iso +B1 � n
2)
⇥
✏iso(1�Q

2
V)� n

2
⇤
= 0 . (2.67)

Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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for the index of refraction and the corresponding electric field. For the intrin-
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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QV = 0), the solutions are obviously linearly polarized waves with polariza-
tion planes parallel and perpendicular to the magnetization direction. These
two waves see refraction indices nk and n?, respectively. For the Voigt e↵ect
derived from the gyroelectric tensor in (2.58) (i.e. QV 6= 0), the E-vector in
case of the perpendicular wave is not strictly perpendicular to the direction of
propagation though it is approximately so (remember that |iQV| ⌧ 1). This,
however, does not apply for D which is strictly perpendicular to k (for non-
absorbing media) as explained in Fig. 2.6. In any case, the two waves propagate
parallel and antiparallel to the incident wave like for the case of circular po-
larization. For the gyroelectric Voigt e↵ect the four waves are explicitly given
by [?] [compare (2.64)]
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2.4 Faraday- and Kerr-E↵ect

After having introduced the electromagnetic basics of the magneto-optical ef-
fects, we will now have a closer look at the circular magneto-optical birefrin-
gence — the Faraday e↵ects in transmission and the Kerr e↵ects in reflection.
The Kerr e↵ect applies to any metallic or otherwise light-absorbing magnetic
material, whereas the Faraday e↵ect occurs in optically transparent media.
Nevertheless, both are rotational e↵ects that follow the same phenomenology.
Therefore the two e↵ects are discussed together in this section with emphasize
on the Kerr e↵ects. Two approaches of phenomenological description will be
used: In Sect. 2.4.1 the discussion is based on circular polarization, leading fi-
nally to a derivation of the Kerr amplitude. In Sect. 2.4.2 the Kerr amplitude
is then used as one of the components of the electrical field on a cartesian
basis, which allows to derive the geometry of the Kerr e↵ects in a descriptive
way.

2.4.1 Phenomenological Description

The Faraday rotation and Faraday ellipticity can be interpreted as circular
birefringence and circular dichroisme↵ects, respectively, in the same sense as
optical activity introduced in Sect. 2.2.3C. This can be directly derived from
the electromagnetic treatment presented at the end of Sect. 2.3. From equa-
tion (2.62) we have seen that for light propagating along the magnetization
the normal modes are two oppositely rotating circular polarizations. Linearly
polarized light entering the medium is resolved into these two modes which
travel along without interaction. Each circular mode has its own index of re-
fraction n+ and n� as given in (2.63). If the wave has a wavelength of �0 in
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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x,y,z:
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
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With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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m

2. Magneto-Optical Effects – 2.2 Solutions

2.3 Electromagnetic Basics of Conventional E↵ects 53

using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
magnetization the normal modes are two oppositely rotating, circularly po-
larized waves. They are propagating as though the magnetic material has
refractive indices n+ =

p
✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
p
✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E

0
y relative to E

0
x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:

n± = n
0
± + in00

± , (2.65)

where n
0
± and n

0
± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
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factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields

(✏iso +B1 � n
2)E0

x + 0 · E0
y + 0 · E0

z = 0 ,

0 · E0
x + (✏iso � n

2)E0
y � ✏iso iQVE

0
z = 0 ,

0 · E0
x + ✏iso iQVE

0
y + ✏isoE

0
z = 0 , (2.66)

with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
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by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E
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y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
magnetization the normal modes are two oppositely rotating, circularly po-
larized waves. They are propagating as though the magnetic material has
refractive indices n+ =
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✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
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✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E
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x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:
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± + in00

± , (2.65)

where n
0
± and n
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± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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for the index of refraction and the corresponding electric field. For the intrin-
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Summary: 
• For light propagating perpendicular to magnetization: 

normal modes are linearly polarized waves with 
polarization planes parallel and perpendicular to 
magnetization direction 

• They are propagating as though the magnetic material 
has refractive indices       and
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QV = 0), the solutions are obviously linearly polarized waves with polariza-
tion planes parallel and perpendicular to the magnetization direction. These
two waves see refraction indices nk and n?, respectively. For the Voigt e↵ect
derived from the gyroelectric tensor in (2.58) (i.e. QV 6= 0), the E-vector in
case of the perpendicular wave is not strictly perpendicular to the direction of
propagation though it is approximately so (remember that |iQV| ⌧ 1). This,
however, does not apply for D which is strictly perpendicular to k (for non-
absorbing media) as explained in Fig. 2.6. In any case, the two waves propagate
parallel and antiparallel to the incident wave like for the case of circular po-
larization. For the gyroelectric Voigt e↵ect the four waves are explicitly given
by [?] [compare (2.64)]

E1,3,k = exE
0
ke

i(±k0nkz�!t)
,

E2,4,? = (ey + eziQV)E
0
?e

i(±k0n?z�!t)
. (2.69)

2.4 Faraday- and Kerr-E↵ect

After having introduced the electromagnetic basics of the magneto-optical ef-
fects, we will now have a closer look at the circular magneto-optical birefrin-
gence — the Faraday e↵ects in transmission and the Kerr e↵ects in reflection.
The Kerr e↵ect applies to any metallic or otherwise light-absorbing magnetic
material, whereas the Faraday e↵ect occurs in optically transparent media.
Nevertheless, both are rotational e↵ects that follow the same phenomenology.
Therefore the two e↵ects are discussed together in this section with emphasize
on the Kerr e↵ects. Two approaches of phenomenological description will be
used: In Sect. 2.4.1 the discussion is based on circular polarization, leading fi-
nally to a derivation of the Kerr amplitude. In Sect. 2.4.2 the Kerr amplitude
is then used as one of the components of the electrical field on a cartesian
basis, which allows to derive the geometry of the Kerr e↵ects in a descriptive
way.

2.4.1 Phenomenological Description

The Faraday rotation and Faraday ellipticity can be interpreted as circular
birefringence and circular dichroisme↵ects, respectively, in the same sense as
optical activity introduced in Sect. 2.2.3C. This can be directly derived from
the electromagnetic treatment presented at the end of Sect. 2.3. From equa-
tion (2.62) we have seen that for light propagating along the magnetization
the normal modes are two oppositely rotating circular polarizations. Linearly
polarized light entering the medium is resolved into these two modes which
travel along without interaction. Each circular mode has its own index of re-
fraction n+ and n� as given in (2.63). If the wave has a wavelength of �0 in
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Polar configuration
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Polar configuration
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right circularly polarized waves, i.e. linear light entering medium is 
resolved into these 2 modes which travel without interaction
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain
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by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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2. Magneto-Optical Effects – 2.3 Faraday Effect
• Remember: linearly polarized light = superposition of right- and left-

handed circularly polarized waves with equal amplitude and phase
• For light propagating along magnetization: normal modes are left- and 

right circularly polarized waves, i.e. linear light entering medium is 
resolved into these 2 modes which travel without interaction

• Each mode has its own index of refraction: 
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
y + 0 · E0

z = 0 ,

k
2
0✏isoiQVE

0
x + (k20✏iso � k

2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain
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by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
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• Index of refraction is complex: 
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
magnetization the normal modes are two oppositely rotating, circularly po-
larized waves. They are propagating as though the magnetic material has
refractive indices n+ =

p
✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
p
✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E

0
y relative to E

0
x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:

n± = n
0
± + in00

± , (2.65)

where n
0
± and n

0
± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.

• If n+   differ in real parts: partial waves will propagate with different 
velocities             and     –       ⟹ phase difference ⟹ birefringence
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vacuum, then the wave lengths of its circular components in the medium are
�0/n± according to (2.8) and (2.9). Since n+ and n� may di↵er in both real
and imaginary parts [see (2.65)], the two partial waves will generally propa-
gate with di↵erent dispersion (i.e. with di↵erent velocities c0/n+ and c0/n�)
and di↵erent absorption. Due to the di↵erence in dispersion the two circular
waves cover di↵erent optical paths ln+ and ln� while propagating a distance
l. The optical retardation of l(n+ � n�) finally results in a rotation11 of the
polarization vector by an angle ✓ (see Fig. 2.5c,d for illustration). The di↵er-
ence in absorption causes di↵erent amplitudes of the two circular modes which
leads to ellipticity (compare Fig. 2.5a).

An analytical treatment is presented here for the polar Faraday e↵ect . Con-
sider a plane electromagnetic wave propagating along the positive z-direction
in a magnetic medium with polar magnetization (|k| = k3 and |m| = m3 = 1).
At the point z = 0 at the surface the wave shall be linearly polarized along
the x-axis, i.e.

Ex = E
0ei(kzz�!t)

, Ey = 0 , Ez = 0 . (2.70)

In the magnetic medium, the propagating wave can be written as the sum
of right and left circularly polarized waves. According to (2.64) the x- and
y-components of this wave are given by [?, ?]

Ex =
1

2
E

0(ei(k0n�z�!t) + ei(k0n+z�!t)) = E
0ei(k0n̄z�!t) cos(

⇢

2
) ,

Ey =
1

2
iE0(�ei(k0n�z�!t) + ei(k0n+z�!t)) = E

0ei(k0n̄z�!t) sin(
�⇢

2
) . (2.71)

Here the sum of the two circular modes was expressed with the help of the
normalized Jones vectors (2.36) and (2.37), i.e. the term (ex ± iey) in (2.64)
is replaced by the vector 1p

2
(1, ±i) where the minus sign corresponds to right

circular polarized light. For the final notations in (2.71) we have used the
average refraction index

n̄ =
1

2
(n+ + n�) (2.72)

and the phase di↵erence

⇢ = k0z(n+ � n�) (2.73)

that has been introduced between Ex and Ey by the birefringence of the
medium.
11 As mentioned in Sect. 2.2.2, the Faraday rotation is non-reciprocal: if the light

passes the material again in reversed direction, the rotation does not cancel but
is rather doubled. This is di↵erent to the circular birefringence of optically ac-
tive media. The reason is that the Faraday rotation is tied to the direction of
the magnetization. In Sect. 2.4.2 we will see that the magnitude of rotation is
proportional to the projection of M on the direction of propagation
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Let’s assume for the moment that n+ and n� are real, i.e. there is no
absorption. From the notations on the right in (2.71) it is evident that at
every depth z the wave is linearly polarized with its direction of polarization
turned through an angle ✓ = �⇢(z)/2 from the positive x-axis to the negative
y-axis12 if n+ > n�. If the medium is absorptive the refractive indices are
complex. A wave that is linearly polarized at z = 0 will, after propagating a
distance l in the medium, be elliptically polarized with its azimuth rotated by
a complex angle

✓
c
F = ✓F + i⇠F = �⇢(l)

2
= �k0l

2
[n0

+ + in00
+ � n

0
� � in00
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[(n0

+ � n
0
�) + i(n00

+ � n
00
�)] . (2.74)

The major axis of the ellipse is thus rotated by the angle Re(✓cF), which can
be written as [?, ?]

✓F/l = � ⇡

�0
Re(n+ � n�) = � ⇡

�0
(n0

+ � n
0
�) (2.75)

per unit thickness. This situation is illustrated in Fig. 2.11a for two oppositely
magnetized domains under the assumption no absorption of the partial waves.
The angle ✓F/l is called the specific Faraday rotation or magnetic circular

birefringence — a birefringence of circularly polarized light. The di↵erence in
absorption results in an ellipticity of the polarization that is given by

⇠F/l = � ⇡

�0
Im(n+ � n�) = � ⇡

�0
(n00

+ � n
00
�) (2.76)

in case of small ellipticity (for strong ellipticity the exact term would apply
which writes tan ⇠F = � tanh( ⇡l

�0
) Im(n+�n�) [?, ?]). The angle ⇠F/l is known

as specific Faraday ellipticity or magnetic circular dichroism. With (2.9) and
(2.23) it can be expressed as

⇠F/l =
1

4
(↵00

� � ↵
00
+) , (2.77)

showing that the Faraday ellipticity is simply defined as the di↵erence of the
absorption coe�cients of the two circular modes. Figure 2.11b illustrates the
e↵ect under the assumption of pure dichroism (i.e. the two circularly polarized
partial waves are absorbed di↵erently without retardation). In the general case
both, circular birefringence and dichroism, will be relevant. The two partial
waves will thus be out of phase and unequal in amplitude on leaving the
medium, producing rotated elliptical waves as illustrated in Fig. 2.11c (also
compare Fig. 2.5a). This is the same situation as depicted in Fig. 2.4, where

12 This is the situation illustrated in Fig. 2.5d. The rotation angle ✓ is defined by
tan ✓ =

Ey

Ex
= sin(�⇢(z)/2)

cos(⇢(z)/2) = � tan ⇢(z)
2 , so that ✓ = � ⇢(z)
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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2. Magneto-Optical Effects – 2.3 Faraday Effect
• Remember: linearly polarized light = superposition of right- and left-

handed circularly polarized waves with equal amplitude and phase
• For light propagating along magnetization: normal modes are left- and 

right circularly polarized waves, i.e. linear light entering medium is 
resolved into these 2 modes which travel without interaction

• Each mode has its own index of refraction: 
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• Index of refraction is complex: 
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
magnetization the normal modes are two oppositely rotating, circularly po-
larized waves. They are propagating as though the magnetic material has
refractive indices n+ =

p
✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
p
✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E

0
y relative to E

0
x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:

n± = n
0
± + in00

± , (2.65)

where n
0
± and n

0
± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.

E
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ER

Θ
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l
E

• If n+   differ in real parts: partial waves will propagate with different 
velocities             and     –       ⟹ phase difference ⟹ birefringence
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vacuum, then the wave lengths of its circular components in the medium are
�0/n± according to (2.8) and (2.9). Since n+ and n� may di↵er in both real
and imaginary parts [see (2.65)], the two partial waves will generally propa-
gate with di↵erent dispersion (i.e. with di↵erent velocities c0/n+ and c0/n�)
and di↵erent absorption. Due to the di↵erence in dispersion the two circular
waves cover di↵erent optical paths ln+ and ln� while propagating a distance
l. The optical retardation of l(n+ � n�) finally results in a rotation11 of the
polarization vector by an angle ✓ (see Fig. 2.5c,d for illustration). The di↵er-
ence in absorption causes di↵erent amplitudes of the two circular modes which
leads to ellipticity (compare Fig. 2.5a).

An analytical treatment is presented here for the polar Faraday e↵ect . Con-
sider a plane electromagnetic wave propagating along the positive z-direction
in a magnetic medium with polar magnetization (|k| = k3 and |m| = m3 = 1).
At the point z = 0 at the surface the wave shall be linearly polarized along
the x-axis, i.e.

Ex = E
0ei(kzz�!t)

, Ey = 0 , Ez = 0 . (2.70)

In the magnetic medium, the propagating wave can be written as the sum
of right and left circularly polarized waves. According to (2.64) the x- and
y-components of this wave are given by [?, ?]

Ex =
1

2
E

0(ei(k0n�z�!t) + ei(k0n+z�!t)) = E
0ei(k0n̄z�!t) cos(

⇢

2
) ,

Ey =
1

2
iE0(�ei(k0n�z�!t) + ei(k0n+z�!t)) = E

0ei(k0n̄z�!t) sin(
�⇢

2
) . (2.71)

Here the sum of the two circular modes was expressed with the help of the
normalized Jones vectors (2.36) and (2.37), i.e. the term (ex ± iey) in (2.64)
is replaced by the vector 1p

2
(1, ±i) where the minus sign corresponds to right

circular polarized light. For the final notations in (2.71) we have used the
average refraction index

n̄ =
1

2
(n+ + n�) (2.72)

and the phase di↵erence

⇢ = k0z(n+ � n�) (2.73)

that has been introduced between Ex and Ey by the birefringence of the
medium.
11 As mentioned in Sect. 2.2.2, the Faraday rotation is non-reciprocal: if the light

passes the material again in reversed direction, the rotation does not cancel but
is rather doubled. This is di↵erent to the circular birefringence of optically ac-
tive media. The reason is that the Faraday rotation is tied to the direction of
the magnetization. In Sect. 2.4.2 we will see that the magnitude of rotation is
proportional to the projection of M on the direction of propagation
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Let’s assume for the moment that n+ and n� are real, i.e. there is no
absorption. From the notations on the right in (2.71) it is evident that at
every depth z the wave is linearly polarized with its direction of polarization
turned through an angle ✓ = �⇢(z)/2 from the positive x-axis to the negative
y-axis12 if n+ > n�. If the medium is absorptive the refractive indices are
complex. A wave that is linearly polarized at z = 0 will, after propagating a
distance l in the medium, be elliptically polarized with its azimuth rotated by
a complex angle

✓
c
F = ✓F + i⇠F = �⇢(l)

2
= �k0l

2
[n0

+ + in00
+ � n

0
� � in00

�]
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�0
[(n0

+ � n
0
�) + i(n00

+ � n
00
�)] . (2.74)

The major axis of the ellipse is thus rotated by the angle Re(✓cF), which can
be written as [?, ?]

✓F/l = � ⇡

�0
Re(n+ � n�) = � ⇡

�0
(n0

+ � n
0
�) (2.75)

per unit thickness. This situation is illustrated in Fig. 2.11a for two oppositely
magnetized domains under the assumption no absorption of the partial waves.
The angle ✓F/l is called the specific Faraday rotation or magnetic circular

birefringence — a birefringence of circularly polarized light. The di↵erence in
absorption results in an ellipticity of the polarization that is given by

⇠F/l = � ⇡

�0
Im(n+ � n�) = � ⇡

�0
(n00

+ � n
00
�) (2.76)

in case of small ellipticity (for strong ellipticity the exact term would apply
which writes tan ⇠F = � tanh( ⇡l

�0
) Im(n+�n�) [?, ?]). The angle ⇠F/l is known

as specific Faraday ellipticity or magnetic circular dichroism. With (2.9) and
(2.23) it can be expressed as

⇠F/l =
1

4
(↵00

� � ↵
00
+) , (2.77)

showing that the Faraday ellipticity is simply defined as the di↵erence of the
absorption coe�cients of the two circular modes. Figure 2.11b illustrates the
e↵ect under the assumption of pure dichroism (i.e. the two circularly polarized
partial waves are absorbed di↵erently without retardation). In the general case
both, circular birefringence and dichroism, will be relevant. The two partial
waves will thus be out of phase and unequal in amplitude on leaving the
medium, producing rotated elliptical waves as illustrated in Fig. 2.11c (also
compare Fig. 2.5a). This is the same situation as depicted in Fig. 2.4, where

12 This is the situation illustrated in Fig. 2.5d. The rotation angle ✓ is defined by
tan ✓ =

Ey

Ex
= sin(�⇢(z)/2)

cos(⇢(z)/2) = � tan ⇢(z)
2 , so that ✓ = � ⇢(z)
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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With these two refractive indices, the two forward and two retrograde circular
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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2
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2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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• Index of refraction is complex: 
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
magnetization the normal modes are two oppositely rotating, circularly po-
larized waves. They are propagating as though the magnetic material has
refractive indices n+ =

p
✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
p
✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E

0
y relative to E

0
x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:

n± = n
0
± + in00

± , (2.65)

where n
0
± and n

0
± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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Faraday rotation: 
Circular birefringence
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Let’s assume for the moment that n+ and n� are real, i.e. there is no
absorption. From the notations on the right in (2.71) it is evident that at
every depth z the wave is linearly polarized with its direction of polarization
turned through an angle ✓ = �⇢(z)/2 from the positive x-axis to the negative
y-axis12 if n+ > n�. If the medium is absorptive the refractive indices are
complex. A wave that is linearly polarized at z = 0 will, after propagating a
distance l in the medium, be elliptically polarized with its azimuth rotated by
a complex angle

✓
c
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The major axis of the ellipse is thus rotated by the angle Re(✓cF), which can
be written as [?, ?]

✓F/l = � ⇡

�0
Re(n+ � n�) = � ⇡

�0
(n0

+ � n
0
�) (2.75)

per unit thickness. This situation is illustrated in Fig. 2.11a for two oppositely
magnetized domains under the assumption no absorption of the partial waves.
The angle ✓F/l is called the specific Faraday rotation or magnetic circular

birefringence — a birefringence of circularly polarized light. The di↵erence in
absorption results in an ellipticity of the polarization that is given by

⇠F/l = � ⇡

�0
Im(n+ � n�) = � ⇡

�0
(n00

+ � n
00
�) (2.76)

in case of small ellipticity (for strong ellipticity the exact term would apply
which writes tan ⇠F = � tanh( ⇡l

�0
) Im(n+�n�) [?, ?]). The angle ⇠F/l is known

as specific Faraday ellipticity or magnetic circular dichroism. With (2.9) and
(2.23) it can be expressed as

⇠F/l =
1

4
(↵00

� � ↵
00
+) , (2.77)

showing that the Faraday ellipticity is simply defined as the di↵erence of the
absorption coe�cients of the two circular modes. Figure 2.11b illustrates the
e↵ect under the assumption of pure dichroism (i.e. the two circularly polarized
partial waves are absorbed di↵erently without retardation). In the general case
both, circular birefringence and dichroism, will be relevant. The two partial
waves will thus be out of phase and unequal in amplitude on leaving the
medium, producing rotated elliptical waves as illustrated in Fig. 2.11c (also
compare Fig. 2.5a). This is the same situation as depicted in Fig. 2.4, where

12 This is the situation illustrated in Fig. 2.5d. The rotation angle ✓ is defined by
tan ✓ =

Ey

Ex
= sin(�⇢(z)/2)

cos(⇢(z)/2) = � tan ⇢(z)
2 , so that ✓ = � ⇢(z)
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• If n+   differ in real parts: partial waves will propagate with different 
velocities             and     –       ⟹ phase difference ⟹ birefringence
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vacuum, then the wave lengths of its circular components in the medium are
�0/n± according to (2.8) and (2.9). Since n+ and n� may di↵er in both real
and imaginary parts [see (2.65)], the two partial waves will generally propa-
gate with di↵erent dispersion (i.e. with di↵erent velocities c0/n+ and c0/n�)
and di↵erent absorption. Due to the di↵erence in dispersion the two circular
waves cover di↵erent optical paths ln+ and ln� while propagating a distance
l. The optical retardation of l(n+ � n�) finally results in a rotation11 of the
polarization vector by an angle ✓ (see Fig. 2.5c,d for illustration). The di↵er-
ence in absorption causes di↵erent amplitudes of the two circular modes which
leads to ellipticity (compare Fig. 2.5a).

An analytical treatment is presented here for the polar Faraday e↵ect . Con-
sider a plane electromagnetic wave propagating along the positive z-direction
in a magnetic medium with polar magnetization (|k| = k3 and |m| = m3 = 1).
At the point z = 0 at the surface the wave shall be linearly polarized along
the x-axis, i.e.

Ex = E
0ei(kzz�!t)

, Ey = 0 , Ez = 0 . (2.70)

In the magnetic medium, the propagating wave can be written as the sum
of right and left circularly polarized waves. According to (2.64) the x- and
y-components of this wave are given by [?, ?]

Ex =
1

2
E

0(ei(k0n�z�!t) + ei(k0n+z�!t)) = E
0ei(k0n̄z�!t) cos(
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2
) ,
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2
iE0(�ei(k0n�z�!t) + ei(k0n+z�!t)) = E

0ei(k0n̄z�!t) sin(
�⇢

2
) . (2.71)

Here the sum of the two circular modes was expressed with the help of the
normalized Jones vectors (2.36) and (2.37), i.e. the term (ex ± iey) in (2.64)
is replaced by the vector 1p

2
(1, ±i) where the minus sign corresponds to right

circular polarized light. For the final notations in (2.71) we have used the
average refraction index

n̄ =
1

2
(n+ + n�) (2.72)

and the phase di↵erence

⇢ = k0z(n+ � n�) (2.73)

that has been introduced between Ex and Ey by the birefringence of the
medium.
11 As mentioned in Sect. 2.2.2, the Faraday rotation is non-reciprocal: if the light

passes the material again in reversed direction, the rotation does not cancel but
is rather doubled. This is di↵erent to the circular birefringence of optically ac-
tive media. The reason is that the Faraday rotation is tied to the direction of
the magnetization. In Sect. 2.4.2 we will see that the magnitude of rotation is
proportional to the projection of M on the direction of propagation

2.4 Faraday- and Kerr-E↵ect 55

vacuum, then the wave lengths of its circular components in the medium are
�0/n± according to (2.8) and (2.9). Since n+ and n� may di↵er in both real
and imaginary parts [see (2.65)], the two partial waves will generally propa-
gate with di↵erent dispersion (i.e. with di↵erent velocities c0/n+ and c0/n�)
and di↵erent absorption. Due to the di↵erence in dispersion the two circular
waves cover di↵erent optical paths ln+ and ln� while propagating a distance
l. The optical retardation of l(n+ � n�) finally results in a rotation11 of the
polarization vector by an angle ✓ (see Fig. 2.5c,d for illustration). The di↵er-
ence in absorption causes di↵erent amplitudes of the two circular modes which
leads to ellipticity (compare Fig. 2.5a).

An analytical treatment is presented here for the polar Faraday e↵ect . Con-
sider a plane electromagnetic wave propagating along the positive z-direction
in a magnetic medium with polar magnetization (|k| = k3 and |m| = m3 = 1).
At the point z = 0 at the surface the wave shall be linearly polarized along
the x-axis, i.e.

Ex = E
0ei(kzz�!t)

, Ey = 0 , Ez = 0 . (2.70)

In the magnetic medium, the propagating wave can be written as the sum
of right and left circularly polarized waves. According to (2.64) the x- and
y-components of this wave are given by [?, ?]

