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What are relevant fields and magnetic structures?

– Micromagnetic domains

– Domain walls

– Vortices, Bubbles, Skyrmions

– Memory devices

– …

Figures by O. Fruchart 2



3D Nanomagnetism – A new paradigm in magnetism

Neél skyrmionMagnetic vortex

topological 3D spin textures

Fernandez-Pacheco, A. et al. , Nat Commun 2017, 8, 15756.

… on arbitrary geometries

3D domain walls in NWs

Transverse-Vortex Bloch-Point
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High-Resolution Magnetic Imaging

Recommended reading:

1. M. D. Graef, Magnetic imaging and its

applications to materials, Academic press

(2001).

Magnetic Force Microscopy

Transmission Electron Microscopy

Scanning Tunneling Microscopy

X-ray Magnetic Chiral Dichroism

Spin-Polarized Low-Energy Electron Microscopy

Scanning Electron Microscopy with Polarization Analysis

Magneto-Optic Kerr Effect Microscopy
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1. Electron microscopies for magnetic materials

a.TEM based magnetic imaging techniques

i. Differential Phase Contrast

ii.Lorentz TEM

b.SEM based magnetic imaging techniques

2. Electron spectroscopies and time-resolved approaches for

magnetic materials

a.EELS and Energy-Loss-Chiral Dichroism

b.Ultrafast TEM

3.Summary



Why Electron Microscopy?
E. Abbe

𝜆 =
ℎ

𝑝
=

ℎ

𝑚 𝑣

L. de Broglie

𝜆 =2.5 pm @ 200 kV*

E. Ruska‘s

TEM (1931)

Light microscopy Electron microscopy

* Why modern TEM‘s „only“ achieve 50 pm (and why do we not bother)? 

R. Koch‘s

microscope

(1880)

wave length

resolution

velocity
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Transmission Electron Microscopy
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TEM principle

Electron gun

• generation and acceleration of electrons

Condenser system

• beam shaping by set of magnetic lenses and 

apertures

Objective lens

• imaging lens of the TEM

Intermediate lens

• switching between imaging and diffraction mode.

Projective lenses

• post magnification of second intermediate image. 

Image observation

• detection of images or diffraction patterns.
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Objective lens

Sample

Detector(s)

Scan coils

Source

STEM*

Plane wave

Image

Source

Sample

Objective lens

Minimal Model

TEM

BF: θ<10mrad 

ADF: 10<θ<50

HAADF: 50mrad>θ

θ

TEM Principle
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* Does anybody sees the reciprocity between TEM and STEM?



Digital Camera
Magnification Series

 turning the magnification

wheel

5 nm

Au nanoparticle with grain boundaries
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Holography

Ru

Cl

Atomic resolution imaging Electron Diffraction

Tomography

3D nanomagnetic

textures

Electron Energy Loss Spectroscopy 3D morphology

nanomagnetic fieldsnanocrystal crystallographyinterface, defect studies

bulk / surface

plasmons, excitons

element, valency, 

magnetic state

TEM techniques
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Scanning Electron Microscopy
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Comparison TEM - SEM
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SEM TEM

accel. voltage 1-30 kV 60-300 kV

spatial resolution 50Å 1Å

information topography, atomic number, 

chemical composition, 

crystallography, electric and 

magnetic fields

atomic number, chemical

composition, crystallography, 

strain

low-energy excitations, 

electric and magnetic fields

Magnetic imaging modes SEM with Polarization

Analysis

Lorentz TEM, Electron

Holography, Differential 

Phase Contrast, Electron-

Energy-Loss Magnetic Chiral 

Dichroism
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1. Electron microscopies for magnetic materials

a.TEM based magnetic imaging techniques

i. Differential Phase Contrast

ii.Lorentz TEM

b.SEM based magnetic imaging techniques

2. Electron spectroscopies and time-resolved approaches for

magnetic materials

a.EELS and Energy-Loss-Chiral Dichroism

b.Ultrafast TEM

3.Summary



STEM-DPC
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Objective lens

Sample

Scan coils

Source

Pixelated 

Detector

minimal model



Differential phase contrast - principle

𝑭 = −𝑒 𝑬 + 𝒗 × 𝑩 = 𝑚𝒂

Lorentz force

deflection of focussed probe*

electric part pagnetic part

𝛽 =
𝒗⊥
𝑣0

=
𝒂⊥𝑡

𝑣0
2

𝛽 = −
𝑒𝑡

𝑚𝑣0
2

𝐸𝒙
𝐸𝒚

𝛽 = −
𝑒𝑡

𝑚𝑣0

−𝐵𝒚
𝐵𝒙

x

zy

⊗
⊗
⊗

⊗
⊗
⊗

⊗
⊗
⊗

⊗
⊗
⊗

𝛽

result remains valid for momentum

expectation value of an extended probe

• if scattering angles are small

• and no field variations smaller than

the beam diameter

* Please derive the formula by yourself

t
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Differential phase contrast – image reconstruction

