

Leibniz Institute for Solid State and Materials Research Dresden

Electron Holography

Axel Lubk

Converting phase shifts to contrasts: Fresnel imaging

Fresnel imaging: Pros & Cons

Pro:

- simple
- fast
- sensitivity adjustable

Con:

- (partially) non-linear contrast
- defocus \rightarrow unsharp images
- quantification difficult (but possible)
- sensitiv to dynamical scattering

Can be overcome by Holography! (now)

Recommended reading:

 Völkl, Edgar, Allard, Lawrence F., Joy, David C. (Eds.), Introduction to Electron Holography, Springer (1999).

- 1. Fundamentals of electron scattering
 - a. Axial scattering
 - b. Magnetic and electric Ehrenberg–Siday–Aharonov–Bohm effect

2. Fundamentals of Electron Holography and Tomography

- a. Holographic Principle (interference, reconstruction)
- b. Holographic Setups (inline, off-axis) and instrumental requirements
- c. Separation of electrostatic and magnetic contributions
- d. Tomographic reconstruction of 3D electric potential and magnetic induction vector field from tilt series of projections

How do fields act on electrons waves? *

paraxial approximation

no backscattering

small-angle scattering

 $\Psi = e^{ik_z z} \psi$

$$E\Psi = \left[\frac{\hat{p}^2}{2m} - eV\right]\Psi$$

kinetic momentum operator

 $\hat{p} = -i\hbar \nabla + eA$

$$\begin{aligned} -2k_{z}\hbar\hat{p}_{z}\psi &= \left[\hat{p}_{\perp}^{2} - 2meV\right]\psi\\ \partial_{z}\psi &\approx i\left[\frac{-\hat{p}_{\perp}^{2}}{2\hbar^{2}k_{z}} + \sigma V - \frac{e}{\hbar}A_{z}\right]\psi\end{aligned}$$

 \cong 2D time-dependent Schrödinger equation

axial approximation (wavelength << object details)

very small angle scattering

$$\partial_z \psi \approx i \left[\sigma V - \frac{e}{\hbar} A_z \right] \psi$$
$$\psi = e^{i\varphi} \psi_0 \rightarrow \varphi = \int_{\text{object}} \left(\frac{e}{\hbar v} V - \frac{e}{\hbar} A_z \right) dz$$

* It is a good exercise to do derivation by yourself.

Phase shift by electric potential

$$\varphi = k \left[\int_{s_2 - s_1} n ds \right] = \frac{e}{\hbar v} \int_{\text{object}} V dz$$

refractive index

Detectable phase shift *

$$\Delta \varphi = \sigma \int_{s_2 - s_1} V \, ds$$

electric
$$\int \phi$$

$$\Delta \varphi = \sigma \left(V_{p,1} - V_{p,2} \right)$$

* Why can we only detect phase differences?

Detectable phase shift

Ehrenberg - Siday – Aharonov - Bohm Effect Proposal: Ehrenberg & Siday 1949 Aharonov & Bohm 1958

Experiment: Möllenstedt & Bayh 1962

Magnetic phase shift

Summary: object exit wave

Summary: object exit wave

phase modulation $\varphi(x, y)$:

micro-/nanofields

- electric
- magnetic

amplitude modulation a(x, y):

- scattering into large angles
- interference effects
- inelastic scattering

- 1. Fundamentals of electron scattering
 - a. Axial scattering
 - b. Magnetic and electric Ehrenberg–Siday–Aharonov–Bohm effect

2. Fundamentals of Electron Holography and Tomography

a. Holographic Principle (interference, reconstruction)

- b. Holographic Setups (inline, off-axis) and instrumental requirements
- c. Separation of electrostatic and magnetic contributions
- d. Tomographic reconstruction of 3D electric potential and magnetic induction vector field from tilt series of projections

Dennis Gabor

Easter 1947, on the tennis court:

... and all of sudden it came to me, without any effort on my side.