Ex =
1

2
E

0(ei(k0n�z�!t) + ei(k0n+z�!t)) = E
0ei(k0n̄z�!t) cos(

⇢

2
) ,

Ey =
1

2
iE0(�ei(k0n�z�!t) + ei(k0n+z�!t)) = E

0ei(k0n̄z�!t) sin(
�⇢

2
) . (2.71)

Here the sum of the two circular modes was expressed with the help of the
normalized Jones vectors (2.36) and (2.37), i.e. the term (ex ± iey) in (2.64)
is replaced by the vector 1p

2
(1, ±i) where the minus sign corresponds to right

circular polarized light. For the final notations in (2.71) we have used the
average refraction index

n̄ =
1

2
(n+ + n�) (2.72)

and the phase di↵erence

⇢ = k0z(n+ � n�) (2.73)

that has been introduced between Ex and Ey by the birefringence of the
medium.
11 As mentioned in Sect. 2.2.2, the Faraday rotation is non-reciprocal: if the light

passes the material again in reversed direction, the rotation does not cancel but
is rather doubled. This is di↵erent to the circular birefringence of optically ac-
tive media. The reason is that the Faraday rotation is tied to the direction of
the magnetization. In Sect. 2.4.2 we will see that the magnitude of rotation is
proportional to the projection of M on the direction of propagation

56 2 Magneto-Optical E↵ects

Let’s assume for the moment that n+ and n� are real, i.e. there is no
absorption. From the notations on the right in (2.71) it is evident that at
every depth z the wave is linearly polarized with its direction of polarization
turned through an angle ✓ = �⇢(z)/2 from the positive x-axis to the negative
y-axis12 if n+ > n�. If the medium is absorptive the refractive indices are
complex. A wave that is linearly polarized at z = 0 will, after propagating a
distance l in the medium, be elliptically polarized with its azimuth rotated by
a complex angle
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The major axis of the ellipse is thus rotated by the angle Re(✓cF), which can
be written as [?, ?]
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per unit thickness. This situation is illustrated in Fig. 2.11a for two oppositely
magnetized domains under the assumption no absorption of the partial waves.
The angle ✓F/l is called the specific Faraday rotation or magnetic circular

birefringence — a birefringence of circularly polarized light. The di↵erence in
absorption results in an ellipticity of the polarization that is given by
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in case of small ellipticity (for strong ellipticity the exact term would apply
which writes tan ⇠F = � tanh( ⇡l

�0
) Im(n+�n�) [?, ?]). The angle ⇠F/l is known

as specific Faraday ellipticity or magnetic circular dichroism. With (2.9) and
(2.23) it can be expressed as
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showing that the Faraday ellipticity is simply defined as the di↵erence of the
absorption coe�cients of the two circular modes. Figure 2.11b illustrates the
e↵ect under the assumption of pure dichroism (i.e. the two circularly polarized
partial waves are absorbed di↵erently without retardation). In the general case
both, circular birefringence and dichroism, will be relevant. The two partial
waves will thus be out of phase and unequal in amplitude on leaving the
medium, producing rotated elliptical waves as illustrated in Fig. 2.11c (also
compare Fig. 2.5a). This is the same situation as depicted in Fig. 2.4, where

12 This is the situation illustrated in Fig. 2.5d. The rotation angle ✓ is defined by
tan ✓ =
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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2. Magneto-Optical Effects – 2.3 Faraday Effect
• Remember: linearly polarized light = superposition of right- and left-

handed circularly polarized waves with equal amplitude and phase
• For light propagating along magnetization: normal modes are left- and 

right circularly polarized waves, i.e. linear light entering medium is 
resolved into these 2 modes which travel without interaction

• Each mode has its own index of refraction: 
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• Index of refraction is complex: 
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
magnetization the normal modes are two oppositely rotating, circularly po-
larized waves. They are propagating as though the magnetic material has
refractive indices n+ =

p
✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
p
✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E

0
y relative to E

0
x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:

n± = n
0
± + in00

± , (2.65)

where n
0
± and n

0
± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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Let’s assume for the moment that n+ and n� are real, i.e. there is no
absorption. From the notations on the right in (2.71) it is evident that at
every depth z the wave is linearly polarized with its direction of polarization
turned through an angle ✓ = �⇢(z)/2 from the positive x-axis to the negative
y-axis12 if n+ > n�. If the medium is absorptive the refractive indices are
complex. A wave that is linearly polarized at z = 0 will, after propagating a
distance l in the medium, be elliptically polarized with its azimuth rotated by
a complex angle

✓
c
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The major axis of the ellipse is thus rotated by the angle Re(✓cF), which can
be written as [?, ?]

✓F/l = � ⇡

�0
Re(n+ � n�) = � ⇡

�0
(n0

+ � n
0
�) (2.75)

per unit thickness. This situation is illustrated in Fig. 2.11a for two oppositely
magnetized domains under the assumption no absorption of the partial waves.
The angle ✓F/l is called the specific Faraday rotation or magnetic circular

birefringence — a birefringence of circularly polarized light. The di↵erence in
absorption results in an ellipticity of the polarization that is given by

⇠F/l = � ⇡

�0
Im(n+ � n�) = � ⇡

�0
(n00

+ � n
00
�) (2.76)

in case of small ellipticity (for strong ellipticity the exact term would apply
which writes tan ⇠F = � tanh( ⇡l

�0
) Im(n+�n�) [?, ?]). The angle ⇠F/l is known

as specific Faraday ellipticity or magnetic circular dichroism. With (2.9) and
(2.23) it can be expressed as

⇠F/l =
1

4
(↵00

� � ↵
00
+) , (2.77)

showing that the Faraday ellipticity is simply defined as the di↵erence of the
absorption coe�cients of the two circular modes. Figure 2.11b illustrates the
e↵ect under the assumption of pure dichroism (i.e. the two circularly polarized
partial waves are absorbed di↵erently without retardation). In the general case
both, circular birefringence and dichroism, will be relevant. The two partial
waves will thus be out of phase and unequal in amplitude on leaving the
medium, producing rotated elliptical waves as illustrated in Fig. 2.11c (also
compare Fig. 2.5a). This is the same situation as depicted in Fig. 2.4, where

12 This is the situation illustrated in Fig. 2.5d. The rotation angle ✓ is defined by
tan ✓ =

Ey

Ex
= sin(�⇢(z)/2)

cos(⇢(z)/2) = � tan ⇢(z)
2 , so that ✓ = � ⇢(z)
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2. Magneto-Optical Effects – 2.3 Faraday Effect
• Remember: linearly polarized light = superposition of right- and left-

handed circularly polarized waves with equal amplitude and phase
• For light propagating along magnetization: normal modes are left- and 

right circularly polarized waves, i.e. linear light entering medium is 
resolved into these 2 modes which travel without interaction

• Each mode has its own index of refraction: 

52 2 Magneto-Optical E↵ects

For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
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y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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waves are explicitly given by [?]

E1,+ =
1p
2
(ex + iey)E

0
1 e

i(+k0n+z�!t)
,

E2,� =
1p
2
(ex � iey)E

0
2 e

i(+k0n�z�!t)
,

E3,+ =
1p
2
(ex + iey)E

0
1 e

i(�k0n+z�!t)
,

E4,� =
1p
2
(ex � iey)E

0
2 e

i(�k0n�z�!t)
, (2.64)

• Index of refraction is complex: 
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
magnetization the normal modes are two oppositely rotating, circularly po-
larized waves. They are propagating as though the magnetic material has
refractive indices n+ =

p
✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
p
✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E

0
y relative to E

0
x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:

n± = n
0
± + in00

± , (2.65)

where n
0
± and n

0
± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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• If n+  and n–  differ in imaginary parts: partial waves will propagate with 
different absorption ⟹ different amplitudes ⟹ dichroism
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larized waves. They are propagating as though the magnetic material has
refractive indices n+ =

p
✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
p
✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E

0
y relative to E

0
x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:

n± = n
0
± + in00

± , (2.65)

where n
0
± and n

0
± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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Let’s assume for the moment that n+ and n� are real, i.e. there is no
absorption. From the notations on the right in (2.71) it is evident that at
every depth z the wave is linearly polarized with its direction of polarization
turned through an angle ✓ = �⇢(z)/2 from the positive x-axis to the negative
y-axis12 if n+ > n�. If the medium is absorptive the refractive indices are
complex. A wave that is linearly polarized at z = 0 will, after propagating a
distance l in the medium, be elliptically polarized with its azimuth rotated by
a complex angle

✓
c
F = ✓F + i⇠F = �⇢(l)

2
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�)] . (2.74)

The major axis of the ellipse is thus rotated by the angle Re(✓cF), which can
be written as [?, ?]

✓F/l = � ⇡

�0
Re(n+ � n�) = � ⇡

�0
(n0

+ � n
0
�) (2.75)

per unit thickness. This situation is illustrated in Fig. 2.11a for two oppositely
magnetized domains under the assumption no absorption of the partial waves.
The angle ✓F/l is called the specific Faraday rotation or magnetic circular

birefringence — a birefringence of circularly polarized light. The di↵erence in
absorption results in an ellipticity of the polarization that is given by

⇠F/l = � ⇡

�0
Im(n+ � n�) = � ⇡

�0
(n00

+ � n
00
�) (2.76)

in case of small ellipticity (for strong ellipticity the exact term would apply
which writes tan ⇠F = � tanh( ⇡l

�0
) Im(n+�n�) [?, ?]). The angle ⇠F/l is known

as specific Faraday ellipticity or magnetic circular dichroism. With (2.9) and
(2.23) it can be expressed as

⇠F/l =
1

4
(↵00

� � ↵
00
+) , (2.77)

showing that the Faraday ellipticity is simply defined as the di↵erence of the
absorption coe�cients of the two circular modes. Figure 2.11b illustrates the
e↵ect under the assumption of pure dichroism (i.e. the two circularly polarized
partial waves are absorbed di↵erently without retardation). In the general case
both, circular birefringence and dichroism, will be relevant. The two partial
waves will thus be out of phase and unequal in amplitude on leaving the
medium, producing rotated elliptical waves as illustrated in Fig. 2.11c (also
compare Fig. 2.5a). This is the same situation as depicted in Fig. 2.4, where

12 This is the situation illustrated in Fig. 2.5d. The rotation angle ✓ is defined by
tan ✓ =

Ey

Ex
= sin(�⇢(z)/2)

cos(⇢(z)/2) = � tan ⇢(z)
2 , so that ✓ = � ⇢(z)
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2. Magneto-Optical Effects – 2.3 Faraday Effect
• Remember: linearly polarized light = superposition of right- and left-

handed circularly polarized waves with equal amplitude and phase
• For light propagating along magnetization: normal modes are left- and 

right circularly polarized waves, i.e. linear light entering medium is 
resolved into these 2 modes which travel without interaction

• Each mode has its own index of refraction: 

52 2 Magneto-Optical E↵ects

For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:
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y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
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z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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⇥
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2
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2
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2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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• Index of refraction is complex: 
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using (2.30) and (2.8). Subscripts 1, 2 belong to the forward waves and 3, 4
to the retrograde waves according to Fig. 2.10.

The crucial point of this solution is that for light propagating along the
magnetization the normal modes are two oppositely rotating, circularly po-
larized waves. They are propagating as though the magnetic material has
refractive indices n+ =

p
✏iso(1 +QV/2) for left-circularly polarized radiation

and n� =
p
✏iso(1�QV/2) for right-circularly polarized radiation. If QV would

be zero (which is true for isotropic, non-magnetic media), n+ and n� would
be identical and there would be no restriction on E

0
y relative to E

0
x — any

polarization state could propagate in the crystal, feeling an isotropic refrac-
tive index n =

p
✏iso. As soon as QV appears, only the normal modes, right

and left circularly polarized waves, propagate. If the medium is absorptive,
n+ and n� are complex:

n± = n
0
± + in00

± , (2.65)

where n
0
± and n

0
± are real quantities. The absorption coe�cient, which is the

reciprocal of the distance in which the intensity of the light is reduced by a
factor e�1, is ↵± = 4⇡n00

±/�0 [compare (2.23)].
A di↵erent situation arises if the light propagates perpendicular to the

magnetization. Let us discuss the most important case of in-plane magneti-
zation (here along x) at perpendicular incidence, i.e. m1 = mx = |m| = 1
and k3 = kz = |k| = nk0. These are conditions for the magneto-optical Voigt
e↵ect . For this geometry the wave equation (2.18) yields
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with the characteristic equation
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Here both tensors in (2.58) have been considered because they can both lead
to a magneto-optical e↵ect in the symmetry of the Voigt e↵ect as elaborated
in Sect. 2.5. The solution of (2.67) then yields
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.

Faraday rotation: 
Circular birefringence ER

E

x

y

EL

• If n+  and n–  differ in imaginary parts: partial waves will propagate with 
different absorption ⟹ different amplitudes ⟹ dichroism
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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for the index of refraction and the corresponding electric field. For the intrin-
sic Voigt e↵ect, which is purely based on the quadratic tensor in (2.58) (i.e.
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absorption. From the notations on the right in (2.71) it is evident that at
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turned through an angle ✓ = �⇢(z)/2 from the positive x-axis to the negative
y-axis12 if n+ > n�. If the medium is absorptive the refractive indices are
complex. A wave that is linearly polarized at z = 0 will, after propagating a
distance l in the medium, be elliptically polarized with its azimuth rotated by
a complex angle
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per unit thickness. This situation is illustrated in Fig. 2.11a for two oppositely
magnetized domains under the assumption no absorption of the partial waves.
The angle ✓F/l is called the specific Faraday rotation or magnetic circular

birefringence — a birefringence of circularly polarized light. The di↵erence in
absorption results in an ellipticity of the polarization that is given by
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in case of small ellipticity (for strong ellipticity the exact term would apply
which writes tan ⇠F = � tanh( ⇡l
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as specific Faraday ellipticity or magnetic circular dichroism. With (2.9) and
(2.23) it can be expressed as
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showing that the Faraday ellipticity is simply defined as the di↵erence of the
absorption coe�cients of the two circular modes. Figure 2.11b illustrates the
e↵ect under the assumption of pure dichroism (i.e. the two circularly polarized
partial waves are absorbed di↵erently without retardation). In the general case
both, circular birefringence and dichroism, will be relevant. The two partial
waves will thus be out of phase and unequal in amplitude on leaving the
medium, producing rotated elliptical waves as illustrated in Fig. 2.11c (also
compare Fig. 2.5a). This is the same situation as depicted in Fig. 2.4, where

12 This is the situation illustrated in Fig. 2.5d. The rotation angle ✓ is defined by
tan ✓ =
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both, circular birefringence and dichroism, will be relevant. The two partial
waves will thus be out of phase and unequal in amplitude on leaving the
medium, producing rotated elliptical waves as illustrated in Fig. 2.11c (also
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showing that the Faraday ellipticity is simply defined as the di↵erence of the
absorption coe�cients of the two circular modes. Figure 2.11b illustrates the
e↵ect under the assumption of pure dichroism (i.e. the two circularly polarized
partial waves are absorbed di↵erently without retardation). In the general case
both, circular birefringence and dichroism, will be relevant. The two partial
waves will thus be out of phase and unequal in amplitude on leaving the
medium, producing rotated elliptical waves as illustrated in Fig. 2.11c (also
compare Fig. 2.5a). This is the same situation as depicted in Fig. 2.4, where
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Fig. 2.11. Magnetically-induced circular birefringence (a), circular dichroism (b)
and superimposition of the two e↵ects (c), illustrated for linearly polarized light
incidence and transmission (polar Faraday geometry). Shown is the trace of light
polarization in the plane perpendicular to the direction of propagation. The mag-
netization of the sample is subdivided into two out-of-plane domains, which have
di↵erent influences on the polarization state of the light as indicated by black and
gray arrows that correspond to the domain color. In the birefringent sample the
linear polarization is preserved (see Fig. 2.5c,d for illustration), though rotated in
opposite directions (Faraday rotation ✓F) according to the corresponding magneti-
zation direction. In case of a dichroic sample the two domains generate elliptically
polarized light of di↵erent handedness (Faraday ellipticity ⇠F, compare Fig. 2.5a,b
for illustration). Here a compensator is required to obtain linear light that can be
converted into a contrast by means of an analyser. In (c) an opening of the compen-
sators fast axis by |✓F| leads to rotation of |✓F + ⇠F| if a quarter wave plate is used
(compare Fig. 2.8). For the sign convention of the Faraday rotation and ellipticity
see Fig. 2.3b

views on various ways to derive the Kerr e↵ect on the basis of circular light,
also including the cases of oblique incidence and in-plane magnetization, can
be found in Sokolov’s [?] and Vǐsňovský’s [?] books.

For the polar conditions, we have already established that the normal
modes of propagation in the sample are right- and left handed circular waves
with refraction indices n� and n+, respectively. Outside the sample these are
also possible modes, so that the reflection coe�cients can be simply calculated
by applying the usual Fresnel relations (2.52) for normal light incidence to

plicated [?]: Here the wave in the medium is a mixture of linearly and circularly
polarized eigenmodes. For normal incidence, however, and with the magnetiza-
tion either parallel or perpendicular to the surface, the symmetry is high enough
so that these polarizations do give pure eigenmodes in the medium

fast 
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2

✓
1 �1
1 1

◆✓
e�

i⇡
4 0

0 e+
i⇡
4

◆
1p
2

✓
1 1

�1 1

◆
=

1p
2

✓
1 �i
�i 1

◆
. (2.47)

The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:

✓
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E
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y

◆
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in
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,

with R =

✓
rxx rxy

ryx ryy

◆
and T =

✓
txx txy

tyx tyy

◆
. (2.50)

In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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with R =
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rpp rps

rsp rss

◆
and T =
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tpp tps

tsp tss

◆
. (2.51)

44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2

✓
1 �1
1 1

◆✓
e�

i⇡
4 0

0 e+
i⇡
4

◆
1p
2

✓
1 1

�1 1

◆
=

1p
2

✓
1 �i
�i 1

◆
. (2.47)

The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:

✓
E

refl
x

E
refl
y

◆
= R

✓
E

in
x

E
in
y

◆
and

✓
E

trans
x

E
trans
y

◆
= T

✓
E

in
x

E
in
y

◆
,

with R =

✓
rxx rxy

ryx ryy

◆
and T =

✓
txx txy

tyx tyy

◆
. (2.50)

In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as

✓
E

refl
p

E
refl
s

◆
= R

✓
E

in
p

E
in
s

◆
and

✓
E

trans
p

E
trans
s

◆
= T

✓
E

in
p

E
in
s

◆
,

with R =

✓
rpp rps

rsp rss

◆
and T =

✓
tpp tps

tsp tss

◆
. (2.51)

44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2

✓
1 �1
1 1

◆✓
e�

i⇡
4 0

0 e+
i⇡
4

◆
1p
2

✓
1 1

�1 1

◆
=

1p
2

✓
1 �i
�i 1

◆
. (2.47)

The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:

✓
E

refl
x

E
refl
y

◆
= R

✓
E

in
x

E
in
y

◆
and

✓
E

trans
x

E
trans
y

◆
= T

✓
E

in
x

E
in
y

◆
,

with R =

✓
rxx rxy

ryx ryy

◆
and T =

✓
txx txy

tyx tyy

◆
. (2.50)

In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as

✓
E

refl
p

E
refl
s

◆
= R

✓
E

in
p

E
in
s

◆
and

✓
E

trans
p

E
trans
s

◆
= T

✓
E

in
p

E
in
s

◆
,

with R =

✓
rpp rps

rsp rss

◆
and T =

✓
tpp tps

tsp tss

◆
. (2.51)

• All changes of light due to magneto-optic interaction are 
contained in reflection coefficients    of reflection matrix:

2.4 Faraday- and Kerr-E↵ect 59

each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain

rx =
1

2
[r(n+) + r(n�)] (2.82a)

ry =
1

2
i [r(n+)� r(n�)] , (2.82b)

which can be written as

rx =
1� n̄

1 + n̄
⌘ N (2.83a)

ry =
�i n̄ QV

(1 + n̄)2
⌘ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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, (2.84)

the reflected wave is, according to (2.50), given by
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, (2.85)

where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
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• All changes of light due to magneto-optic interaction are 
contained in reflection coefficients    of reflection matrix:
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
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1 + n+
and r(n�) =
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. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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phase retardation changes the polarization state of the emerging light. The
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:
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Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw
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. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0
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cos↵ap sin↵ap

� sin↵ap cos↵ap
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, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
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• All changes of light due to magneto-optic interaction are 
contained in reflection coefficients    of reflection matrix:
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Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components
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higher order in QV. For an incident linearly polarized wave along the x-axis
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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• Further assumption: perpendicular magnetization ⟹ normal modes of propagation 
are left- and right circularly polarized waves with refractive indices n+ and n–

and
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0
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cos↵ap sin↵ap

� sin↵ap cos↵ap
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, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
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• Assumption: perpendicular incidence, light polarized along x

2.4 Faraday- and Kerr-E↵ect 59

each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:
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. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components
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higher order in QV. For an incident linearly polarized wave along the x-axis
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:
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Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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2. Magneto-Optical Effects – 2.4 Kerr Effect
• Like Faraday effect, but in reflection on absorbing media and much weaker as light only interacts with 

magnetization within thin surface layer given by penetration depth of light 
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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✓
cos↵ap � sin↵ap

sin↵ap cos↵ap
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0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
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• All changes of light due to magneto-optic interaction are 
contained in reflection coefficients    of reflection matrix:
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
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and r(n�) =
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. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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which can be written as
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis

E =

✓
E

in
x

0

◆
, (2.84)

the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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• Further assumption: perpendicular magnetization ⟹ normal modes of propagation 
are left- and right circularly polarized waves with refractive indices n+ and n–

and
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reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

2.4 Faraday- and Kerr-E↵ect 59

each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain

rx =
1

2
[r(n+) + r(n�)] (2.82a)

ry =
1

2
i [r(n+)� r(n�)] , (2.82b)

which can be written as

rx =
1� n̄

1 + n̄
⌘ N (2.83a)

ry =
�i n̄ QV

(1 + n̄)2
⌘ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis

E =

✓
E

in
x

0

◆
, (2.84)

the reflected wave is, according to (2.50), given by

✓
E

refl
x

E
refl
y

◆
=

✓
rxx rxy

ryx ryy

◆✓
E

in
x

0

◆
=

✓
rxxE

in
x

ryyE
in
x

◆
=

✓
NE

in
x

KE
in
x

◆
⌘

✓
RN

RK

◆
, (2.85)

where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by
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. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0
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cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:
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1 + n+
and r(n�) =
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. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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[r(n+) + r(n�)] (2.82a)
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which can be written as
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ry =
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap
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0 0
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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• Assumption: perpendicular incidence, light polarized along x

2.4 Faraday- and Kerr-E↵ect 59

each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain

rx =
1

2
[r(n+) + r(n�)] (2.82a)

ry =
1

2
i [r(n+)� r(n�)] , (2.82b)

which can be written as

rx =
1� n̄

1 + n̄
⌘ N (2.83a)

ry =
�i n̄ QV

(1 + n̄)2
⌘ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis

E =

✓
E

in
x

0

◆
, (2.84)

the reflected wave is, according to (2.50), given by

✓
E

refl
x

E
refl
y

◆
=

✓
rxx rxy

ryx ryy

◆✓
E

in
x

0

◆
=

✓
rxxE

in
x

ryyE
in
x

◆
=

✓
NE

in
x

KE
in
x

◆
⌘

✓
RN

RK

◆
, (2.85)

where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2

✓
1 �1
1 1

◆✓
e�

i⇡
4 0

0 e+
i⇡
4

◆
1p
2

✓
1 1

�1 1

◆
=

1p
2

✓
1 �i
�i 1

◆
. (2.47)

The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:

✓
E

refl
x

E
refl
y

◆
= R

✓
E

in
x

E
in
y

◆
and

✓
E

trans
x

E
trans
y

◆
= T

✓
E

in
x

E
in
y

◆
,

with R =

✓
rxx rxy

ryx ryy

◆
and T =

✓
txx txy

tyx tyy

◆
. (2.50)

In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as

✓
E

refl
p

E
refl
s

◆
= R

✓
E

in
p

E
in
s

◆
and

✓
E

trans
p

E
trans
s

◆
= T

✓
E

in
p

E
in
s

◆
,

with R =

✓
rpp rps

rsp rss

◆
and T =

✓
tpp tps

tsp tss

◆
. (2.51)

m
z

y
x

52 2 Magneto-Optical E↵ects

For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
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0
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z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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⇥
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⇤
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and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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, (2.64)
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:
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and r(n�) =
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. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

Ein



2. Magneto-Optical Effects – 2.4 Kerr Effect
• Like Faraday effect, but in reflection on absorbing media and much weaker as light only interacts with 

magnetization within thin surface layer given by penetration depth of light 
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2

✓
1 �1
1 1

◆✓
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i⇡
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0 e+
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4
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1p
2

✓
1 1

�1 1

◆
=

1p
2

✓
1 �i
�i 1

◆
. (2.47)

The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:

✓
E

refl
x

E
refl
y

◆
= R

✓
E

in
x

E
in
y

◆
and

✓
E

trans
x

E
trans
y

◆
= T

✓
E

in
x

E
in
y

◆
,

with R =

✓
rxx rxy

ryx ryy

◆
and T =

✓
txx txy

tyx tyy

◆
. (2.50)

In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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with R =
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and T =
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tpp tps

tsp tss

◆
. (2.51)
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• All changes of light due to magneto-optic interaction are 
contained in reflection coefficients    of reflection matrix:
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain

rx =
1

2
[r(n+) + r(n�)] (2.82a)

ry =
1

2
i [r(n+)� r(n�)] , (2.82b)

which can be written as

rx =
1� n̄

1 + n̄
⌘ N (2.83a)

ry =
�i n̄ QV

(1 + n̄)2
⌘ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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• Further assumption: perpendicular magnetization ⟹ normal modes of propagation 
are left- and right circularly polarized waves with refractive indices n+ and n–

and
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44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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The important point to note from this discussion is that an impinging lin-
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =
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cos↵ap � sin↵ap

sin↵ap cos↵ap
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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with Fresnel equations, 
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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and leads to the solutions
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0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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instead of a circular basis a cartesian decomposition was chosen. Two phase-
shifted, perpendicularly polarized partial waves of di↵erent amplitude also
produce a rotated ellipse. Below we will call the high-amplitude wave the
‘normal’ component and the low-amplitude wave the ‘Faraday’ (or ‘Kerr’)
component. Note that in case of the Kerr e↵ect the ellipses and rotations
illustrated in Fig. 2.4 and Fig. 2.11 would be drawn strongly exaggerated —
real Kerr rotations and ellipticities are much weaker. For iron, for instance,
rotation- and ellipticity angles of -0.05� and +0.01�, respectively, are found
at 450 nm wavelength [?].

With the approximation in (2.63), the average complex refraction index n̄

is written as

n̄ =
1

2
(n+ + n�) =

p
✏iso , (2.78)

which corresponds to the “optical” index of refraction in the absence of mag-
netization, i.e. in case of a ferromagnet to the state above the Curie temper-
ature. The specific Faraday rotation (2.75) and ellipticity (2.76) can then be
expressed as

✓F/l = � ⇡

�0
Re(n̄ QV) and ⇠F/l = � ⇡

�0
Im(n̄ QV) (2.79)

by using (2.63). In a reasonably transparent material (i.e. only moderate ab-
sorption, n̄0 � n̄

00), it is the real part of the Voigt parameter QV that gives
rise to circular dichroism while it is the imaginary part of QV that gives the
circular birefringence [note that the Voigt parameter was introduced as iQV

in the o↵-diagonal elements of the ✏-tensor (2.58), so that its true real part
becomes imaginary and vise versa]. On transmission through a specimen with
a substantial circular dichroism only one circular polarization will survive.

The two e↵ects discussed so far, the magnetic circular birefringence and
dichroism, can be measured in transmission using the polar geometry men-
tioned above. For arbitrary orientation of sample and magnetization the wave
equation (2.18) becomes fairly intractable because the two circular e↵ects are
mixed with the e↵ects of magnetic linear dichroism and birefringence. A brief
discussion of such mixed conditions will be given at the end of Sect. 2.5.

The magneto-optical Kerr e↵ects, occurring when light is reflected on
strongly absorbing magnetic media (like metals), are much weaker than the
transmission e↵ects as the light only interacts with the magnetization within a
relatively thin surface layer given by the penetration depth of light. By taking
the reflection coe�cients into account, the Kerr rotation and ellipticity can —
like the Faraday e↵ect — be discussed as circular birefringence and dichroism
e↵ects. Like for the Faraday e↵ect, we restrict the discussion to the polar Kerr

e↵ect (|k| = k3 and |m| = m3 = 1) for the moment to keep it simple13. Re-

13 The analysis of the Kerr e↵ect at oblique light incidence, which is generally re-
quired to obtain a Kerr signal on in-plane domains (see Sect. 2.4.2), is more com-
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain

rx =
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2
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2
i [r(n+)� r(n�)] , (2.82b)

which can be written as
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⌘ N (2.83a)

ry =
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(1 + n̄)2
⌘ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

2.4 Faraday- and Kerr-E↵ect 59

each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain

rx =
1

2
[r(n+) + r(n�)] (2.82a)

ry =
1

2
i [r(n+)� r(n�)] , (2.82b)

which can be written as

rx =
1� n̄

1 + n̄
⌘ N (2.83a)

ry =
�i n̄ QV

(1 + n̄)2
⌘ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis

E =

✓
E

in
x

0

◆
, (2.84)

the reflected wave is, according to (2.50), given by

✓
E

refl
x

E
refl
y

◆
=

✓
rxx rxy

ryx ryy

◆✓
E

in
x

0

◆
=

✓
rxxE

in
x

ryyE
in
x

◆
=

✓
NE

in
x

KE
in
x

◆
⌘

✓
RN

RK

◆
, (2.85)

where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

2.4 Faraday- and Kerr-E↵ect 59

each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain

rx =
1

2
[r(n+) + r(n�)] (2.82a)

ry =
1

2
i [r(n+)� r(n�)] , (2.82b)

which can be written as

rx =
1� n̄

1 + n̄
⌘ N (2.83a)

ry =
�i n̄ QV

(1 + n̄)2
⌘ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis

E =

✓
E

in
x

0

◆
, (2.84)

the reflected wave is, according to (2.50), given by

✓
E

refl
x

E
refl
y

◆
=

✓
rxx rxy

ryx ryy

◆✓
E

in
x

0

◆
=

✓
rxxE

in
x

ryyE
in
x

◆
=

✓
NE

in
x

KE
in
x

◆
⌘

✓
RN

RK

◆
, (2.85)

where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

Coefficient of normally 
reflected light

Kerr coefficient

44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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• Assumption: perpendicular incidence, light polarized along x
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electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
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In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
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y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
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2
z/k

2
0)
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2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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, (2.64)
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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which can be written as
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

Ein



2. Magneto-Optical Effects – 2.4 Kerr Effect
• Like Faraday effect, but in reflection on absorbing media and much weaker as light only interacts with 

magnetization within thin surface layer given by penetration depth of light 
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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. (2.51)
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
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• All changes of light due to magneto-optic interaction are 
contained in reflection coefficients    of reflection matrix:
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
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1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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which can be written as
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ry =
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(1 + n̄)2
⌘ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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• Further assumption: perpendicular magnetization ⟹ normal modes of propagation 
are left- and right circularly polarized waves with refractive indices n+ and n–

and
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a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
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44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =
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cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by

✓
E

refl
x

E
refl
y

◆
=

✓
rxx rxy

ryx ryy

◆✓
E

in
x

0

◆
=

✓
rxxE

in
x

ryyE
in
x

◆
=

✓
NE

in
x

KE
in
x

◆
⌘

✓
RN

RK

◆
, (2.85)

where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw
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. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0
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cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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with Fresnel equations, 
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:
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2
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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2
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and leads to the solutions

k
2
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2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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instead of a circular basis a cartesian decomposition was chosen. Two phase-
shifted, perpendicularly polarized partial waves of di↵erent amplitude also
produce a rotated ellipse. Below we will call the high-amplitude wave the
‘normal’ component and the low-amplitude wave the ‘Faraday’ (or ‘Kerr’)
component. Note that in case of the Kerr e↵ect the ellipses and rotations
illustrated in Fig. 2.4 and Fig. 2.11 would be drawn strongly exaggerated —
real Kerr rotations and ellipticities are much weaker. For iron, for instance,
rotation- and ellipticity angles of -0.05� and +0.01�, respectively, are found
at 450 nm wavelength [?].

With the approximation in (2.63), the average complex refraction index n̄

is written as

n̄ =
1

2
(n+ + n�) =

p
✏iso , (2.78)

which corresponds to the “optical” index of refraction in the absence of mag-
netization, i.e. in case of a ferromagnet to the state above the Curie temper-
ature. The specific Faraday rotation (2.75) and ellipticity (2.76) can then be
expressed as

✓F/l = � ⇡

�0
Re(n̄ QV) and ⇠F/l = � ⇡

�0
Im(n̄ QV) (2.79)

by using (2.63). In a reasonably transparent material (i.e. only moderate ab-
sorption, n̄0 � n̄

00), it is the real part of the Voigt parameter QV that gives
rise to circular dichroism while it is the imaginary part of QV that gives the
circular birefringence [note that the Voigt parameter was introduced as iQV

in the o↵-diagonal elements of the ✏-tensor (2.58), so that its true real part
becomes imaginary and vise versa]. On transmission through a specimen with
a substantial circular dichroism only one circular polarization will survive.

The two e↵ects discussed so far, the magnetic circular birefringence and
dichroism, can be measured in transmission using the polar geometry men-
tioned above. For arbitrary orientation of sample and magnetization the wave
equation (2.18) becomes fairly intractable because the two circular e↵ects are
mixed with the e↵ects of magnetic linear dichroism and birefringence. A brief
discussion of such mixed conditions will be given at the end of Sect. 2.5.

The magneto-optical Kerr e↵ects, occurring when light is reflected on
strongly absorbing magnetic media (like metals), are much weaker than the
transmission e↵ects as the light only interacts with the magnetization within a
relatively thin surface layer given by the penetration depth of light. By taking
the reflection coe�cients into account, the Kerr rotation and ellipticity can —
like the Faraday e↵ect — be discussed as circular birefringence and dichroism
e↵ects. Like for the Faraday e↵ect, we restrict the discussion to the polar Kerr

e↵ect (|k| = k3 and |m| = m3 = 1) for the moment to keep it simple13. Re-

13 The analysis of the Kerr e↵ect at oblique light incidence, which is generally re-
quired to obtain a Kerr signal on in-plane domains (see Sect. 2.4.2), is more com-
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
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and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain

rx =
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2
[r(n+) + r(n�)] (2.82a)
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2
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which can be written as
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ry =
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by
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. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
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• Assumption: perpendicular incidence, light polarized along x
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as
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With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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in

52 2 Magneto-Optical E↵ects

For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
y + 0 · E0

z = 0 ,

k
2
0✏isoiQVE

0
x + (k20✏iso � k

2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]

E1,+ =
1p
2
(ex + iey)E

0
1 e

i(+k0n+z�!t)
,

E2,� =
1p
2
(ex � iey)E

0
2 e

i(+k0n�z�!t)
,

E3,+ =
1p
2
(ex + iey)E

0
1 e

i(�k0n+z�!t)
,

E4,� =
1p
2
(ex � iey)E

0
2 e

i(�k0n�z�!t)
, (2.64)

refl

2.4 Faraday- and Kerr-E↵ect 59

each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
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1 + n+
and r(n�) =

1� n�
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. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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which can be written as
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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ear wave, polarized along the x-axis, will generate a reflected wave that has
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reflected light is polarized in the same plane as the incident light. We therefore
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2. Magneto-Optical Effects – 2.4 Kerr Effect
• Like Faraday effect, but in reflection on absorbing media and much weaker as light only interacts with 

magnetization within thin surface layer given by penetration depth of light 
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:

✓
E

refl
x

E
refl
y

◆
= R

✓
E

in
x

E
in
y

◆
and

✓
E

trans
x

E
trans
y

◆
= T

✓
E

in
x

E
in
y

◆
,

with R =

✓
rxx rxy

ryx ryy

◆
and T =

✓
txx txy

tyx tyy

◆
. (2.50)
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electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw
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. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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• All changes of light due to magneto-optic interaction are 
represented in reflection coefficients   :
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
1 + n�

. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain

rx =
1

2
[r(n+) + r(n�)] (2.82a)

ry =
1

2
i [r(n+)� r(n�)] , (2.82b)

which can be written as

rx =
1� n̄

1 + n̄
⌘ N (2.83a)

ry =
�i n̄ QV

(1 + n̄)2
⌘ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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the reflected wave is, according to (2.50), given by
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

• Assumption: perpendicular incidence, light polarized along x
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The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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[r(n+) + r(n−)] (2.82a)

ry = 1
2

i [r(n+) − r(n−)], (2.82b)

which can be written as
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1 + n̄

≡ N (2.83a)

ry = −i n̄ QV

(1 + n̄)2 ≡ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of higher
order in QV. For an incident linearly polarized wave along the x-axis
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where rxx and ryy correspond to rx and ry in (2.82a, 2.82b) and (2.83a, 2.83b),
respectively.

The important point to note from this discussion is that an impinging linear
wave, polarized along the x-axis, will generate a reflected wave that has a (small)
y-component, and this is due to the different n+ and n−! Regularly reflected light is
polarized in the same plane as the incident light. We therefore call the x-component
of the reflected amplitude (2.85) the regular component RN, which is defined by the
regular Fesnel reflectance N of demagnetized material, and the magneto-optically
induced y-component the Kerr component RK that is defined by the Kerr coefficient
K . In Fig. 2.12 the two coefficients are visualized in terms of the reflection of circu-
larly polarized light by making use of (2.82a, 2.82b). As both orthogonally polarized
components, RN and RK, are in general out of phase, the light reflected from a mag-
netic specimen will be elliptically polarized. This holds for the Kerr effect and to a
much stronger degree for the Voigt effect that will be described by the Voigt com-
ponent RV and discussed in Sect. 2.5. On basis of the two phase-shifted orthogonal
components an elliptical wave is described as sketched in Fig. 2.4a. Making use of
(2.28c),14 the ratio of the Kerr- and regular light components can be expressed as a
function of ellipticity ξK and azimuth θK:

14 and considering the different sign conventions used in Fig. 2.4a and in the representation of the
Kerr ellipses according to Fig. 2.3b. The angles in both conventions are related as θK = −θ and
ξK = ξ .
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
y + 0 · E0

z = 0 ,

k
2
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0
x + (k20✏iso � k

2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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1 e
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2 e

i(�k0n�z�!t)
, (2.64)
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:
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Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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higher order in QV. For an incident linearly polarized wave along the x-axis
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

Ein

• Assumption: polar configuration ⟹ normal modes of propagation are left- 
and right circularly polarized waves with refractive indices n+ and n–

and
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The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
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for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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• Summary:  
• impinging linear wave, polarized along x ⟹ generates reflected wave that has small y-component 
• x-component = regularly reflected amplitude RN |  y-component = Kerr amplitude RK
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44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2
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1 1
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
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2
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1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.
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2. Magneto-Optical Effects – 2.4 Kerr Effect
• Like Faraday effect, but in reflection on absorbing media and much weaker as light only interacts with 

magnetization within thin surface layer given by penetration depth of light 
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0
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✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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• All changes of light due to magneto-optic interaction are 
represented in reflection coefficients   :
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each of the circular components (and assuming air as the incident medium,
i.e. ni = 1 in the Fresnel formula) [?]:

r(n+) =
1� n+

1 + n+
and r(n�) =

1� n�
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. (2.80)

Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components

r(n+) = rx + i ry and r(n�) = rx � i ry . (2.81)

From (2.81) we obtain
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by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of
higher order in QV. For an incident linearly polarized wave along the x-axis
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where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients

• Assumption: perpendicular incidence, light polarized along x
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rx = 1
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[r(n+) + r(n−)] (2.82a)

ry = 1
2

i [r(n+) − r(n−)], (2.82b)

which can be written as

rx = 1 − n̄
1 + n̄

≡ N (2.83a)

ry = −i n̄ QV

(1 + n̄)2 ≡ K (2.83b)

by making use of (2.80) together with (2.63) and (2.78) and ignoring terms of higher
order in QV. For an incident linearly polarized wave along the x-axis
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where rxx and ryy correspond to rx and ry in (2.82a, 2.82b) and (2.83a, 2.83b),
respectively.

The important point to note from this discussion is that an impinging linear
wave, polarized along the x-axis, will generate a reflected wave that has a (small)
y-component, and this is due to the different n+ and n−! Regularly reflected light is
polarized in the same plane as the incident light. We therefore call the x-component
of the reflected amplitude (2.85) the regular component RN, which is defined by the
regular Fesnel reflectance N of demagnetized material, and the magneto-optically
induced y-component the Kerr component RK that is defined by the Kerr coefficient
K . In Fig. 2.12 the two coefficients are visualized in terms of the reflection of circu-
larly polarized light by making use of (2.82a, 2.82b). As both orthogonally polarized
components, RN and RK, are in general out of phase, the light reflected from a mag-
netic specimen will be elliptically polarized. This holds for the Kerr effect and to a
much stronger degree for the Voigt effect that will be described by the Voigt com-
ponent RV and discussed in Sect. 2.5. On basis of the two phase-shifted orthogonal
components an elliptical wave is described as sketched in Fig. 2.4a. Making use of
(2.28c),14 the ratio of the Kerr- and regular light components can be expressed as a
function of ellipticity ξK and azimuth θK:

14 and considering the different sign conventions used in Fig. 2.4a and in the representation of the
Kerr ellipses according to Fig. 2.3b. The angles in both conventions are related as θK = −θ and
ξK = ξ .
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
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2
0✏isoiQVE

0
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y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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i.e. ni = 1 in the Fresnel formula) [?]:
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Considering the complex nature of n± [see (2.65)] and recalling notation (2.30)
for the electromagnetic amplitudes for circularly polarized light, the reflection
coe�cients (2.80) of circularly polarized light may as well be noted in terms
of x- and y-components
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E =

✓
E

in
x

0

◆
, (2.84)

the reflected wave is, according to (2.50), given by

✓
E

refl
x

E
refl
y

◆
=

✓
rxx rxy

ryx ryy

◆✓
E

in
x

0

◆
=

✓
rxxE

in
x

ryyE
in
x

◆
=

✓
NE

in
x

KE
in
x

◆
⌘

✓
RN

RK

◆
, (2.85)

where rxx and ryy correspond to rx and ry in (2.82a,b) and (2.83a,b), respec-
tively.

The important point to note from this discussion is that an impinging lin-
ear wave, polarized along the x-axis, will generate a reflected wave that has
a (small) y-component, and this is due to the di↵erent n+ and n�! Regularly
reflected light is polarized in the same plane as the incident light. We therefore
call the x-component of the reflected amplitude (2.85) the regular component

RN, which is defined by the regular Fesnel reflectance N of demagnetized ma-
terial, and the magneto-optically induced y-component the Kerr component

RK that is defined by the Kerr coe�cient K. In Fig. 2.12 the two coe�cients
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• Summary:  
• impinging linear wave, polarized along x ⟹ generates reflected wave that has small y-component 
• x-component = regularly reflected amplitude RN |  y-component = Kerr amplitude RK
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• Complex Kerr rotation:
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Since the Kerr rotation is complex, the vibration is transformed from linear
into elliptical on reflection from a ferromagnet, and the semi-major axis is
at an angle to the direction of the incident plane-polarized vibration. The
real angle of rotation (✓K) of the semi-major axis of the vibration ellipse
corresponds to the real part of ✓cK, and the Kerr ellipticity to its imaginary
part. As magneto-optical e↵ects are described by amplitude ratios, we can
always normalize properly so that N becomes real, and write the Kerr e↵ect
in its polar form:

✓
c
K = K0 exp(i �K) . (2.88)

Here K0 is the magnitude of the Kerr amplitude and �K the Kerr phase. If �K
is positive, the Kerr amplitude lags behind the regular amplitude. The polar
form can be favorably applied in Hamrle’s description of depth selective Kerr
microscopy (Sect. 3.2.6).

For the polar geometry and with K and N defined in (2.83a,b), the com-
plex Kerr rotation can now be written as
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by using (2.87). Due to the imaginary unit in front of the fraction, the real
angle of rotation is obviously a result of the imaginary part of the fraction,
which is non-zero only in absorbing media:

✓K = Re(✓cK) = Im
� n̄ QV

1� n̄2

�
, (2.90)

and the ellipticity is accordingly given by

⇠K = Im(✓cK) = �Re
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, (2.91)

looking along the positive z-direction. Note particularly that the rotation on
reflection comes primarily from the imaginary part and the ellipticity from
the real part of the o↵-diagonal elements of the magneto-optical matrix. This
is reverse to the situation on transmission, compare (2.79). The Kerr rota-
tion thus corresponds to the Faraday ellipticity and the Kerr ellipticity to
the Faraday rotation. Recalling that the imaginary part of n̄ QV is zero for
non-absorbing materials, we see that the rotation on reflection is zero for a
transparent medium. The reflected light is then just elliptically polarized with
the major axis parallel to the plane of polarization of the incident light. Rota-
tion in reflection requires a non-vanishing imaginary part and thus absorption.
For highly transparent magnetic garnets, for example, no domain observation
truly based on the Kerr e↵ect has been reported (domains in garnets are
observed in transmission by the Faraday e↵ect, perhaps using a mirror for
reflection observations [?]).
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Fig. 2.12. Representation of the polar magneto-optical Kerr e↵ect in terms of the
reflection of circularly polarized light. The incident linear wave, polarized along
x, is split into two counter-rotating circularly polarized waves which then interact
with the magnetic medium. According to equation (2.82b) a Kerr component K is
generated that is polarized along the y-axis and which interferes with the regularly
reflected component N (after [?])

are visualized in terms of the reflection of circularly polarized light by making
use of (2.82a,b). As both orthogonally polarized components, RN and RK, are
in general out of phase, the light reflected from a magnetic specimen will be
elliptically polarized. This holds for the Kerr e↵ect and to a much stronger
degree for the Voigt e↵ect that will be described by the Voigt component
RV and discussed in Sect. 2.5. On basis of the two phase-shifted orthogonal
components an elliptical wave is described as sketched in Fig. 2.4a. Making
use of (2.28c)14, the ratio of the Kerr- and regular light components can be
expressed as a function of ellipticity ⇠K and azimuth ✓K:

RK

RN
=

K

N
=

�Ey

Ex
= � tan ✓ � i tan ⇠

1 + i tan ✓ tan ⇠
=

tan(✓K) + i tan(⇠K)

1� i tan(✓K) tan(⇠K)
(2.86)

with the azimuth being defined relative to the polarization plane of the regu-
larly reflected light. As the angles ⇠K and ✓K are very small (at least in bulk
samples where transmission e↵ects can be excluded), the tangens-terms in
(2.86) can be replaced by their arguments and the term of second order can
be neglected, leading to the complex Kerr rotation ✓

c
K:

K

N
⇡ ✓K + i ⇠K = ✓

c
K . (2.87)

14 and considering the di↵erent sign conventions used in Fig. 2.4a and in the repre-
sentation of the Kerr ellipses according to Fig. 2.3b. The angles in both conven-
tions are related as ✓K = �✓ and ⇠K = ⇠
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2

✓
1 �1
1 1

◆✓
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i⇡
4 0

0 e+
i⇡
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◆
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. (2.47)

The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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. (2.50)

In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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and T =
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. (2.51)
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(p)-polarization (s)-polarization• General case of oblique incidence: better use sp-coordinates
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
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3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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⟹

Maxwell equations, 

44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by
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As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
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sin↵ap cos↵ap
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1 0
0 0
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as

✓
E

refl
p

E
refl
s

◆
= R

✓
E

in
p

E
in
s

◆
and

✓
E

trans
p

E
trans
s

◆
= T

✓
E

in
p

E
in
s

◆
,

with R =

✓
rpp rps

rsp rss

◆
and T =

✓
tpp tps

tsp tss

◆
. (2.51)

44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2

✓
1 �1
1 1

◆✓
e�

i⇡
4 0

0 e+
i⇡
4

◆
1p
2

✓
1 1

�1 1

◆
=

1p
2

✓
1 �i
�i 1

◆
. (2.47)

The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:

✓
E

refl
x

E
refl
y

◆
= R

✓
E

in
x

E
in
y

◆
and

✓
E

trans
x

E
trans
y

◆
= T

✓
E

in
x

E
in
y

◆
,

with R =

✓
rxx rxy

ryx ryy

◆
and T =

✓
txx txy

tyx tyy

◆
. (2.50)

In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as

✓
E

refl
p

E
refl
s

◆
= R

✓
E

in
p

E
in
s

◆
and

✓
E

trans
p

E
trans
s

◆
= T

✓
E

in
p

E
in
s

◆
,

with R =

✓
rpp rps

rsp rss

◆
and T =

✓
tpp tps

tsp tss

◆
. (2.51)

44 2 Magneto-Optical E↵ects

phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2

✓
1 �1
1 1

◆✓
e�

i⇡
4 0

0 e+
i⇡
4

◆
1p
2

✓
1 1

�1 1

◆
=

1p
2

✓
1 �i
�i 1

◆
. (2.47)

The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:

✓
E

refl
x

E
refl
y

◆
= R

✓
E

in
x

E
in
y

◆
and

✓
E

trans
x

E
trans
y

◆
= T

✓
E

in
x

E
in
y

◆
,

with R =

✓
rxx rxy

ryx ryy

◆
and T =

✓
txx txy

tyx tyy

◆
. (2.50)

In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as

✓
E

refl
p

E
refl
s

◆
= R

✓
E

in
p

E
in
s

◆
and

✓
E

trans
p

E
trans
s

◆
= T

✓
E

in
p

E
in
s

◆
,

with R =

✓
rpp rps

rsp rss

◆
and T =

✓
tpp tps

tsp tss

◆
. (2.51)

n0

n1

ϑ0

ϑ1

Ein Erefl

E trans

Ein

Erefl

E trans

 54

z

y
x

n0

n1



2. Magneto-Optical Effects – 2.4 Kerr Effect2. Magneto-Optical Effects – 2.4 Kerr Effect
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Maxwell equations, 

• Reflection coefficients:

62 2 Magneto-Optical E↵ects

For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]

rpp =
n0 cos#1 � n1 cos#0

n1 cos#0 + n0 cos#1
� i 2n0n1 cos#0 sin#1mxQV

(n1 cos#0 + n0 cos#1)2
, (2.92a)

rsp =
in0n1 cos#0(mz cos#1 +my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
, (2.92b)

rss =
n0 cos#0 � n1 cos#1
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, (2.92c)

rps = � in0n1 cos#0(mz cos#1 �my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by

✓
p
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rpp
and ✓

s
K ⌘ rps

rss
. (2.93)

As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:

(✓sK)
pol = (
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)pol =

�in0n1 cos#0QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 � n1 cos#1)
. (2.94)

For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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. (2.95)

Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw
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1
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. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =
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cos↵ap � sin↵ap

sin↵ap cos↵ap
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1 0
0 0
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.
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(p)-polarization (s)-polarization• General case of oblique incidence: better use sp-coordinates
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Maxwell equations, 

• Reflection coefficients:
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]

rpp =
n0 cos#1 � n1 cos#0

n1 cos#0 + n0 cos#1
� i 2n0n1 cos#0 sin#1mxQV

(n1 cos#0 + n0 cos#1)2
, (2.92a)

rsp =
in0n1 cos#0(mz cos#1 +my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
, (2.92b)
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rps = � in0n1 cos#0(mz cos#1 �my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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phase retardation changes the polarization state of the emerging light. The
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coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is
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The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by
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with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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relative to the polarizer and then opened by a small angle ↵an (relative to the
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• Complex Kerr rotation = ratio of off-diagonal to diagonal elements of reflection matrix: 

62 2 Magneto-Optical E↵ects

For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]

rpp =
n0 cos#1 � n1 cos#0

n1 cos#0 + n0 cos#1
� i 2n0n1 cos#0 sin#1mxQV

(n1 cos#0 + n0 cos#1)2
, (2.92a)

rsp =
in0n1 cos#0(mz cos#1 +my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
, (2.92b)

rss =
n0 cos#0 � n1 cos#1

n0 cos#0 + n1 cos#1
, (2.92c)

rps = � in0n1 cos#0(mz cos#1 �my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by

✓
p
K ⌘ rsp

rpp
and ✓

s
K ⌘ rps

rss
. (2.93)

As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:

(✓sK)
pol = (

rps

rss
)pol =

�in0n1 cos#0QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 � n1 cos#1)
. (2.94)

For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as

(✓sK)
pol =

�in1QVt
01
ss t

01
pp

4n0 cos#0

1

r01ss

. (2.95)

Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio

Coefficient of normally reflected light (does not depend on m)
Kerr coefficient (depends on m)
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
0
ij +

3X

k=1

Kijk mk +
3X

k=1

3X

l=1

Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes

✏ = ✏iso

0
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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• General case of oblique incidence: better use sp-coordinates

⟹

Maxwell equations, 

• Reflection coefficients:
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]

rpp =
n0 cos#1 � n1 cos#0

n1 cos#0 + n0 cos#1
� i 2n0n1 cos#0 sin#1mxQV
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, (2.92b)
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rps = � in0n1 cos#0(mz cos#1 �my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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. (2.93)

As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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pol = (
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rss
)pol =

�in0n1 cos#0QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 � n1 cos#1)
. (2.94)

For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as

(✓sK)
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4n0 cos#0

1

r01ss

. (2.95)

Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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phase retardation changes the polarization state of the emerging light. The
electric field vector of the polarization state of the emerging beam in the xy

coordinates (E0
x, E

0
y) is obtained by transforming back from the crystal eo

coordinate system, which is achieved by the rotation matrix � rot(�↵comp) in
(2.46).