Interference and diffraction are mutually inverse

1902-1979 Nobel Prize 1971

Electron Holography measures phases

Dennis Gabor

Holography

Object wave

Common Forms of Electron Holography

J.M. Cowley, 20 forms of holography, Ultramicroscopy 41 (1992), 335-348

Holography - Dennis Gabor's idea

Holography - Dennis Gabor's idea

Holography - reconstruction of wave

Holography: basic scheme

Holography: recording hologram

$$hol = (\psi + r)(\psi + r)^*$$
$$= \psi\psi^* + rr^* + \psi r^* + \psi^* r$$

Holography: reconstruction of wave

Holography: reconstruction of wave

Plane reference wave r

Where to take the hologram ?

- **Object plane**
- Fresnel region
- Fraunhofer region
- Fourier plane

In principle: "where" is not essential, but with electrons we are "coherency-limited"

Where to take the hologram ?

Inline Holography

Scattering Regimes

Illumination
$$k = 2\pi / \lambda$$

Fresnel (near field)

Fraunhofer (far field)

Reconstruction Schemes

Differential Defocus / Transport of Intensity Reconstruction

Defocus Series Reconstruction

Fraunhofer Holography

Figure from Lee, Optics Express Vol. 15, Issue 26, pp. 18275-18282 (2007)

- 1. Fundamentals of electron scattering
 - a. Axial scattering
 - b. Magnetic and electric Ehrenberg–Siday–Aharonov–Bohm effect

2. Fundamentals of Electron Holography and Tomography

- a. Holographic Principle (interference, reconstruction)
- b. Holographic Setups (inline, off-axis) and instrumental requirements
- c. Separation of electrostatic and magnetic contributions
- d. Tomographic reconstruction of 3D electric potential and magnetic induction vector field from tilt series of projections

Transport of Intensity Reconstruction

Paraxial Eq.

$$\frac{\partial \Psi(\mathbf{r}_{\perp}, z)}{\partial z} = \frac{i}{2k} \Delta_{\perp} \Psi(\mathbf{r}_{\perp}, z)$$

Continuity Eq. / Transport of Intensity Eq.

density / intensity

$$\rho \equiv \left| \Psi \right|^2$$

experimental data from 2 slightly defocussed images

$$\frac{\overline{\rho(z+\delta z), \rho(z-\delta z)}}{\rho(z+\delta z), \rho(z-\delta z)} + O(\delta z^{2})$$

$$\rho(z) = \frac{\rho(z+\delta z) + \rho(z-\delta z)}{2} + O(\delta z^{2})$$

Transport of Intensity Reconstruction

TIE: Pros & Cons

Pro:

- linear signal
- simple reconstruction
- simple experiment
- no external reference / vacuum required
- works at moderate coherency

Con:

- not so fast (2 recordings)
- not sensitiv to small spatial frequencies (large scale variations)
- ambiguous result (because of unknown boundary conditions)

iterate over initial waves to find Φ with min R_{Φ}

 $\tilde{\psi}$

 $R^{(n+1)} - R^{(n)}$

Focal Series Reconstruction

Experimental focus series Reconstruction of B-Field

Focal Series: Pros & Cons

Pro:

- sensitiv to smaller (but still not very small) spatial frequencies
- works at every TEM
- no external reference / vacuum required

Con:

- very slow
- ambiguous result (depending on starting guess)
- complicated reconstruction

Biprism-Holder

Biprism-Holder

Off-axis electron holography

Hologram

Magnetic phase shift in Cobalt stripe domains

Amplitude image

$$\frac{\partial \varphi_{\text{mag}}}{\partial x} = -\frac{e}{\hbar} \int B_y(x, y, z) \, \mathrm{d}z$$

Projected B-field

Electric and magnetic phase shift

Electric and magnetic phase shift

Fernandez-Pacheco, A. et al., Nat Commun 2017, 8, 15756.

Sample provided by Denys Makarov, Helmholtz-Zentrum Dresden-Rossendorf.

Liquid Helium Cryostage

FIG. 4. Cross section of electron microscope with cooling apparatus. A, field emission gun; B, liquid-He reservoir; C, cooling stage; D, ion pumps; E, biprism; F, condenser lens; G, objective lens; H, intermediate lenses; I, projector lenses.