In order to visualize the e↵ect of the compensator, let us discuss the case of
a quarter-wave plate (�' = ⇡/2). The previously discussed transformations
of light can be conveniently calculated by Jones algebra. Suppose that the
azimuth angle of the plate is ↵comp = 45� and the incident beam is vertically
polarized along the x-axis, Ein = (1, 0). According to (2.46) the Jones matrix
for this arrangement is

� qw =
1p
2

✓
1 �1
1 1

◆✓
e�

i⇡
4 0

0 e+
i⇡
4

◆
1p
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1 1

�1 1

◆
=
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1 �i
�i 1

◆
. (2.47)

The Jones vector E0 of the emerging beam is then obtained by

E0 = � qw

✓
1
0

◆
=

1p
2

✓
1
�i

◆
. (2.48)

As expected, vertically (x-) polarized light is thus converted to right-handed
circularly polarized light [compare (2.36)] by a 45�-oriented quarter-wave
plate. If the incident beam is vertically polarized along the x-axis, the emerg-
ing beam will be left-handed circularly polarized. These two transformations
together with some others are illustrated in Fig. 2.8. In the figure also the
e↵ect of an (ideal) analyser is indicated. It’s Jones matrix is given by

� an =

✓
cos↵ap � sin↵ap

sin↵ap cos↵ap

◆✓
1 0
0 0

◆✓
cos↵ap sin↵ap

� sin↵ap cos↵ap

◆
, (2.49)

with ↵ap = ↵pol+90�+↵an. Here it is assumed that the analyser is first crossed
relative to the polarizer and then opened by a small angle ↵an (relative to the
x-axis in Fig. 2.7b) as usual in a magneto-optical experiment.

Also the change of the polarization state, caused by reflection or transmis-
sion on a sample, can be described by corresponding Jones matrices:
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In the (s, p, k)-coordinate system (Fig. 2.3) these equations are conventionally
written as
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]

rpp =
n0 cos#1 � n1 cos#0

n1 cos#0 + n0 cos#1
� i 2n0n1 cos#0 sin#1mxQV

(n1 cos#0 + n0 cos#1)2
, (2.92a)

rsp =
in0n1 cos#0(mz cos#1 +my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
, (2.92b)
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, (2.92c)

rps = � in0n1 cos#0(mz cos#1 �my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:

(✓sK)
pol = (
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rss
)pol =

�in0n1 cos#0QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 � n1 cos#1)
. (2.94)

For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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. (2.95)

Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
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material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
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according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]

rpp =
n0 cos#1 � n1 cos#0

n1 cos#0 + n0 cos#1
� i 2n0n1 cos#0 sin#1mxQV

(n1 cos#0 + n0 cos#1)2
, (2.92a)
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, (2.92b)
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rps = � in0n1 cos#0(mz cos#1 �my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:

(✓sK)
pol = (

rps

rss
)pol =

�in0n1 cos#0QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 � n1 cos#1)
. (2.94)

For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]
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, (2.92b)

rss =
n0 cos#0 � n1 cos#1

n0 cos#0 + n1 cos#1
, (2.92c)
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Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n
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1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =
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equations are valid within the first-order approximation of the Voigt constant.
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by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
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light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
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light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]
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medium), n1 = n
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1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =
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1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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)pol =
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]
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, (2.92b)
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rps = � in0n1 cos#0(mz cos#1 �my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]
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Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n
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1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =
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1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]
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Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n
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1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =
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1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]
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Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n
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1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =
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1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]

rpp =
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n1 cos#0 + n0 cos#1
� i 2n0n1 cos#0 sin#1mxQV
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. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n
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1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =
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1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio

2. Magneto-Optical Effects – 2.4 Kerr Effect
(s)-polarization

Ein

Erefl

E transm

62 2 Magneto-Optical E↵ects
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Fig. 2.9. (a) The two standard situations of (s)- and (p) polarized plane waves
incident on the boundary between two homogenous and isotropic media. The waves
are represented by their electrical field, where Ein, Erefl and Etrans are the incident,
reflected and transmitted light amplitudes, respectively. On the left, the E-field of
the incoming wave is parallel to the plane-of-incidence (the yz-plane), on the right it
is normal. The component of E normal to the plane of incidence undergoes a phase
shift of 180� upon reflection when the incident medium has a lower refraction index
than the transmitting medium. Under this condition no phase shift occurs for field
components parallel to the incidence plane (note that two fields in the incidence
plane are in-phase if their z-components are parallel). (b) Real and imaginary parts
of the wave vector in an absorbing material, illustrating the di↵erence between the
directions of phase propagation and amplitude damping
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These so-called Fresnel equations can be generally applied to dielectric as
well as absorbing materials (remember: for the latter the refraction index and
refraction angle of the absorbing medium have to be taken complex. A complex
angle has no simple physical meaning, though). Index i represents the layer
from which the light originates. This can be a ferromagnetic or dielectric layer
in a multilayer system, or an environment like air or immersion oil. The light
then enters (and is reflected from) from layer j that is in direct contact to layer
i. Each layer is characterized by its (in general complex) index of refraction,
ni or nj . The constants r

ij
pp and r

ij
ss are the amplitude reflection coe�cients

from layer i to layer j for parallel and perpendicular polarization, and t
ij
pp
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is normal. The component of E normal to the plane of incidence undergoes a phase
shift of 180� upon reflection when the incident medium has a lower refraction index
than the transmitting medium. Under this condition no phase shift occurs for field
components parallel to the incidence plane (note that two fields in the incidence
plane are in-phase if their z-components are parallel). (b) Real and imaginary parts
of the wave vector in an absorbing material, illustrating the di↵erence between the
directions of phase propagation and amplitude damping
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components parallel to the incidence plane (note that two fields in the incidence
plane are in-phase if their z-components are parallel). (b) Real and imaginary parts
of the wave vector in an absorbing material, illustrating the di↵erence between the
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are represented by their electrical field, where Ein, Erefl and Etrans are the incident,
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shift of 180� upon reflection when the incident medium has a lower refraction index
than the transmitting medium. Under this condition no phase shift occurs for field
components parallel to the incidence plane (note that two fields in the incidence
plane are in-phase if their z-components are parallel). (b) Real and imaginary parts
of the wave vector in an absorbing material, illustrating the di↵erence between the
directions of phase propagation and amplitude damping
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then enters (and is reflected from) from layer j that is in direct contact to layer
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These so-called Fresnel equations can be generally applied to dielectric as
well as absorbing materials (remember: for the latter the refraction index and
refraction angle of the absorbing medium have to be taken complex. A complex
angle has no simple physical meaning, though). Index i represents the layer
from which the light originates. This can be a ferromagnetic or dielectric layer
in a multilayer system, or an environment like air or immersion oil. The light
then enters (and is reflected from) from layer j that is in direct contact to layer
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]
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Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]
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Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n
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1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =
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1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
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rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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By generalizing previous arguments, the complex Kerr e↵ect is then defined
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light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
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rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio

Kerr coefficient Kps

 57

out
in

z

y
x

• Incident light is s-polarized, resulting in p-polarized Kerr 
amplitude 

• Portion of light, which penetrates into metal (tss ), generates 
Kerr amplitude  

• Size of Kerr amplitude depends on QV  and incidence angle  
• p-polarized Kerr amplitude has to leave metal, described by 

transmission coefficient (tpp ) 
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between Kerr coe�cientand coe�cient of the normally reflected amplitude
[here given by Ns = r

01
ss , where r

01
ss is the regular reflection coe�cient of the

demagnetized material as defined in the Fresnel equation (2.52)], the Kerr
coe�cient Kpol

ps is finally given by the first fraction in (2.95):

K
pol
ps =

�in1QVt
01
ss t

01
pp

4n0 cos#0
. (2.96)

This coe�cient is interpreted as follows: the incident light is s-polarized, re-
sulting in a p-polarized Kerr amplitude as indicted by the lower index ps in
K

pol
ps . The portion of the incident light, which penetrates into the metal (t01ss ),

generates the Kerr amplitude by interaction with the magnetization. Its size
depends on the material constant QV and the angle of incidence #0. The p-
polarized Kerr amplitude has to leave the material to be detected, actually
described by the transmission coe�cient t10pp. In (2.96) this coe�cient is hidden
in t

01
pp, which is related to t

10
pp by identity t

ji
/t

ij = nj cos#j/ni cos#i according
to the Fresnel formulae (2.53). If the polarization direction of the incident
light is rotated by 90�, the sign of the polar Kerr coe�cient (now K

pol
sp ) is

inverted.
The Kerr coe�cients for in-plane magnetization (mz = 0,mx,y 6= 0) can

be derived in a similar way from (2.92a-d) and (2.93). In vector notation all
Kerr coe�cients are summarized as [?]:

K
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cos#1
,
�n1
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!
, (2.97a)
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!
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4 cos#0

 
�2 sin#0 , 0 , 0

!
. (2.97c)

As indicated by the upper index, these coe�cients are valid for bulk magnetic

material. The coe�cient K
bulk
pp is derived from r

(mag)
pp /r

(0)
pp in (2.92a), where

r
(0)
pp is the first fraction and r

(mag)
pp the (magnetization-dependent) second one.

In the next section we will make use of the Kerr coe�cients to describe the
geometry of the rotation e↵ects.

2.4.2 Geometry of the Rotation E↵ects

The dependence of the Faraday and Kerr e↵ects on the direction of magne-
tization, light incidence and polarization can be rigorously derived from the
dielectric magneto-optical tensor, Maxwell’ equations and the proper bound-
ary conditions. Examples of such solutions and a detailed analysis for the
example of the polar Faraday and Kerr e↵ects have been presented in the pre-
vious section (2.4.1). The discussion was based on circular polarization which

01
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]
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(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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pol = (
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rss
)pol =

�in0n1 cos#0QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 � n1 cos#1)
. (2.94)

For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as

(✓sK)
pol =
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. (2.95)

Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
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flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by
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As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:
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For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as
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Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio
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perpendicular magnetization (mz = 1, mx = my = 0)
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Here we have also considered the upper indices in the Fresnel coe�cients
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between Kerr coe�cientand coe�cient of the normally reflected amplitude
[here given by Ns = r
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ss is the regular reflection coe�cient of the

demagnetized material as defined in the Fresnel equation (2.52)], the Kerr
coe�cient Kpol

ps is finally given by the first fraction in (2.95):
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This coe�cient is interpreted as follows: the incident light is s-polarized, re-
sulting in a p-polarized Kerr amplitude as indicted by the lower index ps in
K

pol
ps . The portion of the incident light, which penetrates into the metal (t01ss ),

generates the Kerr amplitude by interaction with the magnetization. Its size
depends on the material constant QV and the angle of incidence #0. The p-
polarized Kerr amplitude has to leave the material to be detected, actually
described by the transmission coe�cient t10pp. In (2.96) this coe�cient is hidden
in t

01
pp, which is related to t

10
pp by identity t

ji
/t

ij = nj cos#j/ni cos#i according
to the Fresnel formulae (2.53). If the polarization direction of the incident
light is rotated by 90�, the sign of the polar Kerr coe�cient (now K

pol
sp ) is

inverted.
The Kerr coe�cients for in-plane magnetization (mz = 0,mx,y 6= 0) can

be derived in a similar way from (2.92a-d) and (2.93). In vector notation all
Kerr coe�cients are summarized as [?]:

K
bulk
ps =

iQVt
01
ppt

01
ss

4 cos#0

 
0 ,

sin#0

cos#1
,
�n1

n0

!
, (2.97a)

K
bulk
sp =

iQVt
01
ppt

01
ss

4 cos#0

 
0 ,

sin#0

cos#1
,
+n1

n0

!
, (2.97b)

K
bulk
pp =

iQVt
01
ppt

01
pp

4 cos#0

 
�2 sin#0 , 0 , 0

!
. (2.97c)

As indicated by the upper index, these coe�cients are valid for bulk magnetic

material. The coe�cient K
bulk
pp is derived from r

(mag)
pp /r

(0)
pp in (2.92a), where

r
(0)
pp is the first fraction and r

(mag)
pp the (magnetization-dependent) second one.

In the next section we will make use of the Kerr coe�cients to describe the
geometry of the rotation e↵ects.

2.4.2 Geometry of the Rotation E↵ects

The dependence of the Faraday and Kerr e↵ects on the direction of magne-
tization, light incidence and polarization can be rigorously derived from the
dielectric magneto-optical tensor, Maxwell’ equations and the proper bound-
ary conditions. Examples of such solutions and a detailed analysis for the
example of the polar Faraday and Kerr e↵ects have been presented in the pre-
vious section (2.4.1). The discussion was based on circular polarization which

General:
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For the general case of oblique incidence the plane of incidence can be de-
fined according to Fig. 2.3a. It is then convenient to use the sp-representation
(2.51) of the Fresnel reflection matrix. Solving Maxwell equations for the lin-
ear magneto-optical tensor in (2.58) in a more general way than before, leads
to the following reflection coe�cients [?, ?, ?, ?]

rpp =
n0 cos#1 � n1 cos#0

n1 cos#0 + n0 cos#1
� i 2n0n1 cos#0 sin#1mxQV

(n1 cos#0 + n0 cos#1)2
, (2.92a)

rsp =
in0n1 cos#0(mz cos#1 +my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
, (2.92b)

rss =
n0 cos#0 � n1 cos#1

n0 cos#0 + n1 cos#1
, (2.92c)

rps = � in0n1 cos#0(mz cos#1 �my sin#1)QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 + n1 cos#1) cos#1
. (2.92d)

Here n0 is the refractive index of the environment (air or an immersion
medium), n1 = n

0
1 + in00

1 is the complex index of refraction of the magnetic
material, QV is its magneto-optical Voigt constant, #0 is the angle of inci-
dence (measured from the surface normal) and #1 is the (complex) angle of
incidence in the magnetic medium, to be calculated from #0 by Snell’s law
(2.54) cos#1 =

p
1� (n0 sin#0/n1)2. Like in the previous discussion, above

equations are valid within the first-order approximation of the Voigt constant.
By generalizing previous arguments, the complex Kerr e↵ect is then defined
by the ratios of the o↵-diagonal elements to the diagonal elements of the re-
flection matrix. For the two standard geometries of s- and p-polarized incident
light these ratios are given by

✓
p
K ⌘ rsp

rpp
and ✓

s
K ⌘ rps

rss
. (2.93)

As an example, let us have a closer look at the polar configuration (mz = 1
and mx = my = 0) with s -polarized, obliquely incident light. By substituting
(2.92d) and (2.92c) in (2.93), the complex Kerr rotation is obtained:

(✓sK)
pol = (

rps

rss
)pol =

�in0n1 cos#0QV

(n1 cos#0 + n0 cos#1)(n0 cos#0 � n1 cos#1)
. (2.94)

For normal incidence (#0 = #1 = 0�) and n0 = 1 this expression is identical
with (2.89). With the Fresnel formulae (2.52) and (2.53), the complex Kerr
rotation (2.94) can be written as

(✓sK)
pol =

�in1QVt
01
ss t

01
pp

4n0 cos#0

1

r01ss

. (2.95)

Here we have also considered the upper indices in the Fresnel coe�cients
according to (2.52) and (2.53). Recalling that the Kerr rotation is the ratio

⟹

Fresnel equations 
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for the polar, the longitudinal and the transverse cases are excited [compare
(2.85)], depending on the magnetization components mpol, mlon and mtra.
Finally the light passes through an analyser (with the setting ↵an measured
from the the plane of incidence), leading to the total signal amplitude

Atot = AN ±AK , (2.100)

with

AN = R
p
N sin↵pol cos↵an �R

s
N cos↵pol sin↵an ,

AK = R
pol
K cos (↵an � ↵pol)mpol �R

lon
K cos (↵an + ↵pol)mlon

+R
tra
K sin↵pol cos↵an mtra .

This equation can also be used for a general magnetization direction dif-
ferent from the conventional polar, longitudinal and transverse orientations.
The total signal amplitude Atot is the sum of the regular signal amplitude AN

and the e↵ective Kerr amplitude AK. The regular reflection coe�cients, Np

and Ns, are those of demagnetized material as defined in the Fresnel equations
(2.52) [see Sect. 2.4.1]:

Np = r
01
pp and Ns = r

01
ss , (2.101)

and the Kerr coe�cients for the three basic geometries are [?, ?, ?]:

K
pol
sp =

iQVn1

4n0 cos#0
t
01
ss t

01
pp , K

pol
ps = �K

pol
sp , (2.102a)

K
lon
sp =

iQV sin#0

4 cos#0 cos#1
t
01
ss t

01
pp , K

lon
ps = K

lon
sp , (2.102b)

K
tra
pp = � iQV sin#0

2 cos#0
t
01
pp t

01
pp , (2.102c)

according to (2.97a-c).
Interesting is the relative strength of the longitudinal and polar Kerr ef-

fects. With Snell’s law (2.54) the longitudinal Kerr coe�cient can be written as
K

lon
sp = (iQVn1t

01
ss t

01
pp tan#1)/(4n0 cos#0) = K

pol
sp tan#1. The polar and longi-

tudinal Kerr e↵ects thus di↵er just by the factor tan#1. At optical frequencies
the refractive indices of metals are relatively large, i.e. #1 and therefore tan#1

are typically of the order of 0.1. The polar Kerr e↵ect is consequently by an
order of magnitude stronger than the longitudinal (and transverse) Kerr e↵ect.

2.4.3 Kerr Contrast and Signal

The most important characteristics in magneto-optical microscopy are con-

trast and signal-to-noise ratio. Let’s have a closer look at these parameters
as they demonstrate the importance of the Kerr amplitude as a “figure of
merit” in magneto-optics. The discussion in this section is specified to the
Kerr contrast, but it equally well applies to the Voigt e↵ect (Sect. 2.5) by
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for the polar, the longitudinal and the transverse cases are excited [compare
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for the polar, the longitudinal and the transverse cases are excited [compare
(2.85)], depending on the magnetization components mpol, mlon and mtra.
Finally the light passes through an analyser (with the setting ↵an measured
from the the plane of incidence), leading to the total signal amplitude
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ferent from the conventional polar, longitudinal and transverse orientations.
The total signal amplitude Atot is the sum of the regular signal amplitude AN

and the e↵ective Kerr amplitude AK. The regular reflection coe�cients, Np

and Ns, are those of demagnetized material as defined in the Fresnel equations
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for the polar, the longitudinal and the transverse cases are excited [compare
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between Kerr coe�cientand coe�cient of the normally reflected amplitude
[here given by Ns = r

01
ss , where r

01
ss is the regular reflection coe�cient of the

demagnetized material as defined in the Fresnel equation (2.52)], the Kerr
coe�cient Kpol

ps is finally given by the first fraction in (2.95):
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This coe�cient is interpreted as follows: the incident light is s-polarized, re-
sulting in a p-polarized Kerr amplitude as indicted by the lower index ps in
K

pol
ps . The portion of the incident light, which penetrates into the metal (t01ss ),

generates the Kerr amplitude by interaction with the magnetization. Its size
depends on the material constant QV and the angle of incidence #0. The p-
polarized Kerr amplitude has to leave the material to be detected, actually
described by the transmission coe�cient t10pp. In (2.96) this coe�cient is hidden
in t

01
pp, which is related to t

10
pp by identity t

ji
/t

ij = nj cos#j/ni cos#i according
to the Fresnel formulae (2.53). If the polarization direction of the incident
light is rotated by 90�, the sign of the polar Kerr coe�cient (now K
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sp ) is

inverted.
The Kerr coe�cients for in-plane magnetization (mz = 0,mx,y 6= 0) can

be derived in a similar way from (2.92a-d) and (2.93). In vector notation all
Kerr coe�cients are summarized as [?]:
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As indicated by the upper index, these coe�cients are valid for bulk magnetic

material. The coe�cient K
bulk
pp is derived from r

(mag)
pp /r

(0)
pp in (2.92a), where

r
(0)
pp is the first fraction and r

(mag)
pp the (magnetization-dependent) second one.

In the next section we will make use of the Kerr coe�cients to describe the
geometry of the rotation e↵ects.

2.4.2 Geometry of the Rotation E↵ects

The dependence of the Faraday and Kerr e↵ects on the direction of magne-
tization, light incidence and polarization can be rigorously derived from the
dielectric magneto-optical tensor, Maxwell’ equations and the proper bound-
ary conditions. Examples of such solutions and a detailed analysis for the
example of the polar Faraday and Kerr e↵ects have been presented in the pre-
vious section (2.4.1). The discussion was based on circular polarization which



2. Magneto-Optical Effects – 2.4 Kerr Effect
Three basic Kerr configurations

vLor

b)a)

vLor

J

polar

ΕΕΕΕ

ϑ

R

longitudinal

J

R

RF

0

N

K

b)a)

transverse

J

vLor

longitudinal

vLor

ϑ0

J

ϑ0

m

Longitudinal ⊥

m

m

d)
b)

transverse

J

vLor

m

vLor

RN

RK

Ein

RF

vLor

b)a)

vLor

J

polar

ΕΕΕΕ

ϑ

R

longitudinal

J

R

RF

0

N

K

b)a)

transverse

J

vLor

longitudinal

vLor

ϑ0

J

ϑ0

m

Longitudinal ⊥

m

m

d)
b)

transverse

J

vLor

m

vLor

RN

RK

Ein

RF

vLor

b)a)

vLor

J

polar

ΕΕΕΕ

ϑ

R

longitudinal

J

R

RF

0

N

K

b)a)

transverse

J

vLor

longitudinal

vLor

ϑ0

J

ϑ0

m

Longitudinal ⊥

m

m

d)
b)

transverse

J

vLor

m

vLor

RN

RK

Ein

RF

Polar Longitudinal Transverse

68 2 Magneto-Optical E↵ects

for the polar, the longitudinal and the transverse cases are excited [compare
(2.85)], depending on the magnetization components mpol, mlon and mtra.
Finally the light passes through an analyser (with the setting ↵an measured
from the the plane of incidence), leading to the total signal amplitude

Atot = AN ±AK , (2.100)

with

AN = R
p
N sin↵pol cos↵an �R

s
N cos↵pol sin↵an ,

AK = R
pol
K cos (↵an � ↵pol)mpol �R

lon
K cos (↵an + ↵pol)mlon

+R
tra
K sin↵pol cos↵an mtra .

This equation can also be used for a general magnetization direction dif-
ferent from the conventional polar, longitudinal and transverse orientations.
The total signal amplitude Atot is the sum of the regular signal amplitude AN

and the e↵ective Kerr amplitude AK. The regular reflection coe�cients, Np

and Ns, are those of demagnetized material as defined in the Fresnel equations
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tudinal Kerr e↵ects thus di↵er just by the factor tan#1. At optical frequencies
the refractive indices of metals are relatively large, i.e. #1 and therefore tan#1

are typically of the order of 0.1. The polar Kerr e↵ect is consequently by an
order of magnitude stronger than the longitudinal (and transverse) Kerr e↵ect.

2.4.3 Kerr Contrast and Signal

The most important characteristics in magneto-optical microscopy are con-

trast and signal-to-noise ratio. Let’s have a closer look at these parameters
as they demonstrate the importance of the Kerr amplitude as a “figure of
merit” in magneto-optics. The discussion in this section is specified to the
Kerr contrast, but it equally well applies to the Voigt e↵ect (Sect. 2.5) by
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for the polar, the longitudinal and the transverse cases are excited [compare
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for the polar, the longitudinal and the transverse cases are excited [compare
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tudinal Kerr e↵ects thus di↵er just by the factor tan#1. At optical frequencies
the refractive indices of metals are relatively large, i.e. #1 and therefore tan#1

are typically of the order of 0.1. The polar Kerr e↵ect is consequently by an
order of magnitude stronger than the longitudinal (and transverse) Kerr e↵ect.

2.4.3 Kerr Contrast and Signal

The most important characteristics in magneto-optical microscopy are con-

trast and signal-to-noise ratio. Let’s have a closer look at these parameters
as they demonstrate the importance of the Kerr amplitude as a “figure of
merit” in magneto-optics. The discussion in this section is specified to the
Kerr contrast, but it equally well applies to the Voigt e↵ect (Sect. 2.5) by
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between Kerr coe�cientand coe�cient of the normally reflected amplitude
[here given by Ns = r

01
ss , where r

01
ss is the regular reflection coe�cient of the

demagnetized material as defined in the Fresnel equation (2.52)], the Kerr
coe�cient Kpol

ps is finally given by the first fraction in (2.95):

K
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01
ss t

01
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4n0 cos#0
. (2.96)

This coe�cient is interpreted as follows: the incident light is s-polarized, re-
sulting in a p-polarized Kerr amplitude as indicted by the lower index ps in
K

pol
ps . The portion of the incident light, which penetrates into the metal (t01ss ),

generates the Kerr amplitude by interaction with the magnetization. Its size
depends on the material constant QV and the angle of incidence #0. The p-
polarized Kerr amplitude has to leave the material to be detected, actually
described by the transmission coe�cient t10pp. In (2.96) this coe�cient is hidden
in t

01
pp, which is related to t

10
pp by identity t

ji
/t

ij = nj cos#j/ni cos#i according
to the Fresnel formulae (2.53). If the polarization direction of the incident
light is rotated by 90�, the sign of the polar Kerr coe�cient (now K

pol
sp ) is

inverted.
The Kerr coe�cients for in-plane magnetization (mz = 0,mx,y 6= 0) can

be derived in a similar way from (2.92a-d) and (2.93). In vector notation all
Kerr coe�cients are summarized as [?]:

K
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As indicated by the upper index, these coe�cients are valid for bulk magnetic

material. The coe�cient K
bulk
pp is derived from r

(mag)
pp /r

(0)
pp in (2.92a), where

r
(0)
pp is the first fraction and r

(mag)
pp the (magnetization-dependent) second one.

In the next section we will make use of the Kerr coe�cients to describe the
geometry of the rotation e↵ects.

2.4.2 Geometry of the Rotation E↵ects

The dependence of the Faraday and Kerr e↵ects on the direction of magne-
tization, light incidence and polarization can be rigorously derived from the
dielectric magneto-optical tensor, Maxwell’ equations and the proper bound-
ary conditions. Examples of such solutions and a detailed analysis for the
example of the polar Faraday and Kerr e↵ects have been presented in the pre-
vious section (2.4.1). The discussion was based on circular polarization which
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for the polar, the longitudinal and the transverse cases are excited [compare
(2.85)], depending on the magnetization components mpol, mlon and mtra.
Finally the light passes through an analyser (with the setting ↵an measured
from the the plane of incidence), leading to the total signal amplitude

Atot = AN ±AK , (2.100)

with

AN = R
p
N sin↵pol cos↵an �R

s
N cos↵pol sin↵an ,

AK = R
pol
K cos (↵an � ↵pol)mpol �R

lon
K cos (↵an + ↵pol)mlon

+R
tra
K sin↵pol cos↵an mtra .

This equation can also be used for a general magnetization direction dif-
ferent from the conventional polar, longitudinal and transverse orientations.
The total signal amplitude Atot is the sum of the regular signal amplitude AN

and the e↵ective Kerr amplitude AK. The regular reflection coe�cients, Np

and Ns, are those of demagnetized material as defined in the Fresnel equations
(2.52) [see Sect. 2.4.1]:

Np = r
01
pp and Ns = r

01
ss , (2.101)

and the Kerr coe�cients for the three basic geometries are [?, ?, ?]:

K
pol
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4n0 cos#0
t
01
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01
pp , K

pol
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pol
sp , (2.102a)

K
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sp , (2.102b)

K
tra
pp = � iQV sin#0

2 cos#0
t
01
pp t

01
pp , (2.102c)

according to (2.97a-c).
Interesting is the relative strength of the longitudinal and polar Kerr ef-

fects. With Snell’s law (2.54) the longitudinal Kerr coe�cient can be written as
K

lon
sp = (iQVn1t

01
ss t

01
pp tan#1)/(4n0 cos#0) = K

pol
sp tan#1. The polar and longi-

tudinal Kerr e↵ects thus di↵er just by the factor tan#1. At optical frequencies
the refractive indices of metals are relatively large, i.e. #1 and therefore tan#1

are typically of the order of 0.1. The polar Kerr e↵ect is consequently by an
order of magnitude stronger than the longitudinal (and transverse) Kerr e↵ect.

2.4.3 Kerr Contrast and Signal

The most important characteristics in magneto-optical microscopy are con-

trast and signal-to-noise ratio. Let’s have a closer look at these parameters
as they demonstrate the importance of the Kerr amplitude as a “figure of
merit” in magneto-optics. The discussion in this section is specified to the
Kerr contrast, but it equally well applies to the Voigt e↵ect (Sect. 2.5) by
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merit” in magneto-optics. The discussion in this section is specified to the
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between Kerr coe�cientand coe�cient of the normally reflected amplitude
[here given by Ns = r

01
ss , where r

01
ss is the regular reflection coe�cient of the

demagnetized material as defined in the Fresnel equation (2.52)], the Kerr
coe�cient Kpol

ps is finally given by the first fraction in (2.95):

K
pol
ps =

�in1QVt
01
ss t

01
pp

4n0 cos#0
. (2.96)

This coe�cient is interpreted as follows: the incident light is s-polarized, re-
sulting in a p-polarized Kerr amplitude as indicted by the lower index ps in
K

pol
ps . The portion of the incident light, which penetrates into the metal (t01ss ),

generates the Kerr amplitude by interaction with the magnetization. Its size
depends on the material constant QV and the angle of incidence #0. The p-
polarized Kerr amplitude has to leave the material to be detected, actually
described by the transmission coe�cient t10pp. In (2.96) this coe�cient is hidden
in t

01
pp, which is related to t

10
pp by identity t

ji
/t

ij = nj cos#j/ni cos#i according
to the Fresnel formulae (2.53). If the polarization direction of the incident
light is rotated by 90�, the sign of the polar Kerr coe�cient (now K

pol
sp ) is

inverted.
The Kerr coe�cients for in-plane magnetization (mz = 0,mx,y 6= 0) can

be derived in a similar way from (2.92a-d) and (2.93). In vector notation all
Kerr coe�cients are summarized as [?]:

K
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ppt
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ss

4 cos#0
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, (2.97a)

K
bulk
sp =

iQVt
01
ppt

01
ss

4 cos#0

 
0 ,

sin#0

cos#1
,
+n1

n0

!
, (2.97b)

K
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iQVt
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4 cos#0

 
�2 sin#0 , 0 , 0

!
. (2.97c)

As indicated by the upper index, these coe�cients are valid for bulk magnetic

material. The coe�cient K
bulk
pp is derived from r

(mag)
pp /r

(0)
pp in (2.92a), where

r
(0)
pp is the first fraction and r

(mag)
pp the (magnetization-dependent) second one.

In the next section we will make use of the Kerr coe�cients to describe the
geometry of the rotation e↵ects.

2.4.2 Geometry of the Rotation E↵ects

The dependence of the Faraday and Kerr e↵ects on the direction of magne-
tization, light incidence and polarization can be rigorously derived from the
dielectric magneto-optical tensor, Maxwell’ equations and the proper bound-
ary conditions. Examples of such solutions and a detailed analysis for the
example of the polar Faraday and Kerr e↵ects have been presented in the pre-
vious section (2.4.1). The discussion was based on circular polarization which
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The geometry of the magneto-optical rotation e↵ects can be summarized
as follows: The Kerr- and Faraday e↵ects cause a rotation of light, which
is proportional to the magnetization component parallel to the reflected or
transmitted light beam. According to (2.98), both e↵ects are linear in the
magnetization. Consequently the Kerr- and Faraday rotation is inverted when
the magnetization direction is inverted. Oppositely magnetized domains thus
rotate plane-polarized light in opposite directions as illustrated in Fig. 2.14a
for the longitudinal Kerr e↵ect. A domain contrast in the Kerr microscope
is obtained if the reflected light from di↵erent domains is blocked di↵erently
with an analyser as indicated in Fig. 2.14b. The theory of the Kerr contrast
and its optimization is presented in Sect. 2.4.3.
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Fig. 2.14. (a) The elementary magneto-optical interaction of oppositely magnetized
domains for the longitudinal Kerr e↵ect. The Lorentz force in antiparallel domains
acts in reversed direction so that the Kerr amplitude AK changes sign [note that reg-
ular and Kerr amplitudes are denoted here by ‘A’ which stands for the generalized
amplitudes defined in (2.100)]. (b) The interference of the normally reflected com-
ponent AN and the Kerr amplitude AK results in a magnetization-dependent light
rotation by the (small) angle ⇥K, which, by using an analyser, leads to the domain
contrast. The analyser should actually be set at an angle ↵an > ⇥K to optimize the
domain visibility. For the sketch it is assumed that a possible phase shift between
AN and AK (ellipticity) is eliminated by a compensator. (c) Polarizer and analyser
in a Kerr setup with definition of the respective angels (compare Fig. 2.7b)

A general formula [?, ?] for the signal amplitude of the Kerr e↵ect is
obtained by combining the three e↵ects in a quantitative way. The polarizer
of setting ↵pol, measured from the axis perpendicular to the plane of incidence,
defines the polarization plane of the incoming light (Fig. 2.14c). On reflection
from the sample the light experiences regular reflection coe�cients Np and Ns

for the amplitude components Rp
N and R

s
N parallel (index p) and perpendicular

(index s) to the plane of incidence, respectively. At the same time the Kerr
amplitudes R
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for the polar, the longitudinal and the transverse cases are excited [compare
(2.85)], depending on the magnetization components mpol, mlon and mtra.
Finally the light passes through an analyser (with the setting ↵an measured
from the the plane of incidence), leading to the total signal amplitude

Atot = AN ±AK , (2.100)

with

AN = R
p
N sin↵pol cos↵an �R

s
N cos↵pol sin↵an ,

AK = R
pol
K cos (↵an � ↵pol)mpol �R

lon
K cos (↵an + ↵pol)mlon

+R
tra
K sin↵pol cos↵an mtra .

This equation can also be used for a general magnetization direction dif-
ferent from the conventional polar, longitudinal and transverse orientations.
The total signal amplitude Atot is the sum of the regular signal amplitude AN

and the e↵ective Kerr amplitude AK. The regular reflection coe�cients, Np

and Ns, are those of demagnetized material as defined in the Fresnel equations
(2.52) [see Sect. 2.4.1]:

Np = r
01
pp and Ns = r

01
ss , (2.101)

and the Kerr coe�cients for the three basic geometries are [?, ?, ?]:

K
pol
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iQVn1

4n0 cos#0
t
01
ss t

01
pp , K

pol
ps = �K

pol
sp , (2.102a)

K
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iQV sin#0

4 cos#0 cos#1
t
01
ss t

01
pp , K
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ps = K

lon
sp , (2.102b)

K
tra
pp = � iQV sin#0

2 cos#0
t
01
pp t

01
pp , (2.102c)

according to (2.97a-c).
Interesting is the relative strength of the longitudinal and polar Kerr ef-

fects. With Snell’s law (2.54) the longitudinal Kerr coe�cient can be written as
K

lon
sp = (iQVn1t

01
ss t

01
pp tan#1)/(4n0 cos#0) = K

pol
sp tan#1. The polar and longi-

tudinal Kerr e↵ects thus di↵er just by the factor tan#1. At optical frequencies
the refractive indices of metals are relatively large, i.e. #1 and therefore tan#1

are typically of the order of 0.1. The polar Kerr e↵ect is consequently by an
order of magnitude stronger than the longitudinal (and transverse) Kerr e↵ect.

2.4.3 Kerr Contrast and Signal

The most important characteristics in magneto-optical microscopy are con-

trast and signal-to-noise ratio. Let’s have a closer look at these parameters
as they demonstrate the importance of the Kerr amplitude as a “figure of
merit” in magneto-optics. The discussion in this section is specified to the
Kerr contrast, but it equally well applies to the Voigt e↵ect (Sect. 2.5) by
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Copt =
AKANp

(A2
K + I0)

p
(A2

N + I0)
⇡ AKp

(A2
K + I0)

(2.107)

which is achieved already at an angle ↵an = ↵
C
opt smaller than 45�:

tan↵C
opt =

s
A

2
K + I0

A
2
N + I0

. (2.108)

As the background I0 is much smaller than A
2
N, the optimum contrast can

be approximated by the second term in (2.107). For large AN the optimum
contrast obviously depends on the background intensity and on the Kerr
amplitude only — not on the regular amplitude AN or the Kerr rotation
✓K = AK/AN.

In todays Kerr microscopy, however, the contrast is not the decisive crite-
rion. By image processing (Sect. 3.1B) it can be easily enhanced with electronic
means. For video microscopy, a large signal-to-noise ratio, rSN, is rather im-
portant in order to obtain good domain visibility. This ratio is maximized
by increasing the signal, which again requires larger opening angles ↵an than
necessary for optimum contrast (with increasing angle ↵an the image intensity
increases with ↵

2
an). The optimum analyser angle ↵SN

opt depends on the ratio of
the di↵erent noise contributions. Three sources of noise have to be taken into
account: (i) Temperature-dependent noise of the detection electronics that
is usually independent of the image intensity. (ii) Fluctuations in the light
source, in the optical path, and in the sample (in magneto-optical record-
ing this noise is called “media noise”) which will be proportional to the image
intensity. (iii) Shot noise based on the quantized nature of light. This unavoid-
able noise contribution can be reduced by averaging over a large number of
photons due to its statistical character. Shot noise varies with the square root
of the photon number in the image. The less the noise depends on the average
detected intensity, the better are larger opening angles. In the limiting case of
an intensity-independent detector noise as sole noise mechanism, the optimum
angle ↵

SN
opt is 45

�, i.e. the angle for maximum signal according to (2.104). An
optimum signal then also results in an optimum rSN. If, on the other hand,
those fluctuations are dominating that are proportional to the intensity, a
maximum rSN is obtained by maximizing the contrast at ↵SN

opt = ↵
C
opt.

An ideal image processing is only limited by the unavoidable shot noise.
In this case the optical noise may be written as

Nshot =

r
1

2
Finc(I1 + I2) , (2.109)

where Finc is the incident number of photons. With the absolute signal Smo =
Finc(I1 � I2) we obtain

rSN = Smo/Nshot =
p
Finc(I1 � I2)/

r
1

2
(I1 + I2) . (2.110)
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⟹

Optimum contrast depends on: 

•background intensity I0 and Kerr amplitude AK,  
•not on Kerr rotation
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The geometry of the magneto-optical rotation e↵ects can be summarized
as follows: The Kerr- and Faraday e↵ects cause a rotation of light, which
is proportional to the magnetization component parallel to the reflected or
transmitted light beam. According to (2.98), both e↵ects are linear in the
magnetization. Consequently the Kerr- and Faraday rotation is inverted when
the magnetization direction is inverted. Oppositely magnetized domains thus
rotate plane-polarized light in opposite directions as illustrated in Fig. 2.14a
for the longitudinal Kerr e↵ect. A domain contrast in the Kerr microscope
is obtained if the reflected light from di↵erent domains is blocked di↵erently
with an analyser as indicated in Fig. 2.14b. The theory of the Kerr contrast
and its optimization is presented in Sect. 2.4.3.
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Fig. 2.14. (a) The elementary magneto-optical interaction of oppositely magnetized
domains for the longitudinal Kerr e↵ect. The Lorentz force in antiparallel domains
acts in reversed direction so that the Kerr amplitude AK changes sign [note that reg-
ular and Kerr amplitudes are denoted here by ‘A’ which stands for the generalized
amplitudes defined in (2.100)]. (b) The interference of the normally reflected com-
ponent AN and the Kerr amplitude AK results in a magnetization-dependent light
rotation by the (small) angle ⇥K, which, by using an analyser, leads to the domain
contrast. The analyser should actually be set at an angle ↵an > ⇥K to optimize the
domain visibility. For the sketch it is assumed that a possible phase shift between
AN and AK (ellipticity) is eliminated by a compensator. (c) Polarizer and analyser
in a Kerr setup with definition of the respective angels (compare Fig. 2.7b)

A general formula [?, ?] for the signal amplitude of the Kerr e↵ect is
obtained by combining the three e↵ects in a quantitative way. The polarizer
of setting ↵pol, measured from the axis perpendicular to the plane of incidence,
defines the polarization plane of the incoming light (Fig. 2.14c). On reflection
from the sample the light experiences regular reflection coe�cients Np and Ns

for the amplitude components Rp
N and R

s
N parallel (index p) and perpendicular

(index s) to the plane of incidence, respectively. At the same time the Kerr
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⟹ Figure of merit = Kerr amplitude  
 (not Kerr rotation)
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simply replacing the generalized Kerr amplitude AK [defined in (2.100)] by a
corresponding Voigt amplitude AV.

A domain contrast in the Kerr microscope is obtained if most of the re-
flected light from one domain type is blocked by the analyser as indicated in
Fig. 2.14b. The light emerging from domains with other magnetization direc-
tions will then more or less pass the analyser and the rotation of the polar-
ization plane is transferred to a detectable di↵erence in intensities. Strongest
contrast is expected between domains that create an opposite change of the
polarization state (this is the situation assumed in Fig. 2.14b). In case of the
Kerr e↵ect these are domains with antiparallel magnetization15 as shown in
Fig. 2.11. If extinction is not possible due to elliptical contributions in the
emerging light, the light can be made linear by means of a phase shifter (com-
pensator, see Sect. 2.2.4). Elliptically polarized light is generated when the
magneto-optical light component is phase-shifted relative to the regular com-
ponent as discussed previously. Metallic reflection at oblique incidence always
generates elliptical light if the polarization direction of the incident light is
not perpendicular or parallel to the plane of incidence (like for the transverse
Kerr e↵ect at 45� polarization). But even if this is the case like in the longitu-
dinal e↵ects, an intrinsic Kerr ellipticity can occur as shown in Sect. 2.4.1. It
is, however, usually small. In Kerr microscopy, ellipticity can often su�ciently
be compensated by slightly rotating the polarizer [?], without the need of a
compensator.

According to Fig. 2.14b, it seems reasonable to chose an analyser setting
that would exactly extinguish the light coming from one of the domain phases,
i.e. ↵an = ✓K. This domain phase will then appear dark, whereas all other
domain phases will appear more or less bright. In practice, however, analyser
angles of a few degrees are typical, which is much more than the typical
Kerr rotations of less than a degree. This can also be reasoned theoretically:
Let us assume the general case of a phase shift between AN and AK, so
that AK is a complex number (if the phases of regular and magneto-optical
amplitude would be equal, then AN and AK could be taken as real numbers).
For an opening angle ↵an, by which the analyser is rotated away from the
crossed position relative to the polarizer, the intensities of the domains become
[?, ?]:

I1 = [AN sin(↵an)�AK cos(↵an)][AN sin(↵an)�AK cos(↵an)]
⇤ + I0 , (2.103a)

I2 = [AN sin(↵an) +AK cos(↵an)][AN sin(↵an) +AK cos(↵an)]
⇤ + I0 . (2.103b)

Here I1 and I2 are the intensities of the “dark” and “bright” domain, respec-
tively, and I0 is a background intensity that is, e.g., caused by an imperfect
polarization degree of the polarizers, the use of a finite illumination aperture
and by depolarizing e↵ects at lenses and the sample. The star (⇤) denotes
the conjugate complex. The products in (2.103a,b) sensitively depend on the

15 In case of the Voigt e↵ect, orthogonally magnetized domains lead to the strongest
contrast as shown in Sect. 2.5
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phase di↵erence �K between AN and AK that was defined in (2.88). For the
Kerr e↵ect the ”intrinsic” phase di↵erence is usually small, whereas for the
Voigt e↵ect (see Sect. 2.5) it can amount to ⇡/2. The phase di↵erence can also
depend on possibly present interference layers, which have a di↵erent influence
on the magneto-optical and regular light amplitudes [?].

The Kerr signal is largest if the phase di↵erence �K is an integer multiple
of 2⇡. To fulfill this condition in a magneto-optical experiment, the phase shift
between AN and AK has (possibly) to be adjusted. This can be achieved, for
instance, with a Babinet-compensator with controllable phase di↵erence �'

(2.40). For maximum signal, the optical axes of the compensator have to be
aligned perpendicular and parallel, respectively, to the polarization plane of
the regularly reflected light. Then the phase �K of the Kerr amplitude AK can
be exactly compensated by �'. This applies to the Kerr amplitudes of both
domains (see Fig. 2.14b) simultaneously in case of a Babinet-compensator.
The relative Kerr signal SK, which is the di↵erence between the two domain
intensities (2.103a,b), is then written as [?]:

SK = 2 cos(�K +�') sin(2↵an)AKAN , (2.104)

where the cos-term considers the degree of phase adjustment.
Babinet-compensator cannot be favorably used in wide-field microscopy

(see Sect. 2.2.4). Here rather compensators of the Brace-Köhler type are ap-
plied, i.e. phase-plates with a fixed phase di↵erence between ordinary and
extraordinary beam. A variable phase shift is obtained by rotating the phase
plate around its normal axis. There is, however, no neutral position which
leaves both amplitudes una↵ected. In case of a quarter-wave plate with
�' = ⇡/2, which is oriented at an angle of 45� between its optical axis
and AN, a signal

SK = 2 sin(�K + 2↵an)AKAN (2.105)

is obtained. In both cases (2.104, 2.105) the Kerr signal is a linear function
of the Kerr amplitude and therefore, according to (2.98), also linear in the
magnetization vector. This is very unusual for microscopy in general, where
mostly quadratic e↵ects are observed and the phase information is lost. The
Kerr signal can be optimized by increasing the analyser angle. However, at
the same time the brightness rises which might not always be of an advantage.

To see the problem, let us again consider the application of a Babinet-
compensator for simplicity. It allows to compensate the ellipticity in such a
way that plane-polarized light from both domains in Fig. 2.14b is obtained
simultaneously. The signal then gets maximum for ↵an = 45� according to
(2.104). The high brightness for such wide opening, however, does not lead to
an optimized contrast for visual observation. The contrast C is given by

C = (I2 � I1)/(I2 + I1) . (2.106)

Optimization with respect to the analyser angle ↵an gives the maximum con-
trast

Generalized amplitudes:
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Domain Intensities:

, optimization
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2
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Contrast enhancement in Kerr microscopy by Antireflection Coating

Dielectric anti-reflection coating: 
➙ regular amplitude goes to zero 
(destructive interference) 
➙ Kerr amplitude is enhanced (by 
constructive interference)
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Fig. 2.12. Representation of the polar magneto-optical Kerr e↵ect in terms of the
reflection of circularly polarized light. The incident linear wave, polarized along
x, is split into two counter-rotating circularly polarized waves which then interact
with the magnetic medium. According to equation (2.82b) a Kerr component K is
generated that is polarized along the y-axis and which interferes with the regularly
reflected component N (after [?])

are visualized in terms of the reflection of circularly polarized light by making
use of (2.82a,b). As both orthogonally polarized components, RN and RK, are
in general out of phase, the light reflected from a magnetic specimen will be
elliptically polarized. This holds for the Kerr e↵ect and to a much stronger
degree for the Voigt e↵ect that will be described by the Voigt component
RV and discussed in Sect. 2.5. On basis of the two phase-shifted orthogonal
components an elliptical wave is described as sketched in Fig. 2.4a. Making
use of (2.28c)14, the ratio of the Kerr- and regular light components can be
expressed as a function of ellipticity ⇠K and azimuth ✓K:

RK

RN
=

K

N
=

�Ey

Ex
= � tan ✓ � i tan ⇠

1 + i tan ✓ tan ⇠
=

tan(✓K) + i tan(⇠K)

1� i tan(✓K) tan(⇠K)
(2.86)

with the azimuth being defined relative to the polarization plane of the regu-
larly reflected light. As the angles ⇠K and ✓K are very small (at least in bulk
samples where transmission e↵ects can be excluded), the tangens-terms in
(2.86) can be replaced by their arguments and the term of second order can
be neglected, leading to the complex Kerr rotation ✓

c
K:

K

N
⇡ ✓K + i ⇠K = ✓

c
K . (2.87)

14 and considering the di↵erent sign conventions used in Fig. 2.4a and in the repre-
sentation of the Kerr ellipses according to Fig. 2.3b. The angles in both conven-
tions are related as ✓K = �✓ and ⇠K = ⇠
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are visualized in terms of the reflection of circularly polarized light by making
use of (2.82a,b). As both orthogonally polarized components, RN and RK, are
in general out of phase, the light reflected from a magnetic specimen will be
elliptically polarized. This holds for the Kerr e↵ect and to a much stronger
degree for the Voigt e↵ect that will be described by the Voigt component
RV and discussed in Sect. 2.5. On basis of the two phase-shifted orthogonal
components an elliptical wave is described as sketched in Fig. 2.4a. Making
use of (2.28c)14, the ratio of the Kerr- and regular light components can be
expressed as a function of ellipticity ⇠K and azimuth ✓K:
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with the azimuth being defined relative to the polarization plane of the regu-
larly reflected light. As the angles ⇠K and ✓K are very small (at least in bulk
samples where transmission e↵ects can be excluded), the tangens-terms in
(2.86) can be replaced by their arguments and the term of second order can
be neglected, leading to the complex Kerr rotation ✓

c
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K

N
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c
K . (2.87)

14 and considering the di↵erent sign conventions used in Fig. 2.4a and in the repre-
sentation of the Kerr ellipses according to Fig. 2.3b. The angles in both conven-
tions are related as ✓K = �✓ and ⇠K = ⇠
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Since the Kerr rotation is complex, the vibration is transformed from linear
into elliptical on reflection from a ferromagnet, and the semi-major axis is
at an angle to the direction of the incident plane-polarized vibration. The
real angle of rotation (✓K) of the semi-major axis of the vibration ellipse
corresponds to the real part of ✓cK, and the Kerr ellipticity to its imaginary
part. As magneto-optical e↵ects are described by amplitude ratios, we can
always normalize properly so that N becomes real, and write the Kerr e↵ect
in its polar form:

✓
c
K = K0 exp(i �K) . (2.88)

Here K0 is the magnitude of the Kerr amplitude and �K the Kerr phase. If �K
is positive, the Kerr amplitude lags behind the regular amplitude. The polar
form can be favorably applied in Hamrle’s description of depth selective Kerr
microscopy (Sect. 3.2.6).

For the polar geometry and with K and N defined in (2.83a,b), the com-
plex Kerr rotation can now be written as
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by using (2.87). Due to the imaginary unit in front of the fraction, the real
angle of rotation is obviously a result of the imaginary part of the fraction,
which is non-zero only in absorbing media:
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� n̄ QV

1� n̄2

�
, (2.90)

and the ellipticity is accordingly given by

⇠K = Im(✓cK) = �Re
� n̄ QV

1� n̄2

�
, (2.91)

looking along the positive z-direction. Note particularly that the rotation on
reflection comes primarily from the imaginary part and the ellipticity from
the real part of the o↵-diagonal elements of the magneto-optical matrix. This
is reverse to the situation on transmission, compare (2.79). The Kerr rota-
tion thus corresponds to the Faraday ellipticity and the Kerr ellipticity to
the Faraday rotation. Recalling that the imaginary part of n̄ QV is zero for
non-absorbing materials, we see that the rotation on reflection is zero for a
transparent medium. The reflected light is then just elliptically polarized with
the major axis parallel to the plane of polarization of the incident light. Rota-
tion in reflection requires a non-vanishing imaginary part and thus absorption.
For highly transparent magnetic garnets, for example, no domain observation
truly based on the Kerr e↵ect has been reported (domains in garnets are
observed in transmission by the Faraday e↵ect, perhaps using a mirror for
reflection observations [?]).
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2. Magneto-Optical Effects – 2.4 Kerr Effect

Interpretation in terms of Lorentz concept

64 2 Magneto-Optical E↵ects

finally led to a derivation of the Kerr amplitude. The symmetry of the solu-
tions, however, can also be derived by simple arguments based on the Lorentz
concept .