FIG. 5. Cross section of cooling stage. A, second shield; B, first shield; C, specimen holder; D, conducting rods; E, heater; F, objective pole-piece; G, superconducting coil; H, heater; I, Ge resistor; J, insulating supports; K, specimen.

Superconductivity: Vortex lattice

Nb-film T=4.5K < Tc=9.2K B=15 mT (150 Gauss) Phase amplification 16*

J.E. Bonevich, K. Harada, T. Matsuda, H. Kasai, T. Yoshida, G. Pozzi and A. Tonomura, Phys.Rev.Letters, 70 (1993), 2952

Off-axis: Pros & Cons

Pro:

- linear signal
- simple reconstruction
- unambiguous result
- sensitiv to the whole spatial frequency range

Con:

- (multiple) biprisms required
- reference (vacuum) required
- large coherency requirements

- 1. Fundamentals of electron scattering
 - a. Axial scattering
 - b. Magnetic and electric Ehrenberg–Siday–Aharonov–Bohm effect

2. Fundamentals of Electron Holography and Tomography

- a. Holographic Principle (interference, reconstruction)
- b. Holographic Setups (inline, off-axis) and instrumental requirements

c. Separation of electrostatic and magnetic contributions

d. Tomographic reconstruction of 3D electric potential and magnetic induction vector field from tilt series of projections

3. Magnetic fields and textures in solids

- a. Magnetization, Magnetic induction, Magnetic field
- b. Magnetostatics
- c. Micromagnetics

Separation of magnetic and electric phase shift *

 $\varphi_1(x, y) = \varphi_{el}(x, y) + \varphi_{mag}(x, y)$

$$\varphi_2(x,y) = \varphi_{el}(x,y) - \varphi_{mag}(x,y)$$

$$\varphi_{mag}(x, y) = (\varphi_1(x, y) - \varphi_2(x, y))/2$$

$$\varphi_{el}(x, y) = (\varphi_1(x, y) + \varphi_2(x, y))/2$$

- 1. Fundamentals of electron scattering
 - a. Axial scattering
 - b. Magnetic and electric Ehrenberg–Siday–Aharonov–Bohm effect

2. Fundamentals of Electron Holography and Tomography

- a. Holographic Principle (interference, reconstruction)
- b. Holographic Setups (inline, off-axis) and instrumental requirements
- c. Separation of electrostatic and magnetic contributions
- d. Tomographic reconstruction of 3D electric potential and magnetic induction vector field from tilt series of projections

Separation of magnetic and electric phase shift

$\varphi_{mag} = (\varphi_1 - \varphi_2)/2$

$$\varphi_{el} = (\varphi_1 + \varphi_2)/2$$

 $\begin{pmatrix} \partial_x \varphi_{mag} \\ \partial_v \varphi_{mag} \end{pmatrix} = -\frac{e}{\hbar} \int \begin{pmatrix} B_y(x, y, z) \\ -B_x(x, y, z) \end{pmatrix} dz \qquad \varphi_{el}(x, y) = C_E \int V(x, y, z) dz$

 $+\infty$

Towards 3D nanomagnetism

Towards 3D nanomagnetism

Towards 3D nanomagnetism

+ structural, chemical data

Reyes et al., Nano Lett. 16 (2016) 1230

DW in <u>50 nm</u>

Biziere et al., Nano Lett. 13 (2013) 2053

Comparison

3D modelling of M,B (eg. micromagnetic simulation)

Single tilt axis holographic tomography of nanomagnets

Wolf et al., *Chem. Mater.* **27** (2015) 6771 Simon, Wolf et al., *Nano Lett.* **16** (2016) 114

Electron holographic tomography of magnetic samples

3D reconstruction of V(x, y, z) and **B**(x, y, z)

- Tilt series acquisition of off-axis electron holograms: Two 360° tilt series around *x*- and *y*-axis (gaps due to experimental limitations)
- 2. Phase shift retrieval from electron holograms
- Separation of electric and magnetic phase shift and alignment ⁴
- 4. Tomographic reconstruction of