To see this, let us recall the dielectric law of the Kerr- and Faraday e↵ects.
With (2.3a) and (2.58) we have seen that, in the regime of optical frequencies,
the “rotational” nature of these two e↵ect is phenomenologically described by

D = ✏0✏E = "0n
2

0

@
1 �iQVm3 iQVm2

iQVm3 1 �iQVm1

�iQVm2 iQVm1 1

1

AE , (2.98)

with the refractive index of the medium being related to the isotropic dielec-
tric constant by n =

p
✏iso. If the o↵-diagonal elements of the antisymmetric

"-tensor would be zero, the displacement vector would be along the same di-
rection as the E-vector. The light would then interact with the matter without
rotation of its polarization plane. A rotation of the vibrational plane requires
the o↵-diagonal elements, which contain the components of the magnetization
vector. By rewriting the dielectric law (2.98) as

D = "0n
2[E + iQV(m⇥E)] (2.99)

it becomes obvious that the E-vector of the illuminating light interacts with
the magnetization vector m in a cross-product fashion in the same symmetry
as a Lorentz force that acts on the light-agitated electrons, thus revealing
the gyroelectric nature of the Kerr and Faraday e↵ects. A magnetization-
dependent contribution to the D-vector is obviously only generated if m⇥E

is non-zero.
This Lorentz concept leads to simple derivation of the symmetry of the

rotation e↵ects as illustrated in Fig. 2.13. Let us first assume perpendicular
magnetization and oblique incidence of light (Fig. 2.13a). According to the
Lorentz concept, the E-vector of the incident light wave excites electrons in
the specimen to an oscillation motion parallel to its plane of polarization.
The oscillatory motion acts as source for the emitted light in terms of a Hertz
dipole. Regularly reflected or transmitted light is polarized in the same plane
as the incident light. In Sect. 2.4.1 we have called this the regular component
RN of the emerging light. At the same time, the Lorentz force induces a small
component of vibrational motion perpendicular to the primary motion and
to the direction of magnetization. This secondary motion is proportional to
the ‘Lorentz velocity’ vLor = �m ⇥ E. Because of Huygens’ principle, the
secondary motion creates secondary amplitudes: the Kerr amplitude RK for
reflection and the Faraday amplitude RF for transmission. Due to the trans-
verse nature of electromagnetic waves, these magneto-optic light amplitudes
are obtained by projecting the Lorentz movement vLor onto the plane perpen-
dicular to the propagation direction of the light wave used in observation. It
was shown by Wenzel et al. [?] that this simple recipe describes for small QV

all possible cases: transmission, reflection, all directions of the magnetization,
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polar longitudinal
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• diffraction index  nmetal ≈ 3 (Fe)

Interpretation in terms of Lorentz concept
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74 2 Magneto-Optical E↵ects

of the electronic states on the quantization axis is necessary. Initial d and
final p states are displayed as horizontal lines in Fig. 2.15, and labelled ac-
cording to their orbital and spin quantum numbers, using the nomenclature
|l m "> and |l m #>. Here l is the orbital quantum number (l = 1 for p states
and l = 2 for d states) and "# indicate the spin orientation. Levels for spin
up (", majority, left) and spin down (#, minority, middle) are separated in
energy by exchange splitting. The exchange splitting for the unoccupied p

states has been neglected. In addition to the exchange splitting, also the (in
valence bands generally smaller) spin–orbit splitting contributes to the sepa-
ration of levels. It lifts the degeneracy of states with di↵erent m. For spin up,
a more positive m is lower in energy, while for spin down, the lowest energy
corresponds to the state with the most negative m.
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Fig. 2.15. (a) Schematic representation of the electronic structure of p and d states
in a ferromagnetic solid, including exchange splitting of the occupied d states and
spin–orbit splitting of p and d states. Levels are labelled |l m "> according to their
orbital and magnetic quantum numbers as well as their spin. Vertical arrows indicate
dipole-allowed transitions for right (�m = +1) and left (�m = �1) circularly
polarized light. The right hand side schematically depicts absorption spectra for the
two opposite circular polarization directions for transitions from |2 ± 1 > states.
After [?, ?]

The vertical arrows show possible d ! p transitions obeying the dipole
selection rules, both for left and right circularly polarized light (�m = +1
and �m = �1, respectively). Electric dipole transitions conserve the spin. It
is evident from the di↵erent lengths of these arrows for the two opposite light

Orbital quantum number  
(p-states: l = 1 , d-states: l = 2)

Spin orientation 

Magnetic quantum number

Selection rules for electric dipole 
transitions, excited by circular photons:

• right circular: ∆m = +1
• left circular: ∆m = –1

• Total orbital momentum along 
quantization axis is conserved:

• Electron spin is conserved:

• Total orbital momentum is conserved:
∆l = ±1

∆s = 0
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a more positive m is lower in energy, while for spin down, the lowest energy
corresponds to the state with the most negative m.
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Fig. 2.15. (a) Schematic representation of the electronic structure of p and d states
in a ferromagnetic solid, including exchange splitting of the occupied d states and
spin–orbit splitting of p and d states. Levels are labelled |l m "> according to their
orbital and magnetic quantum numbers as well as their spin. Vertical arrows indicate
dipole-allowed transitions for right (�m = +1) and left (�m = �1) circularly
polarized light. The right hand side schematically depicts absorption spectra for the
two opposite circular polarization directions for transitions from |2 ± 1 > states.
After [?, ?]

The vertical arrows show possible d ! p transitions obeying the dipole
selection rules, both for left and right circularly polarized light (�m = +1
and �m = �1, respectively). Electric dipole transitions conserve the spin. It
is evident from the di↵erent lengths of these arrows for the two opposite light
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of the electronic states on the quantization axis is necessary. Initial d and
final p states are displayed as horizontal lines in Fig. 2.15, and labelled ac-
cording to their orbital and spin quantum numbers, using the nomenclature
|l m "> and |l m #>. Here l is the orbital quantum number (l = 1 for p states
and l = 2 for d states) and "# indicate the spin orientation. Levels for spin
up (", majority, left) and spin down (#, minority, middle) are separated in
energy by exchange splitting. The exchange splitting for the unoccupied p

states has been neglected. In addition to the exchange splitting, also the (in
valence bands generally smaller) spin–orbit splitting contributes to the sepa-
ration of levels. It lifts the degeneracy of states with di↵erent m. For spin up,
a more positive m is lower in energy, while for spin down, the lowest energy
corresponds to the state with the most negative m.
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Fig. 2.15. (a) Schematic representation of the electronic structure of p and d states
in a ferromagnetic solid, including exchange splitting of the occupied d states and
spin–orbit splitting of p and d states. Levels are labelled |l m "> according to their
orbital and magnetic quantum numbers as well as their spin. Vertical arrows indicate
dipole-allowed transitions for right (�m = +1) and left (�m = �1) circularly
polarized light. The right hand side schematically depicts absorption spectra for the
two opposite circular polarization directions for transitions from |2 ± 1 > states.
After [?, ?]

The vertical arrows show possible d ! p transitions obeying the dipole
selection rules, both for left and right circularly polarized light (�m = +1
and �m = �1, respectively). Electric dipole transitions conserve the spin. It
is evident from the di↵erent lengths of these arrows for the two opposite light
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helicities, and thus the di↵erent photon energies, that there is a dichroism
in absorption upon helicity reversal. The right hand side of Fig. 2.15 demon-
strates this for the case of transitions from the |2 ± 1> levels, indicated by
solid lines of the arrows. For left circular polarization (�m = �1) transitions
from |2 1 "> and |2 1 #> are possible, while for right circular polarization
(�m = +1) transitions originate from |2 �1 "> and |2 �1 #>. The two di↵er-
ent resulting absorption spectra for the two helicities are shown schematically
on the right hand side of Fig. 2.15. Two peaks in each spectrum result from
the two allowed transitions from |2 ± 1 > states. Although the dichroism in
this sketch looks like a one-hundred percent e↵ect, in reality, by including all
possible transitions and considering the energetic width of the states in a solid,
the asymmetry in the absorption is typically not more than a few percent.

It can be easily verified from Fig. 2.15 that this dichroism vanishes if
either the exchange splitting or the spin–orbit splitting is reduced to zero.
Magneto-optical e↵ects, which include also the magnetic dichroism in x-ray
absorption treated in Sec. 2.7, generally only occur if both, exchange splitting
and spin-orbit splitting, are simultaneously present either in the initial or the
final states. Note that in the spin–orbit splitting of the unoccupied p states
included in Fig. 2.15 would not be necessary to obtain magnetic dichroism as
long as there is spin–orbit splitting of the occupied initial d states.

If the magnetization is not along the direction of light helicity, either be-
cause of a magnetization in the surface plane, or because the light is incident
under an oblique angle, the electronic states have to be projected onto the
quantization axis defined by the light helicity axis. The resulting states will
have a lower symmetry, but still can be separated with respect to the resulting
orbital moment component along the new quantization axis. Transitions from
these states then follow the same dipole selection rules as discussed before.
All the above considerations are consequently also valid in such cases, as long
as the projection of the magnetization on the light helicity direction does not
vanish.

The imaginary part of the complex dielectric constant ✏
00 can be related

to the electronic transitions by

✏
00
±(!) /

1

!2

X

i,f

f(Ei) [1� f(Ef )] |< i|p±|f >|2 �(!f � !i � !). (2.114)

Here ! is the light frequency, Ei = h̄!i is the energy of the initial state and
Ef = h̄!f the energy of the final state. The plus and minus signs in n

00
± refer

to left and right circular polarization, respectively. f(E) is the Fermi function
at energy E , and p± the dipole transition operator for right or left circular
polarization. The sum has to be taken over all initial and final states, while
the delta function on the right hand side assures energy conservation. The
real part of the dielectric constant, ✏0±, is linked to the imaginary part, ✏00±, by
the Kramers-Kronig relation.

Equation (2.114) thus connects the microscopic picture illustrated by
Fig. 2.15 to the discussion in Sects. 2.3 and 2.4. The real and imaginary parts

• Imaginary part of the complex dielectric constant′ can be related to the electronic transitions by  
•
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solid lines of the arrows. For left circular polarization (�m = �1) transitions
from |2 1 "> and |2 1 #> are possible, while for right circular polarization
(�m = +1) transitions originate from |2 �1 "> and |2 �1 #>. The two di↵er-
ent resulting absorption spectra for the two helicities are shown schematically
on the right hand side of Fig. 2.15. Two peaks in each spectrum result from
the two allowed transitions from |2 ± 1 > states. Although the dichroism in
this sketch looks like a one-hundred percent e↵ect, in reality, by including all
possible transitions and considering the energetic width of the states in a solid,
the asymmetry in the absorption is typically not more than a few percent.

It can be easily verified from Fig. 2.15 that this dichroism vanishes if
either the exchange splitting or the spin–orbit splitting is reduced to zero.
Magneto-optical e↵ects, which include also the magnetic dichroism in x-ray
absorption treated in Sec. 2.7, generally only occur if both, exchange splitting
and spin-orbit splitting, are simultaneously present either in the initial or the
final states. Note that in the spin–orbit splitting of the unoccupied p states
included in Fig. 2.15 would not be necessary to obtain magnetic dichroism as
long as there is spin–orbit splitting of the occupied initial d states.

If the magnetization is not along the direction of light helicity, either be-
cause of a magnetization in the surface plane, or because the light is incident
under an oblique angle, the electronic states have to be projected onto the
quantization axis defined by the light helicity axis. The resulting states will
have a lower symmetry, but still can be separated with respect to the resulting
orbital moment component along the new quantization axis. Transitions from
these states then follow the same dipole selection rules as discussed before.
All the above considerations are consequently also valid in such cases, as long
as the projection of the magnetization on the light helicity direction does not
vanish.

The imaginary part of the complex dielectric constant ✏
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polarization. The sum has to be taken over all initial and final states, while
the delta function on the right hand side assures energy conservation. The
real part of the dielectric constant, ✏0±, is linked to the imaginary part, ✏00±, by
the Kramers-Kronig relation.

Equation (2.114) thus connects the microscopic picture illustrated by
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helicities, and thus the di↵erent photon energies, that there is a dichroism
in absorption upon helicity reversal. The right hand side of Fig. 2.15 demon-
strates this for the case of transitions from the |2 ± 1> levels, indicated by
solid lines of the arrows. For left circular polarization (�m = �1) transitions
from |2 1 "> and |2 1 #> are possible, while for right circular polarization
(�m = +1) transitions originate from |2 �1 "> and |2 �1 #>. The two di↵er-
ent resulting absorption spectra for the two helicities are shown schematically
on the right hand side of Fig. 2.15. Two peaks in each spectrum result from
the two allowed transitions from |2 ± 1 > states. Although the dichroism in
this sketch looks like a one-hundred percent e↵ect, in reality, by including all
possible transitions and considering the energetic width of the states in a solid,
the asymmetry in the absorption is typically not more than a few percent.

It can be easily verified from Fig. 2.15 that this dichroism vanishes if
either the exchange splitting or the spin–orbit splitting is reduced to zero.
Magneto-optical e↵ects, which include also the magnetic dichroism in x-ray
absorption treated in Sec. 2.7, generally only occur if both, exchange splitting
and spin-orbit splitting, are simultaneously present either in the initial or the
final states. Note that in the spin–orbit splitting of the unoccupied p states
included in Fig. 2.15 would not be necessary to obtain magnetic dichroism as
long as there is spin–orbit splitting of the occupied initial d states.

If the magnetization is not along the direction of light helicity, either be-
cause of a magnetization in the surface plane, or because the light is incident
under an oblique angle, the electronic states have to be projected onto the
quantization axis defined by the light helicity axis. The resulting states will
have a lower symmetry, but still can be separated with respect to the resulting
orbital moment component along the new quantization axis. Transitions from
these states then follow the same dipole selection rules as discussed before.
All the above considerations are consequently also valid in such cases, as long
as the projection of the magnetization on the light helicity direction does not
vanish.

The imaginary part of the complex dielectric constant ✏
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at energy E , and p± the dipole transition operator for right or left circular
polarization. The sum has to be taken over all initial and final states, while
the delta function on the right hand side assures energy conservation. The
real part of the dielectric constant, ✏0±, is linked to the imaginary part, ✏00±, by
the Kramers-Kronig relation.

Equation (2.114) thus connects the microscopic picture illustrated by
Fig. 2.15 to the discussion in Sects. 2.3 and 2.4. The real and imaginary parts
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helicities, and thus the di↵erent photon energies, that there is a dichroism
in absorption upon helicity reversal. The right hand side of Fig. 2.15 demon-
strates this for the case of transitions from the |2 ± 1> levels, indicated by
solid lines of the arrows. For left circular polarization (�m = �1) transitions
from |2 1 "> and |2 1 #> are possible, while for right circular polarization
(�m = +1) transitions originate from |2 �1 "> and |2 �1 #>. The two di↵er-
ent resulting absorption spectra for the two helicities are shown schematically
on the right hand side of Fig. 2.15. Two peaks in each spectrum result from
the two allowed transitions from |2 ± 1 > states. Although the dichroism in
this sketch looks like a one-hundred percent e↵ect, in reality, by including all
possible transitions and considering the energetic width of the states in a solid,
the asymmetry in the absorption is typically not more than a few percent.

It can be easily verified from Fig. 2.15 that this dichroism vanishes if
either the exchange splitting or the spin–orbit splitting is reduced to zero.
Magneto-optical e↵ects, which include also the magnetic dichroism in x-ray
absorption treated in Sec. 2.7, generally only occur if both, exchange splitting
and spin-orbit splitting, are simultaneously present either in the initial or the
final states. Note that in the spin–orbit splitting of the unoccupied p states
included in Fig. 2.15 would not be necessary to obtain magnetic dichroism as
long as there is spin–orbit splitting of the occupied initial d states.

If the magnetization is not along the direction of light helicity, either be-
cause of a magnetization in the surface plane, or because the light is incident
under an oblique angle, the electronic states have to be projected onto the
quantization axis defined by the light helicity axis. The resulting states will
have a lower symmetry, but still can be separated with respect to the resulting
orbital moment component along the new quantization axis. Transitions from
these states then follow the same dipole selection rules as discussed before.
All the above considerations are consequently also valid in such cases, as long
as the projection of the magnetization on the light helicity direction does not
vanish.

The imaginary part of the complex dielectric constant ✏
00 can be related

to the electronic transitions by
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Here ! is the light frequency, Ei = h̄!i is the energy of the initial state and
Ef = h̄!f the energy of the final state. The plus and minus signs in n

00
± refer

to left and right circular polarization, respectively. f(E) is the Fermi function
at energy E , and p± the dipole transition operator for right or left circular
polarization. The sum has to be taken over all initial and final states, while
the delta function on the right hand side assures energy conservation. The
real part of the dielectric constant, ✏0±, is linked to the imaginary part, ✏00±, by
the Kramers-Kronig relation.

Equation (2.114) thus connects the microscopic picture illustrated by
Fig. 2.15 to the discussion in Sects. 2.3 and 2.4. The real and imaginary parts
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helicities, and thus the di↵erent photon energies, that there is a dichroism
in absorption upon helicity reversal. The right hand side of Fig. 2.15 demon-
strates this for the case of transitions from the |2 ± 1> levels, indicated by
solid lines of the arrows. For left circular polarization (�m = �1) transitions
from |2 1 "> and |2 1 #> are possible, while for right circular polarization
(�m = +1) transitions originate from |2 �1 "> and |2 �1 #>. The two di↵er-
ent resulting absorption spectra for the two helicities are shown schematically
on the right hand side of Fig. 2.15. Two peaks in each spectrum result from
the two allowed transitions from |2 ± 1 > states. Although the dichroism in
this sketch looks like a one-hundred percent e↵ect, in reality, by including all
possible transitions and considering the energetic width of the states in a solid,
the asymmetry in the absorption is typically not more than a few percent.

It can be easily verified from Fig. 2.15 that this dichroism vanishes if
either the exchange splitting or the spin–orbit splitting is reduced to zero.
Magneto-optical e↵ects, which include also the magnetic dichroism in x-ray
absorption treated in Sec. 2.7, generally only occur if both, exchange splitting
and spin-orbit splitting, are simultaneously present either in the initial or the
final states. Note that in the spin–orbit splitting of the unoccupied p states
included in Fig. 2.15 would not be necessary to obtain magnetic dichroism as
long as there is spin–orbit splitting of the occupied initial d states.

If the magnetization is not along the direction of light helicity, either be-
cause of a magnetization in the surface plane, or because the light is incident
under an oblique angle, the electronic states have to be projected onto the
quantization axis defined by the light helicity axis. The resulting states will
have a lower symmetry, but still can be separated with respect to the resulting
orbital moment component along the new quantization axis. Transitions from
these states then follow the same dipole selection rules as discussed before.
All the above considerations are consequently also valid in such cases, as long
as the projection of the magnetization on the light helicity direction does not
vanish.
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Here ! is the light frequency, Ei = h̄!i is the energy of the initial state and
Ef = h̄!f the energy of the final state. The plus and minus signs in n

00
± refer

to left and right circular polarization, respectively. f(E) is the Fermi function
at energy E , and p± the dipole transition operator for right or left circular
polarization. The sum has to be taken over all initial and final states, while
the delta function on the right hand side assures energy conservation. The
real part of the dielectric constant, ✏0±, is linked to the imaginary part, ✏00±, by
the Kramers-Kronig relation.

Equation (2.114) thus connects the microscopic picture illustrated by
Fig. 2.15 to the discussion in Sects. 2.3 and 2.4. The real and imaginary parts

• Imaginary part of the complex dielectric constant′ can be related to the electronic transitions by  
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helicities, and thus the di↵erent photon energies, that there is a dichroism
in absorption upon helicity reversal. The right hand side of Fig. 2.15 demon-
strates this for the case of transitions from the |2 ± 1> levels, indicated by
solid lines of the arrows. For left circular polarization (�m = �1) transitions
from |2 1 "> and |2 1 #> are possible, while for right circular polarization
(�m = +1) transitions originate from |2 �1 "> and |2 �1 #>. The two di↵er-
ent resulting absorption spectra for the two helicities are shown schematically
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The imaginary part of the complex dielectric constant ✏
00 can be related

to the electronic transitions by

✏
00
±(!) /

1

!2

X

i,f

f(Ei) [1� f(Ef )] |< i|p±|f >|2 �(!f � !i � !). (2.114)

Here ! is the light frequency, Ei = h̄!i is the energy of the initial state and
Ef = h̄!f the energy of the final state. The plus and minus signs in n

00
± refer

to left and right circular polarization, respectively. f(E) is the Fermi function
at energy E , and p± the dipole transition operator for right or left circular
polarization. The sum has to be taken over all initial and final states, while
the delta function on the right hand side assures energy conservation. The
real part of the dielectric constant, ✏0±, is linked to the imaginary part, ✏00±, by
the Kramers-Kronig relation.

Equation (2.114) thus connects the microscopic picture illustrated by
Fig. 2.15 to the discussion in Sects. 2.3 and 2.4. The real and imaginary parts

• Imaginary part of the complex dielectric constant′ can be related to the electronic transitions by  
•

after: P. Vavassori, ESM 2018
• Connection of microscopic to classical description: 
•
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of the complex index of refraction n
0 and n

00, respectively, are connected to ✏
0

and ✏
00 by

(n0
± + in00

±)
2 = ✏

0
± + i✏00±. (2.115)

In particular, from (2.63) and (2.78) follows that the Voigt constant QV, which
was used for the description of the Faraday and Kerr e↵ects before, can be
expressed in terms of n+ and n� by

QV = 2
n+ � n�
n+ + n�

. (2.116)

The absorption coe�cient ↵, as defined in (2.22), is directly connected to the
imaginary part of the complex index of refraction, n00, by ↵ = 2n00

!/c0 where
c0 is the vacuum speed of light [see (2.23)]. By equating real and imaginary
part in (2.115) it follows that ✏

00
± = 2n0

±n
00
±. Since in the soft X-ray regime

n
0 ⇡ 1, Eq. (2.114) thus directly describes the absorption of X rays.

2.5 Voigt E↵ect

The Kerr- and Faraday e↵ects, presented in Sect. 2.4, are e↵ects to first or-
der in the magneto-optical parameter QV and in the components mi of the
magnetization vector. This becomes immediately evident from the dielectric
tensor — the first tensor in (2.58) — which represents these e↵ects. The Voigt
e↵ect is a second-order e↵ect that is often considered an independent e↵ect
with its own material coe�cients B1 and B2 according to the second matrix
in (2.58). This intrinsic (or true) Voigt e↵ect , however, is not the only con-
ceivable second-order magneto-optical e↵ect. As elaborated below, quadratic
e↵ects may also occur as a consequence of the elementary gyrotropic inter-
action, which is responsible for the Kerr- and Faraday e↵ects and which is
characterized by the material parameter QV according to the first matrix
in (2.58). Second-order e↵ects di↵er from first-order e↵ects not only in their
dependence of the magnetization vector, but also in their optical symmetry
behavior [?]. Typical for first-order e↵ects is the primary rotation of the polar-
ization direction of the light, which may be superimposed by some ellipticity.
This means that the magneto-optical amplitudes di↵er in their polarization
plane relative to the incident light. In terms of the general reflectivity ma-
trix (2.51), equation (2.93) indicates an e↵ect in the o↵-diagonal elements,
rsp or rps, of this matrix. A typical quadratic e↵ect, on the other hand, may
contribute a modification of the regular reflectivity, i.e. the diagonal elements
(like rss) of the reflectivity matrix. It can thus be interpreted as a magneti-
cally induced birefringence. Note, however, that these features depend on the
’coordinate system’ used to describe the polarization state of the light. The
conventional Kerr and Faraday e↵ects can as well be understood as a ’circular
magnetic birefringence’. This was explained in the previous section, where we
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instead of a circular basis a cartesian decomposition was chosen. Two phase-
shifted, perpendicularly polarized partial waves of di↵erent amplitude also
produce a rotated ellipse. Below we will call the high-amplitude wave the
‘normal’ component and the low-amplitude wave the ‘Faraday’ (or ‘Kerr’)
component. Note that in case of the Kerr e↵ect the ellipses and rotations
illustrated in Fig. 2.4 and Fig. 2.11 would be drawn strongly exaggerated —
real Kerr rotations and ellipticities are much weaker. For iron, for instance,
rotation- and ellipticity angles of -0.05� and +0.01�, respectively, are found
at 450 nm wavelength [?].

With the approximation in (2.63), the average complex refraction index n̄

is written as

n̄ =
1

2
(n+ + n�) =

p
✏iso , (2.78)

which corresponds to the “optical” index of refraction in the absence of mag-
netization, i.e. in case of a ferromagnet to the state above the Curie temper-
ature. The specific Faraday rotation (2.75) and ellipticity (2.76) can then be
expressed as

✓F/l = � ⇡

�0
Re(n̄ QV) and ⇠F/l = � ⇡

�0
Im(n̄ QV) (2.79)

by using (2.63). In a reasonably transparent material (i.e. only moderate ab-
sorption, n̄0 � n̄

00), it is the real part of the Voigt parameter QV that gives
rise to circular dichroism while it is the imaginary part of QV that gives the
circular birefringence [note that the Voigt parameter was introduced as iQV

in the o↵-diagonal elements of the ✏-tensor (2.58), so that its true real part
becomes imaginary and vise versa]. On transmission through a specimen with
a substantial circular dichroism only one circular polarization will survive.

The two e↵ects discussed so far, the magnetic circular birefringence and
dichroism, can be measured in transmission using the polar geometry men-
tioned above. For arbitrary orientation of sample and magnetization the wave
equation (2.18) becomes fairly intractable because the two circular e↵ects are
mixed with the e↵ects of magnetic linear dichroism and birefringence. A brief
discussion of such mixed conditions will be given at the end of Sect. 2.5.

The magneto-optical Kerr e↵ects, occurring when light is reflected on
strongly absorbing magnetic media (like metals), are much weaker than the
transmission e↵ects as the light only interacts with the magnetization within a
relatively thin surface layer given by the penetration depth of light. By taking
the reflection coe�cients into account, the Kerr rotation and ellipticity can —
like the Faraday e↵ect — be discussed as circular birefringence and dichroism
e↵ects. Like for the Faraday e↵ect, we restrict the discussion to the polar Kerr

e↵ect (|k| = k3 and |m| = m3 = 1) for the moment to keep it simple13. Re-

13 The analysis of the Kerr e↵ect at oblique light incidence, which is generally re-
quired to obtain a Kerr signal on in-plane domains (see Sect. 2.4.2), is more com-
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
y + 0 · E0

z = 0 ,

k
2
0✏isoiQVE

0
x + (k20✏iso � k

2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]

E1,+ =
1p
2
(ex + iey)E

0
1 e

i(+k0n+z�!t)
,

E2,� =
1p
2
(ex � iey)E

0
2 e

i(+k0n�z�!t)
,

E3,+ =
1p
2
(ex + iey)E

0
1 e

i(�k0n+z�!t)
,

E4,� =
1p
2
(ex � iey)E

0
2 e

i(�k0n�z�!t)
, (2.64)

with and

 66



2. Magneto-Optical Effects – 2.4 Kerr Effect
• For light propagating along magnetization: normal modes are left- and right circularly 

polarized waves 
• They are propagating as though the magnetic material has refractive indices n+ for left- 

and n– for right-circularly polarized radiation
Circular magnetic birefringence and dichroism (Kerr- and Faraday effects)

52 2 Magneto-Optical E↵ects

For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
y + 0 · E0

z = 0 ,

k
2
0✏isoiQVE

0
x + (k20✏iso � k

2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]

E1,+ =
1p
2
(ex + iey)E

0
1 e

i(+k0n+z�!t)
,

E2,� =
1p
2
(ex � iey)E

0
2 e

i(+k0n�z�!t)
,

E3,+ =
1p
2
(ex + iey)E

0
1 e

i(�k0n+z�!t)
,

E4,� =
1p
2
(ex � iey)E

0
2 e

i(�k0n�z�!t)
, (2.64)

m

 67



52 2 Magneto-Optical E↵ects

For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
y + 0 · E0

z = 0 ,

k
2
0✏isoiQVE

0
x + (k20✏iso � k

2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]

E1,+ =
1p
2
(ex + iey)E

0
1 e

i(+k0n+z�!t)
,

E2,� =
1p
2
(ex � iey)E

0
2 e

i(+k0n�z�!t)
,

E3,+ =
1p
2
(ex + iey)E

0
1 e

i(�k0n+z�!t)
,

E4,� =
1p
2
(ex � iey)E

0
2 e

i(�k0n�z�!t)
, (2.64)

m

2. Magneto-Optical Effects – 2.4 Kerr Effect
• For light propagating along magnetization: normal modes are left- and right circularly 

polarized waves 
• They are propagating as though the magnetic material has refractive indices n+ for left- 

and n– for right-circularly polarized radiation
Circular magnetic birefringence and dichroism (Kerr- and Faraday effects)

52 2 Magneto-Optical E↵ects

For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E

0
x,y,z:

(k20✏iso � k
2
z )E

0
x � k

2
0✏isoiQVE

0
y + 0 · E0

z = 0 ,

k
2
0✏isoiQVE

0
x + (k20✏iso � k

2
z )E

0
y + 0 · E0

z = 0 ,

0 · E0
x + 0 · E0

y + (k20✏iso +B1)E
0
z = 0 . (2.59)

The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:

(✏iso +B1)
⇥
(✏iso � k

2
z/k

2
0)

2 � (QV✏iso)
2
⇤
= 0 , (2.60)

and leads to the solutions

k
2
z = k

2
0✏iso(1±QV) or (2.61a)

kz ⇡ ±k0
p
✏iso(1±QV/2) . (2.61b)

For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
p
✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]

E1,+ =
1p
2
(ex + iey)E

0
1 e

i(+k0n+z�!t)
,

E2,� =
1p
2
(ex � iey)E

0
2 e

i(+k0n�z�!t)
,

E3,+ =
1p
2
(ex + iey)E

0
1 e

i(�k0n+z�!t)
,

E4,� =
1p
2
(ex � iey)E

0
2 e

i(�k0n�z�!t)
, (2.64)

m

• For light propagating perpendicular to magnetization: normal modes 
are linearly polarized waves with polarization planes parallel and 
perpendicular to magnetization direction 

• They are propagating as though the magnetic material has    
refractive indices        

Both modes propagate with different velocities 

modes are shifted in phase 
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QV = 0), the solutions are obviously linearly polarized waves with polariza-
tion planes parallel and perpendicular to the magnetization direction. These
two waves see refraction indices nk and n?, respectively. For the Voigt e↵ect
derived from the gyroelectric tensor in (2.58) (i.e. QV 6= 0), the E-vector in
case of the perpendicular wave is not strictly perpendicular to the direction of
propagation though it is approximately so (remember that |iQV| ⌧ 1). This,
however, does not apply for D which is strictly perpendicular to k (for non-
absorbing media) as explained in Fig. 2.6. In any case, the two waves propagate
parallel and antiparallel to the incident wave like for the case of circular po-
larization. For the gyroelectric Voigt e↵ect the four waves are explicitly given
by [?] [compare (2.64)]

E1,3,k = exE
0
ke

i(±k0nkz�!t)
,

E2,4,? = (ey + eziQV)E
0
?e

i(±k0n?z�!t)
. (2.69)

2.4 Faraday- and Kerr-E↵ect

After having introduced the electromagnetic basics of the magneto-optical ef-
fects, we will now have a closer look at the circular magneto-optical birefrin-
gence — the Faraday e↵ects in transmission and the Kerr e↵ects in reflection.
The Kerr e↵ect applies to any metallic or otherwise light-absorbing magnetic
material, whereas the Faraday e↵ect occurs in optically transparent media.
Nevertheless, both are rotational e↵ects that follow the same phenomenology.
Therefore the two e↵ects are discussed together in this section with emphasize
on the Kerr e↵ects. Two approaches of phenomenological description will be
used: In Sect. 2.4.1 the discussion is based on circular polarization, leading fi-
nally to a derivation of the Kerr amplitude. In Sect. 2.4.2 the Kerr amplitude
is then used as one of the components of the electrical field on a cartesian
basis, which allows to derive the geometry of the Kerr e↵ects in a descriptive
way.

2.4.1 Phenomenological Description

The Faraday rotation and Faraday ellipticity can be interpreted as circular
birefringence and circular dichroisme↵ects, respectively, in the same sense as
optical activity introduced in Sect. 2.2.3C. This can be directly derived from
the electromagnetic treatment presented at the end of Sect. 2.3. From equa-
tion (2.62) we have seen that for light propagating along the magnetization
the normal modes are two oppositely rotating circular polarizations. Linearly
polarized light entering the medium is resolved into these two modes which
travel along without interaction. Each circular mode has its own index of re-
fraction n+ and n� as given in (2.63). If the wave has a wavelength of �0 in
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QV = 0), the solutions are obviously linearly polarized waves with polariza-
tion planes parallel and perpendicular to the magnetization direction. These
two waves see refraction indices nk and n?, respectively. For the Voigt e↵ect
derived from the gyroelectric tensor in (2.58) (i.e. QV 6= 0), the E-vector in
case of the perpendicular wave is not strictly perpendicular to the direction of
propagation though it is approximately so (remember that |iQV| ⌧ 1). This,
however, does not apply for D which is strictly perpendicular to k (for non-
absorbing media) as explained in Fig. 2.6. In any case, the two waves propagate
parallel and antiparallel to the incident wave like for the case of circular po-
larization. For the gyroelectric Voigt e↵ect the four waves are explicitly given
by [?] [compare (2.64)]

E1,3,k = exE
0
ke

i(±k0nkz�!t)
,
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fects, we will now have a closer look at the circular magneto-optical birefrin-
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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The characteristic equation, obtained from the determinant of the coe�cient
matrix of (2.59), is biquadratic in kz:
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
forward and retrograde directions according to Fig. 2.10. In both cases we
obtain

E
0
y = ± iE0

x (2.62)

by inserting (2.61b) in (2.59). The plus and minus signs in (2.62) correspond
to those in the bracket of (2.61b). From (2.62) we see that the amplitudes
E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
(+kz) direction, equation (2.61b) is written as

n± =
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✏iso(1±QV/2) . (2.63)

With these two refractive indices, the two forward and two retrograde circular
waves are explicitly given by [?]
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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E

0
x and E

0
y are equal but ⇡/2 apart. According to (2.37) and (2.36) these are

left- and right-circularly polarized waves corresponding to the plus and minus
signs, respectively, in the bracket of (2.61b) and in (2.62). With kz = nk0

[see (2.8)] and under the assumption that the wave propagates in the positive
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QV = 0), the solutions are obviously linearly polarized waves with polariza-
tion planes parallel and perpendicular to the magnetization direction. These
two waves see refraction indices nk and n?, respectively. For the Voigt e↵ect
derived from the gyroelectric tensor in (2.58) (i.e. QV 6= 0), the E-vector in
case of the perpendicular wave is not strictly perpendicular to the direction of
propagation though it is approximately so (remember that |iQV| ⌧ 1). This,
however, does not apply for D which is strictly perpendicular to k (for non-
absorbing media) as explained in Fig. 2.6. In any case, the two waves propagate
parallel and antiparallel to the incident wave like for the case of circular po-
larization. For the gyroelectric Voigt e↵ect the four waves are explicitly given
by [?] [compare (2.64)]

E1,3,k = exE
0
ke

i(±k0nkz�!t)
,

E2,4,? = (ey + eziQV)E
0
?e

i(±k0n?z�!t)
. (2.69)

2.4 Faraday- and Kerr-E↵ect

After having introduced the electromagnetic basics of the magneto-optical ef-
fects, we will now have a closer look at the circular magneto-optical birefrin-
gence — the Faraday e↵ects in transmission and the Kerr e↵ects in reflection.
The Kerr e↵ect applies to any metallic or otherwise light-absorbing magnetic
material, whereas the Faraday e↵ect occurs in optically transparent media.
Nevertheless, both are rotational e↵ects that follow the same phenomenology.
Therefore the two e↵ects are discussed together in this section with emphasize
on the Kerr e↵ects. Two approaches of phenomenological description will be
used: In Sect. 2.4.1 the discussion is based on circular polarization, leading fi-
nally to a derivation of the Kerr amplitude. In Sect. 2.4.2 the Kerr amplitude
is then used as one of the components of the electrical field on a cartesian
basis, which allows to derive the geometry of the Kerr e↵ects in a descriptive
way.

2.4.1 Phenomenological Description

The Faraday rotation and Faraday ellipticity can be interpreted as circular
birefringence and circular dichroisme↵ects, respectively, in the same sense as
optical activity introduced in Sect. 2.2.3C. This can be directly derived from
the electromagnetic treatment presented at the end of Sect. 2.3. From equa-
tion (2.62) we have seen that for light propagating along the magnetization
the normal modes are two oppositely rotating circular polarizations. Linearly
polarized light entering the medium is resolved into these two modes which
travel along without interaction. Each circular mode has its own index of re-
fraction n+ and n� as given in (2.63). If the wave has a wavelength of �0 in
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QV = 0), the solutions are obviously linearly polarized waves with polariza-
tion planes parallel and perpendicular to the magnetization direction. These
two waves see refraction indices nk and n?, respectively. For the Voigt e↵ect
derived from the gyroelectric tensor in (2.58) (i.e. QV 6= 0), the E-vector in
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optical activity introduced in Sect. 2.2.3C. This can be directly derived from
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For the polar e↵ect, the light incidence, magnetization and surface normal
vector are all parallel to the z-axis of the cubic coordinate system. Then we
get m3 = mz = |m| = 1 and k3 = kz = |k|. Inserting the magneto-optical
tensor (2.58) into the wave equation (2.16) yields a system of three equations
for the cartesian components of the vector field amplitude E
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For approximation (2.61b) it was assumed that the non-diagonal terms of the
first "-tensor in (2.58) are small with respect to the diagonal terms (|QV| ⌧ 1).
The first plus and minus signs in (2.61b) correspond to waves propagating in
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obtain
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QV = 0), the solutions are obviously linearly polarized waves with polariza-
tion planes parallel and perpendicular to the magnetization direction. These
two waves see refraction indices nk and n?, respectively. For the Voigt e↵ect
derived from the gyroelectric tensor in (2.58) (i.e. QV 6= 0), the E-vector in
case of the perpendicular wave is not strictly perpendicular to the direction of
propagation though it is approximately so (remember that |iQV| ⌧ 1). This,
however, does not apply for D which is strictly perpendicular to k (for non-
absorbing media) as explained in Fig. 2.6. In any case, the two waves propagate
parallel and antiparallel to the incident wave like for the case of circular po-
larization. For the gyroelectric Voigt e↵ect the four waves are explicitly given
by [?] [compare (2.64)]

E1,3,k = exE
0
ke

i(±k0nkz�!t)
,
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2.4 Faraday- and Kerr-E↵ect

After having introduced the electromagnetic basics of the magneto-optical ef-
fects, we will now have a closer look at the circular magneto-optical birefrin-
gence — the Faraday e↵ects in transmission and the Kerr e↵ects in reflection.
The Kerr e↵ect applies to any metallic or otherwise light-absorbing magnetic
material, whereas the Faraday e↵ect occurs in optically transparent media.
Nevertheless, both are rotational e↵ects that follow the same phenomenology.
Therefore the two e↵ects are discussed together in this section with emphasize
on the Kerr e↵ects. Two approaches of phenomenological description will be
used: In Sect. 2.4.1 the discussion is based on circular polarization, leading fi-
nally to a derivation of the Kerr amplitude. In Sect. 2.4.2 the Kerr amplitude
is then used as one of the components of the electrical field on a cartesian
basis, which allows to derive the geometry of the Kerr e↵ects in a descriptive
way.

2.4.1 Phenomenological Description

The Faraday rotation and Faraday ellipticity can be interpreted as circular
birefringence and circular dichroisme↵ects, respectively, in the same sense as
optical activity introduced in Sect. 2.2.3C. This can be directly derived from
the electromagnetic treatment presented at the end of Sect. 2.3. From equa-
tion (2.62) we have seen that for light propagating along the magnetization
the normal modes are two oppositely rotating circular polarizations. Linearly
polarized light entering the medium is resolved into these two modes which
travel along without interaction. Each circular mode has its own index of re-
fraction n+ and n� as given in (2.63). If the wave has a wavelength of �0 in
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QV = 0), the solutions are obviously linearly polarized waves with polariza-
tion planes parallel and perpendicular to the magnetization direction. These
two waves see refraction indices nk and n?, respectively. For the Voigt e↵ect
derived from the gyroelectric tensor in (2.58) (i.e. QV 6= 0), the E-vector in
case of the perpendicular wave is not strictly perpendicular to the direction of
propagation though it is approximately so (remember that |iQV| ⌧ 1). This,
however, does not apply for D which is strictly perpendicular to k (for non-
absorbing media) as explained in Fig. 2.6. In any case, the two waves propagate
parallel and antiparallel to the incident wave like for the case of circular po-
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fects, we will now have a closer look at the circular magneto-optical birefrin-
gence — the Faraday e↵ects in transmission and the Kerr e↵ects in reflection.
The Kerr e↵ect applies to any metallic or otherwise light-absorbing magnetic
material, whereas the Faraday e↵ect occurs in optically transparent media.
Nevertheless, both are rotational e↵ects that follow the same phenomenology.
Therefore the two e↵ects are discussed together in this section with emphasize
on the Kerr e↵ects. Two approaches of phenomenological description will be
used: In Sect. 2.4.1 the discussion is based on circular polarization, leading fi-
nally to a derivation of the Kerr amplitude. In Sect. 2.4.2 the Kerr amplitude
is then used as one of the components of the electrical field on a cartesian
basis, which allows to derive the geometry of the Kerr e↵ects in a descriptive
way.
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birefringence and circular dichroisme↵ects, respectively, in the same sense as
optical activity introduced in Sect. 2.2.3C. This can be directly derived from
the electromagnetic treatment presented at the end of Sect. 2.3. From equa-
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polarized light entering the medium is resolved into these two modes which
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The first term, ✏0, is an isotropic tensor, followed by an arbitrary traceless
matrix ✏br that describes conventional crystalline birefringence, and a ten-
sor for optical activity , ✏oa. Here ✏iso represents the dielectric constant of an
isotropic, non-magnetic material. If only the isotropic tensor ✏

0 would be
active, the displacement vector would be along the same direction as the E-
vector (under the assumption that no further optical anisotropies are present,
i.e. "011 = "

0
22 = "

0
33). The light would then interact with the matter with-

out rotation of its polarization plane. A rotation of the vibrational plane or
ellipticity in the out-coming light requires non-zero o↵-diagonal elements in
the tensor. They are contained in the ✏oa tensor, for instance, but also in the
magneto-optical tensors shown below.

In analogy to (2.56), also the dielectric ✏-tensor of the magneto-optical
e↵ects can be split into the magnetization-independent, isotropic part ✏0 and
a part that depends on magnetization. If we just consider ferro- and ferrimag-
netic materials, the magnetization-dependence can be seen as dependence on
the magnetization direction, because the magnitude of magnetization always
corresponds to the saturation magnetization. The magnetic parts to the di-
electric tensor are relatively small, so that the discussion can be restricted
to contributions that depend linearly or quadratically on the unit vector of
magnetization m [?]:

✏ij = ✏
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Gijkl mkml . (2.57)

The subscription represents the three cubic axes andmi are the components of
the magnetization vector m. The number of independent components of the
linear magneto-optic K-tensor and the quadratic G-tensor can be reduced to
a few material parameters by symmetry considerations [?]. For cubic crystals9,
the magneto-optic tensor then writes
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Here QV is the (Voigt) magneto-optical constant, a material parameter that
describes the strength of the linear magneto-optical e↵ects, the Kerr- and
Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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Faraday e↵ects. It is roughly proportional to the saturation magnetization.
B1 and B2 are the corresponding constants for the (intrinsic) Voigt e↵ect10.

9 The term “cubic crystal” is used in the sense that the crystal symmetry is cubic
neglecting magnetization

10 Another widely used convention [?] postulates a zero trace for the second matrix.
This amounts in a ferromagnet (because of |m| = 1) to adding an isotropic term,
which is shifted into the first matrix in (2.58)
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2. Magneto-Optical Effects – 2.5 Voigt Effect

Imaging of domains in antiferromagnets
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Application: Imaging of 
domains in transparent 

garnet crystals

Wall contrast due to 
polar Faraday effect
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Fig. 1. (a) Schematics of magneto-optical microscopy measurement geometry. (b)-(d) The typical 

domain images of a 20 nm thick NiO film on MgO(100), obtained from the magneto-optical 

microscope at room temperature with φ=45°, 135°, and 90°, respectively. The size for all the 

images is 40×40 μm2. (e) The quantified Voigt contrasts from the NiO domains as a function of 

φ. The purple line represents a fitting curve of sin2φ. (f) The Voigt signal symmetry as a function 

of 𝜃, and the inset demonstrates the linear dependence of Iasym as a function of θ -1 
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Abstract: 
 

Recent demonstrations of electrical detection and manipulation of antiferromagnets (AFMs) 

have opened new opportunities towards robust and ultrafast spintronics devices. However, it is 

difficult to establish the connection between the spin-transport behavior and the microscopic 

AFM domain states due to the lack of the real-time AFM domain imaging technique under the 

electric field. Here we report a significant Voigt rotation up to 60 mdeg in thin NiO(001) films at 

room temperature. Such large Voigt rotation allows us to directly observe AFM domains in thin-

film NiO by utilizing a wide-field optical microscope. Further complementary XMLD-PEEM 

measurement confirms that the Voigt contrast originates from the NiO AFM order. We examine 

the domain pattern evolution at a wide range of temperature and with the application of external 

magnetic field. Comparing to large-scale-facility techniques such as the X-ray photoemission 

electron microscopy, the use with a wide-field, tabletop optical imaging method enables 

straightforward access to domain configurations of single-layer AFMs.  
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2. Magneto-Optical Effects – 2.6 Gradient Effect
Application:
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Woldemar Voigt  
(1850-1919)

1898: small change of polarization state due 
to magneto-optic interaction in reflection, 

linear birefringence, ~ M2

Transmission: 
Dillon, 1958

Reflection,  
together with Gradient effect: 

R.S. and Hubert, 1990

John Kerr  
(1824-1907)

1877: small change of polarization plane due 
to magneto-optic interaction in reflection, 

circular birefringence, ~ M

Williams et al., 
1951; 

Fowler and Fryer,  
1952

Michael Faraday  
(1791-1867)

1849: small change of polarization plane due 
to magneto-optic interaction in transmission, 

circular birefringence & dichroism, ~ M

Fowler and Fryer,  
1956
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2. Magneto-Optical Effects – Summary
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3. MOKE Magnetometry
• Principle: measure and plot Kerr intensity as function of H
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• Advantages: • Direct  
• Quasi-static and dynamic measurements 
• Space-resolved measurements are possible by scanning over the surface  
• Optical measurements can be performed on-line during preparation or                             

treatment of a material inside vacuum chamber

3. MOKE Magnetometry
• Principle: measure and plot Kerr intensity as function of H

Sample Magnet

Polarizer
Analyser

Laser
Photodiode

Faradaymodulator  
+lock-in amplifier• Non-transparent material: optical magnetometry makes sense 

only for thin films for which surface magnetization is 
representative 

• Noise suppression by lock-in technique: feed split-off part of 
laser as reference signal into Lock-in amplifier, and modulate 
polarization of light by a spinning analyser or electro-optical 
device → virtually unlimited sensitivity

 76

Compensator



• Advantages: • Direct  
• Quasi-static and dynamic measurements 
• Space-resolved measurements are possible by scanning over the surface  
• Optical measurements can be performed on-line during preparation or                             

treatment of a material inside vacuum chamber

3. MOKE Magnetometry
• Principle: measure and plot Kerr intensity as function of H

Sample Magnet

Polarizer
Analyser

Laser
Photodiode

Faradaymodulator  
+lock-in amplifier• Non-transparent material: optical magnetometry makes sense 

only for thin films for which surface magnetization is 
representative 

• Noise suppression by lock-in technique: feed split-off part of 
laser as reference signal into Lock-in amplifier, and modulate 
polarization of light by a spinning analyser or electro-optical 
device → virtually unlimited sensitivity

• Use of transverse Kerr effect (T-MOKE) 

• Polarizer set parallel to the plane of incidence and analyser omitted 
• M-component perpendicular to the plane of incidence causes variation of the 

reflected intensity, which can be detected electronically 
• Fits nicely into electromagnet 

Polarizer

 76

Compensator



4. 
Magneto-optical 
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4. Magneto-Optical Kerr Microscopy
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4. Magneto-Optical Kerr Microscopy
Digitally enhanced wide-field Kerr microscope: flexible technique
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4. Magneto-Optical Kerr Microscopy
Digitally enhanced wide-field Kerr microscope: flexible technique

•Application of in-plane and perpendicular 
magnetic fields up to Tesla range

50 µm

Remagnetization of sintered NdFeB magnet
H

Imaging courtesy Ivan Soldatov, IFW
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•Sample manipulation, e.g. by mechanical stress
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But at room temperature (30K above Tc, Fig 3) something that looks like 
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Thus, these PM-domains are detectable in all La(FeSi)13 alloys. One of 

hypotheses dealt with the existence weak ferromagnetism above Tc. The second – 
after polishing, some Fe-layer (very thin) is appeared on the surface, and the DS 
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But at room temperature (30K above Tc, Fig 3) something that looks like 

domains exists and it is easy movable by magnetic field. Contrast is weak enough. 
 

 

 
Fig 3. DS of (LaFeCoSi) in PM state in different magnetic fields. 

 
Thus, these PM-domains are detectable in all La(FeSi)13 alloys. One of 

hypotheses dealt with the existence weak ferromagnetism above Tc. The second – 
after polishing, some Fe-layer (very thin) is appeared on the surface, and the DS 
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4. Magneto-Optical Kerr Microscopy
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4. Magneto-Optical Kerr Microscopy
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4. Magneto-Optical Kerr Microscopy
Kerr-contrast law

Kerr contrast is proportional  
to magnetization component along  

propagation direction of reflected light beam

Light from left Light from right Perpendicular incidence

Longitudinal Kerr effect Polar Kerr effect
(sensitive to  
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out-of-plane magnetization)
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4. Magneto-Optical Kerr Microscopy
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4. Magneto-Optical Kerr Microscopy
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100 µm Permalloy film, 240 nm thick
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4. Magneto-Optical Kerr Microscopy
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4. Magneto-Optical Kerr Microscopy
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4. Magneto-Optical Kerr Microscopy
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4. Magneto-Optical Kerr Microscopy
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4. Magneto-Optical Kerr Microscopy
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Time-resolved Kerr-microscopy
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4. Magneto-Optical Kerr Microscopy
Time-resolved Kerr-microscopy

FIG. 10. (a) Static domain configuration of a 30 μm � 30 μm Ni81Fe19 element with a film thickness of 30 nm. Time-resolved MOKE images at an excitation field with a frequency of (b) 0.05 
GHz (c) 1.0 GHz, (d) 2.0 GHz, (e) 2.5 GHz, (f) 3.0 GHz, (g) 3.5 GHz, and (h) 4.0 GHz. All images with oblique plane incidence (ǁ) as indicated in (a).