 $V(x, y, z) \text{ from } \varphi_{el},$ $B_x(x, y, z) \text{ from } \frac{\partial \varphi_{mag}}{\partial y},$ $B_y(x, y, z) \text{ from } \frac{\partial \varphi_{mag}}{\partial x}$

5. Computation of $B_z(x, y, z)$ from $\nabla \cdot \mathbf{B}(x, y, z) = 0$

Dual tilt axis holographic tomography of nanomagnets

Electron Holographic Tomography

Implementation

THOMAS				0 0
Projection Imaging Mode: LORENTZ Magnification: 23500 Image ShiftX: 0 Image ShiftY: 0	Camera Setings Image Name: Frame_000 C Acquire Number	Exposure Time: 0.5 ed Images IP Overwrite	Binning 2 Calibrate	□ Display Stage Ax □ Display Imshit Ax Stage X 💽
Projection Compustage Eu Read Compustage Reset Compustage	sentricity Tracking Tit Seri	es Holography e Shift Claimed Precision (µm Number of Tries	01 10	Stored Positions
x-pos. [pm] y- [70 [21	pos. [µm] 2:pos. [µm] 0 [16.11	Alpha [deg] Beta [de	<u>al</u>	Store Restore
x step jumi	visteo juni	A-step Ideal B-step	ldeol	Procedures
10 ResetX	10 10 ResetZ	10 10 Reset A Reset	ntB	Center Detai
Correct A-Tilt Induced Disp	lacement Calculated	Read A-Tilt Displacements	it [pm] 0	I* Blank Beam

Fine Alignment Images Till series Zn0_ts_ppot Sino from ROI Average Threshold Displacements Manual Volume Threshold Analyze sinogram Analyze x Images Apply x Reference slice Lower slice 305 Down Shift table Lower slice Round Shift table Lower slice Genut Apply x All shift tables Create Get Apply All shift tables

Reconstruct 3D image: sinogram size of backprojection: x-size 440 z-size 200 t Sino 195 Extract Tilts pos. of backprojection: x-pos 0 z-pos 0 SIRT reconstruction /alues of projection dit select nath 1.0197 -36 534394 90 12421 12.635874 edge in px 10 7 900128 38.376365 1.738393 31.823999 0.8293 shape both 💌 28 297830 -4.390504 Smooth sine olina 18

Automated tomographic tilt series acquisition

- Installed at NCEM Berkeley, U Antwerp, TU Berlin
- Adapted for different TEMs

Wolf et al. Ultramic. 110 (2010) 390

Alignment

- Displacement correction
- Tilt axis finding

Wolf et al., *Chem. Mater.* **27** (2015) 6771

"Reconstruct 3D" software package

 Documentation at <u>www.triebenberg.de/wolf</u>

Wolf et al. Ultramic. 136 (2014) 15

Challenges	Problems
Magnetic sample	 beam damage diffraction contrast stray fields magnetization by Lorentz lens

Permalloy disks provided by J. Zweck, Regensburg

E. Dunin-Borkowski and T. Kasama, Microscopy and Microanalysis 10 (2004) 10

Challenges	Problems
Magnetic sample	 beam damage diffraction contrast stray fields magnetization by Lorentz lens

Permalloy disks provided by J. Zweck, Regensburg

E. Dunin-Borkowski and T. Kasama, *Microscopy and Microanalysis* 10 (2004) 10

Challenges	Problems
Magnetic sample	 beam damage diffraction contrast stray fields magnetization by Lorentz lens
$\int B_y(x(\alpha), y, z(\alpha)) dz = -\frac{\hbar}{e} \frac{\partial \varphi}{\partial x(\alpha)}$ y in the direction of tilt axis	 derivation enhances noise only B_y, i.e., parallel to tilt axis

Challenges	Problems
Magnetic sample	 beam damage diffraction contrast stray fields magnetization by Lorentz lens
$\int B_y(x(\alpha), y, z(\alpha)) dz = -\frac{\hbar}{e} \frac{\partial \varphi}{\partial x(\alpha)}$ y in the direction of tilt axis	 derivation enhances noise only B_y, i.e., parallel to tilt axis
Two ultra-high-tilt series $(\pm 90^{\circ})$ about orthogonal axes to get B_x and B_y	sample geometryholder designstability

E. Dunin-Borkowski and T. Kasama, Microscopy and Microanalysis 10 (2004) 10

Tsuneta et al., Microscopy 63 (2014) p. 469

Solution

 preparation of free-standing samples combined with special holder designs

Dual-Axis Tomography Holder Model 2040, Fischione Instruments

Multiple-axis rotation holder

IFW Forschungstechnik: Steffen Ziller, Nico Richter, Rolf Morgner

Challenges	Problems
Magnetic sample	 beam damage diffraction contrast stray fields magnetization by Lorentz lens
$\int B_y(x(\alpha), y, z(\alpha)) dz = -\frac{\hbar}{e} \frac{\partial \varphi}{\partial x(\alpha)}$ y in the direction of tilt axis	 derivation enhances noise only B_y, i.e., parallel to tilt axis
Two ultra-high-tilt series $(\pm 90^{\circ})$ about orthogonal axes to get B_x and B_y	sample geometryholder designstability
Separation electric (MIP contribution) magnetic phase shift	 acquisition of additional two tilt series with reversed magnetization precise alignment (2D Affine transformation)

Challenges	Problems
Magnetic sample	 beam damage diffraction contrast stray fields magnetization by Lorentz lens
$\int B_y(x(\alpha), y, z(\alpha)) dz = -\frac{\hbar}{e} \frac{\partial \varphi}{\partial x(\alpha)}$ y in the direction of tilt axis	 derivation enhances noise only B_y, i.e., parallel to tilt axis
Two ultra-high-tilt series $(\pm 90^{\circ})$ about orthogonal axes to get B_x and B_y	sample geometryholder designstability
Separation electric (MIP contribution) magnetic phase shift	 acquisition of additional two tilt series with reversed magnetization precise alignment
B_z from $\nabla \cdot B = 0$ with B_x and B_y inserted	 second derivation enhances noise further unknown boundary conditions
Liibriz & E. Dunin-Borkowski and T. Kasama	a. Microscopy and Microanalysis 10 (2004) 1010

E. Dunin-Borkowski and T. Kasama, Microscopy and Microanalysis 10 (2004) 1

Vectorfield tomography of Cu/Co multi-stacked NWs: Phase diagram for a single Co-disk from micromag simulation

Vectorfield tomography of Cu/Co multi-stacked NWs: Hologram tilt series

Tilt range -69° to +72°

Rotated 90° in-plane: Tilt range -69° to +72°

+ tilt series flipped upside-down

Vectorfield tomography of Cu/Co multi-stacked NWs: Hologram tilt series

Tilt range -69° to +72°

Rotated 90° in-plane: Tilt range -69° to +72°

Vectorfield tomography of Cu/Co multi-stacked NWs: Phase tilt series

Electric phase shift

Magnetic phase shift (smoothed)

Electrostatic 3D potential of Cu/Co multi-stacked NW

 3D reconstruction from electrostatic phase shift (Average of two tilt series)

Electrostatic 3D potential of Cu/Co multi-stacked NW: Quantification

MIPs reduced due to low purity (voids); 15% Cu amount in Co

Reconstructed magnetic configurations in Cu-Co NW

Nanoscale mapping for better understanding of 3D nanomagnetism

$$M_{S} = 1200 \times 10^{3} \ A/m$$
$$A = 22 \times 10^{-12} \ J/m$$
$$H_{k} = 100 \times 10^{3} \ J/m^{3}$$

Nanoscale mapping for better understanding of 3D nanomagnetism

+ structural, chemical data

Reyes et al., Nano Lett. 16 (2016) 1230

3D reconstruction by electron holographic vector field tomography of B-fields

DW in <u>50 nm</u> <u>50 nm</u> <u>50 nm</u> CO

Biziere et al., Nano Lett. 13 (2013) 2053

Comparison

3D modelling of M,B (eg. micromagnetic simulation)