Published in: Necdet Onur Urs; Babak Mozooni; Piotr Mazalski; Mikhail Kustov; Patrick Hayes; Shayan Deldar; Eckhard Quandt; Jeffrey McCord; AIP 
Advances 2016, 6, 
DOI: 10.1063/1.4943760
Copyright © 2016 Author(s)
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Depth selective Kerr-microscopy

0 5 10 15-5-10-15
Hext in kA/m

0

1

-1

GdCo (13 nm)

Co (8 nm)
Si (2 nm)

K
er

r s
ig

na
l i

n 
M

/M
s

50 µm
MOKE 
loop

Together with A. Svalov and G. Kurlyandskaya, Ekaterinburg 
A. Svalov et al., J. Alloys and Compounds 615 (2014)

Domain analysis in multilayers

Co/Si/GdCo trilayer

 97



4. Magneto-Optical Kerr Microscopy
Depth selective Kerr-microscopy
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Depth selective Kerr-microscopy
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4. Magneto-Optical Kerr Microscopy
Depth selective Kerr-microscopy
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4. Magneto-Optical Kerr Microscopy
Resolution of Kerr-microscopy

Diffraction limited image formation

Resolution of optical microscopy  
is determined by constructive interference

Abbe limit: d = 𝞴
NA

NA = numerical aperture of objective
𝞴 = wavelength

d = separation between particles,
still allowing to see them

best around 350 nm (Abbe) 
best around 220 nm (Rayleigh) 
best around 170 nm (Sparrow)

NA = n sinθ
θ = half the cone angle of  
light accepted by objective

n = refraction index of medium  
between sample and objective

Numerical aperture:

θ

 102



4. Magneto-Optical Kerr Microscopy

500 

400 

300 

200

100

0 200 400 600 800 1000
0

Abbe-Resolution in nm

In
te

gr
al

 w
al

l w
id

th
 in

 n
m

Amorphous ribbon

FeSi  sheet

Resolution

FeSi  
sheet

Amorphous 
ribbon

20x/0.550x/0.8100/1.3 oil
350 nm 575 nm 920 nm

Integrated wall intensity
Maximum domain intensity

Wall width = 

I. Soldatov et al.,  
APL 112, 262404 (2018)

Resolution of Kerr-microscopy

 103



4. Magneto-Optical Kerr Microscopy

500 

400 

300 

200

100

0 200 400 600 800 1000
0

Abbe-Resolution in nm

In
te

gr
al

 w
al

l w
id

th
 in

 n
m

Amorphous ribbon

FeSi  sheet

Resolution

FeSi  
sheet

Amorphous 
ribbon

20x/0.550x/0.8100/1.3 oil
350 nm 575 nm 920 nm

10x/0.25
1840 nm

Integrated wall intensity
Maximum domain intensity

Wall width = 

I. Soldatov et al.,  
APL 112, 262404 (2018)

Resolution of Kerr-microscopy

 103



4. Magneto-Optical Kerr Microscopy

500 

400 

300 

200

100

0 200 400 600 800 1000
0

Abbe-Resolution in nm

In
te

gr
al

 w
al

l w
id

th
 in

 n
m

Amorphous ribbon

FeSi  sheet

Resolution

FeSi  
sheet

Amorphous 
ribbon

20x/0.550x/0.8100/1.3 oil
350 nm 575 nm 920 nm

10x/0.25
1840 nm

Integrated wall intensity
Maximum domain intensity

Wall width = 

Amorphous ribbon: 
wall width = 310 nm 

→ 15% of resolution still visible 
⇓ 

100x/1.3 oil objective with  
350 nm resolution 

⇓ 
50 nm wide walls should be visible

I. Soldatov et al.,  
APL 112, 262404 (2018)

Resolution of Kerr-microscopy

 103



4. Magneto-Optical Kerr Microscopy

Nanowires (50 and 100 nm wide, 2 µm long)  
of magnetic film system with perpendicular anisotropy 

50 nm wide

100 nm wide

Positive remanence Negative remanence Demagnetized

(sample courtesy Jimmy Zhu and Matt Moneck, Carnegie Mellon University, Pittsburgh)

High-resolution observations
Resolution of Kerr-microscopy

 104



4. Magneto-Optical Kerr Microscopy

10 µmMagnetic field

Resolution of Kerr-microscopy
Ultra-high-resolution Kerr microscopy

FePt layer (16 nm thick),  
sample courtesy P. He and S.M. Zhou, Fudan

 105



4. Magneto-Optical Kerr Microscopy

10 µmMagnetic field

Resolution of Kerr-microscopy
Ultra-high-resolution Kerr microscopy

FePt layer (16 nm thick),  
sample courtesy P. He and S.M. Zhou, Fudan

 105



4. Magneto-Optical Kerr Microscopy
Resolution of Kerr-microscopy

Ultra-high-resolution Kerr microscopy

1 µm
together with  

N.Gorn & D.Berkov, Innovent Jena 
(under development)

Image is folded by point-
spread-function of microscope 
➔ loss of information 
➔ recovery of lost information 
by mathematical deconvolution 
➔ enhancement of resolution 
down to 50 nm regime

FePt layer (16 nm thick),  
sample courtesy P. He and S.M. Zhou, Fudan

 105



4. Magneto-Optical Kerr Microscopy
Resolution of Kerr-microscopy

Ultra-high-resolution Kerr microscopy

1 µm

FePt layer (16 nm thick),  
sample courtesy P. He and S.M. Zhou, Fudan

Deconvoluted

 105



4. Magneto-Optical Kerr Microscopy

[Pt(1.5 nm)/Co(1 nm)/Ir(1 nm)]5Pt(15 nm)   
(sample: A. Hoffmann & group, Argonne) 

2 µm

Demagnetized in 
perpendicular field

Demagnetized in  
in-plane field

After in-plane  
field pulse

Bubble collapse in 
perpendicular field

Resolution of Kerr-microscopy

Néel bubble

DAI, WANG, TAO, YANG, REN, AND ZHANG PHYSICAL REVIEW B 88, 054403 (2013)

FIG. 1. (Color online) (a) Sketch of a Co/Ru/Co nanodisk.
(b) Micromagnetic simulation result for a Co (20 nm)/Ru (2 nm)/Co
(20 nm) nanodisk. Arrows and colors correspond to the directions
of the local magnetization and the magnitude of the out-of-plane
magnetization component (Mz) at every point, respectively. Spin
textures in both the top and the bottom nanolayers are skyrmions.

magnetic ground states, which is smaller than the exchange
length of cobalt (about 4.94 nm). At phase boundaries, the
cell size was reduced to 2 × 2 × 1 nm3 to test stability of
the obtained states. The dimensionless damping α was chosen
to be 0.25 for rapid convergence. Different initial magnetic
states [vortex-like (with the same or opposite chirality), in-
plane-like, and out-of-plane-like initial states] were used to
get the most stable ground state. As for gyration simulation,
the cell size was 2 × 2 × 2 nm3 and α was 0.02. A pulsed
magnetic field of 10-ns width and 50-mT magnitude along the
+x direction was applied to the top or bottom nanolayer.

III. FORMATION OF SKYRMIONS

Figure 1(a) is a sketch of a single Co (20 nm)/Ru (2 nm)/Co
(20 nm) nanodisk with a diameter of 200 nm. Figure 1(b)
represents the micromagnetic simulation result of the nanodisk
with an out-of-plane-like initial state. The equilibrium states
of the top and bottom nanolayers are typical skyrmion-like

magnetic configurations. The magnetization M is down (along
the −z axis) in the centers and up (along the +z axis)
on the boundaries and it rotates gradually from the −z axis
to the +z axis in the intermediate regions of the nanolayers.
The magnetic chirality of the top nanolayer is right-handed,
while that of the bottom one is left-handed. To elucidate the
equilibrium state’s nature, we calculate the skyrmion number
using the following formula:16,32

S = 1
4π

∫∫
qdxdy, q ≡ 1

2
ϵµν(∂µm × ∂νm) · m, (1)

where ϵµν is the antisymmetric tensor, qis the topological den-
sity, and m is the unit vector of local magnetization. Sis found
to be approximately −1, showing a signature of a skyrmion-
like state. Similar magnetic spin textures have been found in a
patterned Co/Ru/Co nanodisk array with the diameter the same
as that of the single Co/Ru/Co nanodisk. The distance between
centers of two nearest-neighboring nanodisks was 250 nm, as
shown in Fig. 2. The result suggests that a stray field between
two nearest-neighboring nanodisks (250 nm apart) has little
influence on the skyrmion spin textures.

The formation of magnetic stable states is the consequence
of minimizing the Gibbs free energy of magnetic systems.
Figure 3(a) illustrates time dependences of the total energy,
exchange energy, uniaxial anisotropy energy, demagnetization
energy, and antiferromagnetic coupling energy for the case in
Fig. 1. The exchange energy, uniaxial anisotropy energy, and
demagnetization energy are two orders of magnitude higher
than the interfacial antiferromagnetic coupling energy and,
thus, are vital to the emergence of a skyrmion spin texture.
At the beginning, the out-of-plane-like initial state has a very
high value of total energy due to the significant demagneti-
zation energy. To lower the total energy, the demagnetization
energy decreases rapidly with time, whereas the exchange en-
ergy and uniaxial anisotropy energy both increase significantly.
A balance is reached and the total energy is almost unchanged
after 0.5 ns. Concurrently, the skyrmion number S drops to
about −1 for the top and bottom nanolayers, as shown in the
inset in Fig. 3(b), suggesting that a spontaneous topologically
stable knot emerges in the magnetization.10

As elaborated in many articles,10– 13,15– 22 the DMI is crucial
to the formation of magnetic skyrmion-like states, which favors
canting spins. The DMI is defined as12,42– 44

HDMI =
∫∫

DM · (∇ × M)dxdy, (2)

where D is DMI constant. But in this work, skyrmions are
spontaneously formed without the DMI. As discussed above,
the competition among the exchange energy, demagnetization
energy, and uniaxial anisotropy energy plays a significant role
in the emergence of skyrmions. To quantify the competition
effect, we define a quantity to mimic the DMI:

& =
∫∫

M · (∇ × M)dxdy. (3)

From Eq. (3), we calculate & as a function of time on
both the top and the bottom Co nanolayers [see Fig. 3(b)].
Notably, when energies compete drastically with each other
before 0.5 ns in Fig. 3(a), the & for both Co nanolayers
significantly changes. Then all energies reach equilibrium and
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length of cobalt (about 4.94 nm). At phase boundaries, the
cell size was reduced to 2 × 2 × 1 nm3 to test stability of
the obtained states. The dimensionless damping α was chosen
to be 0.25 for rapid convergence. Different initial magnetic
states [vortex-like (with the same or opposite chirality), in-
plane-like, and out-of-plane-like initial states] were used to
get the most stable ground state. As for gyration simulation,
the cell size was 2 × 2 × 2 nm3 and α was 0.02. A pulsed
magnetic field of 10-ns width and 50-mT magnitude along the
+x direction was applied to the top or bottom nanolayer.

III. FORMATION OF SKYRMIONS

Figure 1(a) is a sketch of a single Co (20 nm)/Ru (2 nm)/Co
(20 nm) nanodisk with a diameter of 200 nm. Figure 1(b)
represents the micromagnetic simulation result of the nanodisk
with an out-of-plane-like initial state. The equilibrium states
of the top and bottom nanolayers are typical skyrmion-like

magnetic configurations. The magnetization M is down (along
the −z axis) in the centers and up (along the +z axis)
on the boundaries and it rotates gradually from the −z axis
to the +z axis in the intermediate regions of the nanolayers.
The magnetic chirality of the top nanolayer is right-handed,
while that of the bottom one is left-handed. To elucidate the
equilibrium state’s nature, we calculate the skyrmion number
using the following formula:16,32

S = 1
4π

∫∫
qdxdy, q ≡ 1

2
ϵµν(∂µm × ∂νm) · m, (1)

where ϵµν is the antisymmetric tensor, qis the topological den-
sity, and m is the unit vector of local magnetization. Sis found
to be approximately −1, showing a signature of a skyrmion-
like state. Similar magnetic spin textures have been found in a
patterned Co/Ru/Co nanodisk array with the diameter the same
as that of the single Co/Ru/Co nanodisk. The distance between
centers of two nearest-neighboring nanodisks was 250 nm, as
shown in Fig. 2. The result suggests that a stray field between
two nearest-neighboring nanodisks (250 nm apart) has little
influence on the skyrmion spin textures.

The formation of magnetic stable states is the consequence
of minimizing the Gibbs free energy of magnetic systems.
Figure 3(a) illustrates time dependences of the total energy,
exchange energy, uniaxial anisotropy energy, demagnetization
energy, and antiferromagnetic coupling energy for the case in
Fig. 1. The exchange energy, uniaxial anisotropy energy, and
demagnetization energy are two orders of magnitude higher
than the interfacial antiferromagnetic coupling energy and,
thus, are vital to the emergence of a skyrmion spin texture.
At the beginning, the out-of-plane-like initial state has a very
high value of total energy due to the significant demagneti-
zation energy. To lower the total energy, the demagnetization
energy decreases rapidly with time, whereas the exchange en-
ergy and uniaxial anisotropy energy both increase significantly.
A balance is reached and the total energy is almost unchanged
after 0.5 ns. Concurrently, the skyrmion number S drops to
about −1 for the top and bottom nanolayers, as shown in the
inset in Fig. 3(b), suggesting that a spontaneous topologically
stable knot emerges in the magnetization.10

As elaborated in many articles,10– 13,15– 22 the DMI is crucial
to the formation of magnetic skyrmion-like states, which favors
canting spins. The DMI is defined as12,42– 44

HDMI =
∫∫

DM · (∇ × M)dxdy, (2)

where D is DMI constant. But in this work, skyrmions are
spontaneously formed without the DMI. As discussed above,
the competition among the exchange energy, demagnetization
energy, and uniaxial anisotropy energy plays a significant role
in the emergence of skyrmions. To quantify the competition
effect, we define a quantity to mimic the DMI:

& =
∫∫

M · (∇ × M)dxdy. (3)

From Eq. (3), we calculate & as a function of time on
both the top and the bottom Co nanolayers [see Fig. 3(b)].
Notably, when energies compete drastically with each other
before 0.5 ns in Fig. 3(a), the & for both Co nanolayers
significantly changes. Then all energies reach equilibrium and
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4. Magneto-Optical Kerr Microscopy
Resolution of Kerr-microscopy

Ultra-high-resolution Kerr microscopy

[Pt(1.5 nm)/Co(1 nm)/Ir(1 nm)]5Pt(15 nm)   
(sample: A. Hoffmann & group, Argonne) 
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4. Magneto-Optical Kerr Microscopy
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Figure 3 | Skyrmion lattice generation. a, STXM images of the domain state in a 2 µm Pt/Co/Ta disc at Bz=�6 mT (left) and after subsequently applying
Bz=2 mT (right). b, Scanning electron micrograph of a magnetic disc array with a Au microcoil patterned around one disc. c, Sequence of STXM images
after applying bipolar pulse trains (peak-to-peak voltage amplitude Vpp) with the microcoil, showing transformation from labyrinth stripe domain into
skyrmion lattice. d, An initial labyrinth domain state was generated by static field (first image) and then transformed into a hexagonal skyrmion lattice by
applying a bipolar pulse train with Vpp = 10 V (second image). The last two images were acquired after applying Vpp =4 V and Vpp =5 V, respectively. Dark
(light) contrast corresponds to up (down) magnetization in all STXM images except for the last three in d, where the X-ray magnetic circular dichroism
(XMCD) contrast was inverted.

400-nm-diameter disc as a function of |D| and M̃s, which
parameterize the DMI and magnetostatic energies that prefer non-
uniform ground states. Here, M̃s =MstCo/⇤ is the volume-averaged
saturation magnetization, where tCo is the Co layer thickness
and ⇤ is the multilayer period. For large M̃s the magnetostatic
energy dominates, stabilizing magnetic bubble skyrmions that
transition from achiral Bloch to homochiral Néel skyrmions with
increasing |D|.

For smaller M̃s, in the range corresponding to the experimental
M̃s =6.8⇥104 Am�1, the magnetostatic energy alone is insu�cient
to generate a non-uniform state. For small |D| in this regime, only
the uniformly magnetized state can be stabilized, indicating that the
experimentally observedmultidomain states are driven by the DMI.
In the low-M̃s regime, as |D| is increased, the uniformly magnetized
state gives way to a DMI-stabilized Néel skyrmion lattice phase, and
finally to a Néel labyrinth phase when |D| is large.

Figure 2b shows the magnetic texture calculated in the region
where |D| and M̃s are close to experimental values. Calculations
were performed for a larger 2-µm-diameter disc, corresponding
to the experimental geometry described below. For larger discs,
the skyrmion lattice phase extends to lower |D| because the
disc can accommodate larger-diameter skyrmions. The magnetic
configuration and skyrmion size depend sensitively on M̃s and |D|,
and for the parameters of our Pt/Co/Ta films, the labyrinth stripe
phase and skyrmion phase are predicted to be close in energy,
suggesting that the skyrmion lattice phase might be realized
experimentally in this system.

We used scanning transmission X-ray microscopy (STXM) to
confirm these predictions experimentally. Figure 3a shows STXM
images of the domain structure in a 2-µm-diameter Pt/Co/Ta
disc during minor loop cycling of Bz . The left panel shows
a parallel stripe phase at Bz = �6mT, which transforms into
a symmetric hexagonal skyrmion lattice after Bz is swept to
+2mT, favouring up (dark-contrast) domains. This lattice closely
resembles the micromagnetically computed structure in Fig. 2b for
the experimental M̃s and |D|, and the quasistatic transformation
between the stripe phase and skyrmion lattice demonstrates that
both these phases are metastable. Furthermore, our micromagnetic
simulations predict that the skyrmion lattice is stable even at zero

field for this material. To demonstrate this, we show in Fig. 3c,d the
dynamical transformation of a labyrinth stripe domain phase into a
hexagonal skyrmion lattice atBz =0, by applying short (6 ns) bipolar
field pulses with a lithographically patterned microcoil (Fig. 3b).
Bipolar pulses were used to excite the domain structure without
causing any significant changes of the relative area of ‘up’ and
‘down’ domains. The disc was first saturated in the up state, and
then Bz =�2mT was applied to nucleate a down labyrinth stripe
domain (light contrast in Fig. 3c) before setting Bz back to zero.
The process of lattice formation can be seen as bipolar voltage
pulse trains with increasing amplitude Vpp are injected into the
coil (see Supplementary Fig. 6 for corresponding field profile). As
Vpp is increased from 2 to 9V, the stripe domain begins to break
into discrete skyrmions starting at one end (Fig. 3c) and after
Vpp = 10V, the domain structure has completely transformed into
a geometrically confined skyrmion lattice. As the total domain area
in the process does not change, the system is most likely seeking the
most energetically stable configuration while maintaining a fixed
net magnetization.

The degree of order and the skyrmion size can be manipulated
by low-amplitude pulse excitation (Fig. 3d). After initializing the
disc with a down labyrinth domain, Bz was set to zero and a
pulse train at Vpp = 10V was applied to create a stable array of
skyrmions. By applying a small-amplitude pulse train Vpp =4V, the
skyrmions relax into a highly ordered hexagonal lattice, without
changing their size. Increasing slightly the pulsed field amplitude to
Vpp =5V (Fig. 3d) decreases the skyrmion size and increases their
density. This result demonstrates that multiple skyrmion diameters
can be stabilized in confined geometries, leading to multiple lattice
periodicities that are commensurate with the confining geometry,
as seen also in simulations (see Supplementary Information 5). The
skyrmion size can also be controlled with an externally applied
out-of-plane field, and skyrmions can be reduced to <50 nm in
diameter (see Supplementary Information 5).

Having established that skyrmions can form stable lattices in
this material, we next investigate their manipulation by current in
a magnetic track. Recent simulations13 suggest that skyrmions in
ultrathin films can be e�ciently driven by vertical spin current
injection, which can occur when charge current flows in an adjacent
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Durchführung und Probenmaterial 

43 

NEOFLUAR 1,25x/0,03 (Fa. Carl Zeiss) auf die Elektroblechprobe (mit Indikatorschicht) ein, 

welche über die Lücke der Magnetisierungseinheit observiert werden kann (Abb. 26). Über 

die 1,25-fache Vergrößerung hinaus wären die Eigendomänen der Indikatorschicht sichtbar, 

wodurch die eigentliche Observation der Probendomänenstruktur gestört würde (Abb. 27). 

Nach der Reflexion und der Veränderung des polarisierten Lichts durch einen magneto-

optischen Effekt auf der Probe bzw. in der Indikatorschicht passiert das austretende Licht 

den Analysator und den Kompensator, wobei die Kontrasteinstellung erfolgt und die ellipti-

sche Polarisation beseitigt wird, bevor es auf den CCD-Sensor der Digitalkamera C4742-95 

(Fa. Hamamatsu) auftrifft. 

 

 

 

 

 

 

 

 

 

Abb. 27: Links: Labyrinthmuster der Eigendomänen der Indikatorschicht bei 10-facher Vergrößerung. 
Abbildungsprinzip durch die Bildung von Regionen unterschiedlicher, mittlerer Graustufenwerte (vgl. 
Rechts; vgl. Abb. 15). Rechts: Eigendomänen werden kaum noch aufgelöst bei 2,5-facher Vergröße-
rung. Dafür bildet sich eine Überstruktur heraus: Die zu observierenden Domänen der Elektroblech-
probe. Eingerahmter Bildausschnitt  entspricht der linken Abbildung. 

Abb. 26: Magneto-optische Indikatorschicht 
(8 mm x 8 mm) auf einer in der Spule befind-
lichen Elektroblechprobe. 
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Figure 9: (a) PMOIF image of the same location as in Fig. 6, but without tensile
stress. The model in (b), adapted from ref. [1], explains the lancet pattern. In
(c, d) the distribution of magnetic poles according to the µ*-e↵ect is illustrated.
See supplementary file Video-Fig- 9a for a video of the quasistatic process of
(a)

The PMOIF seems to sense also those sub-surface poles so
that a strong domain contrast appears for misoriented grains,
which resembles the Kerr contrast. Figure 9a demonstrates
this contrast for the same sample location as already shown in
Figs. 4 and 6, but without a tensile stress applied. This coher-
ence of Kerr- and PMOIF contrast, which only holds for the
special case of Goss-related crystal orientations, does not apply
to ideally oriented grains as discussed before.

Curious contrast phenomena are found when stronger mag-
netic fields are applied (Fig. 10). For the transformation of the
lancet combs in the misoriented grains [visible in (a)] into fine
domains that resemble cirrocumulus clouds (b), we refer to the
Supplementary Material, Sect. 1. Here we rather focus on the
grain boundaries: Some grain boundaries, like the one marked
by (1) in the figure, develop a strong pole contrast that is en-
hanced with increasing field (see supplementary file Video-Fig-
10). Around others [like boundaries (2) and (3)] special grain
boundary domains are formed, which help to prevent or at least
reduce the formation of poles at the gain boundary. Which of
the two solutions is preferred, depends on the relative crystallo-
graphic orientations of the neighboring grains and on the grain
boundary orientation with respect to the direction of flux propa-
gation. No attempt is made here to quantify those dependencies
— this would require knowledge of the grain orientations and
some domain-phase theoretical modeling [21] which is out of
the scope of this paper.

A first glimpse at the basic idea can nevertheless be gained
from Fig. 11. In (a) a grain neighborhood is shown with two
characteristically di↵erent grain boundaries. The boundary
marked on the left is characterized by lancet domains in ‘tip-
on’ configuration in the neighboring grains, whereas ‘foot-on’
lancets are present around the boundary highlighted on the
right. The left boundary shows a strong dipolar contrast, while
spike domains are formed around the right boundary. By apply-
ing a small tensile stress along the rolling direction (Fig. 11b),
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Figure 10: PMOIF images of the same grain neighborhood as in Fig. 9, im-
aged without (a) and with (b) DC magnetic field applied as indicated. Shown
is the formation of cloud domains, grain boundary domains and -poles. See
supplementary file Video-Fig- 10 for an animation

this e↵ect becomes more enhanced (in Sect. 5 the role of ten-
sile stress will be treated in more detail). The basic di↵erence
between both grain boundaries is explained schematically in
Fig. 11c. Here the cross section and top view of a simplified
domain configuration in three neighboring grains is shown in a
perspective view. The left and right grain boundaries are sur-
rounded by grains with tip-on and foot-on lancets, respectively,
on the upper surface. This implies up and down magnetization
components of the basic domains as indicated in the figure to
preserve a pole-free 180� wall orientation between lancet- and
basic domain magnetization. For topological reasons, spike do-
mains are only possible at the upper surface around the right
grain boundary and at the lower surface around the left bound-
ary. As seen on the top surface, the presence of grain bound-
ary spike domains leads to an intermixing of opposite surface
poles, while at the left grain boundary the magnetic poles are
aligned along the boundary thus leading to a double contrast in
the PMOIF images (see left grain boundary in Fig. 11a and b).

In summary, PMOIF imaging is a powerful alternative
to Kerr microscopy (and other imaging techniques) for the
overview investigation of Goss-textured sheets. Compared to
Kerr imaging, PMOIF microscopy provides three advantages:
(i) under overview conditions, finer domain details can be re-
solved. (ii) The contrast is significantly higher, allowing for
single shot time resolved imaging up to the (several) 100 Hz fre-
quency regime. (iii) In addition to domain contrast, the devel-
opment of magnetic poles at grain boundaries and other defects
can be imaged. A disadvantage is the insensitivity of PMOIFs
to strictly in-plane magnetized domains. Here Overview Kerr
microscopy is clearly superior, and its low resolution is not an
issue as in-plane domains in Goss sheets are su�ciently wide.
So, the combination of both, Kerr and MOIF imaging, is rec-
ommended and easily possible as both methods can be applied
in the same optical polarization microscope.
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boundary domains are formed, which help to prevent or at least
reduce the formation of poles at the gain boundary. Which of
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graphic orientations of the neighboring grains and on the grain
boundary orientation with respect to the direction of flux propa-
gation. No attempt is made here to quantify those dependencies
— this would require knowledge of the grain orientations and
some domain-phase theoretical modeling [21] which is out of
the scope of this paper.
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solved. (ii) The contrast is significantly higher, allowing for
single shot time resolved imaging up to the (several) 100 Hz fre-
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