Deflection direction =

B
x

component

Deflection direction =

B
y

component

annul. 

detector

orientation

5 µm
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Differential phase contrast - Evolution of 

magnetization
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[FeCoB/AlN]
N

magnetic multilayer
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DPC: Pros  & Cons

Pro:

 linear signal

 simple quantification

 sensitivity adjustable

 trade off with resolution

 suppression of dynamical

scattering

Con:

 (fast detector required)

 not so fast

 calibration of small scattering

angles

 artifacts due to sub-beam 

diameter sample variations
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1. Electron microscopies for magnetic materials

a.TEM based magnetic imaging techniques

i. Differential Phase Contrast

ii.Lorentz TEM

b.SEM based magnetic imaging techniques

2. Electron spectroscopies and time-resolved approaches for

magnetic materials

a.EELS and Energy-Loss-Chiral Dichroism

b.Ultrafast TEM

3.Summary



How do fields act on electrons waves?
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1
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𝜑 =
𝑒𝑡

ℏ
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deflection

angle

phase

shift*

semiclassics

wave front

* Electrons are waves! (more on that tomorrow)

initial 

velocity

t
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Converting phase shifts to contrasts: Fresnel imaging

23

⊗ ⊙ ⊗

-

area of reduced 

intensity

area of increased 

intensity

area of reduced 

intensity

area of increased 

intensity

+𝛿𝑓

−𝛿𝑓
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Converting phase shifts to contrasts: Fresnel imaging

Fresnel image through-focus series Phase grating 𝜑

100 nm
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[1] T. H. Skyrme, Proc. R. Soc. Lond. Ser. A 260, 127 (1961)[2] E. Ruff et al., Phys Rev B 96, 165119 (2017)

[3] A. O. Leonov et al., New J. Phys. 18 (2016) 065003 [4] S. Seki, M. Mochizuki, SpringerBriefs in Physics (2016)

[5] A. K. Nayak et al., nature 548 (2017)

hexagonal lattice

Bloch Néel Anti

helical

cycloidal

Magnetic Skyrmions



Converting phase shifts to contrasts: Fresnel imaging

Cubic P213 crystal structure

FeGe

SEM image

Sample from Marcus Schmidt (MPI-CPfS)

Skyrmions in isotropic helimagnet FeGe
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Converting phase shifts to contrasts: 

Fresnel imaging of Skyrmion dynamics
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Converting phase shifts to contrasts: 

Fresnel imaging of Skyrmion dynamics
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Fresnel imaging: Pros & Cons

Pro:

 simple

 fast

 sensitivity adjustable

Con:

 (partially) non-linear contrast

 defocus → unsharp images

 quantification difficult (but 

possible)

 sensitiv to dynamical scattering

Can be overcome by Holography! (tomorrow)
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1. Electron microscopies for magnetic materials

a.TEM based magnetic imaging techniques

i. Differential Phase Contrast

ii.Lorentz TEM

b.SEM based magnetic imaging techniques

2. Electron spectroscopies and time-resolved approaches for

magnetic materials

a.EELS and Energy-Loss-Chiral Dichroism

b.Ultrafast TEM

3.Summary



SEM with polarization analysis
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Koike et al in 1984



SEM with polarization analysis
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example of SEMPA imaging: 10µm Py Pad

Geometry for detection of

in-plane polarization



SEM with polarization analysis
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1. Electron microscopies for magnetic materials

a.TEM based magnetic imaging techniques

i. Differential Phase Contrast

ii.Lorentz TEM

b.SEM based magnetic imaging techniques

2. Electron spectroscopies and time-resolved approaches

for magnetic materials

a.EELS and Energy-Loss-Chiral Dichroism

b.Ultrafast TEM

3.Summary



• ferromagnetic materials: imbalance of spin-

up and spin-down electrons in 3d (4f…) shell

• measure difference through spin-dependent

x-ray absorption process [1]

• angular momentum of light is transferred to

photoelectron

• helicity of photon imposes constraints for

the change of angular momentum in dipole

transitions

• spin-orbit coupling in 2p states couples

angular momentum to spin momentum

• absorption coefficient as function of energy

is proportional to the final d states density.

[1] G. Schütz et al., Phys. Rev. Lett. 58 (1987)

Fe L3

Fe L2

X-ray magnetic circular dichroism (XMCD)
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Model of the ʻvirtual photonʼ

• The FOURIER component of E giving rise to

an electronic transition is parallel to

momentum transfer ħq

• Interpretation as an absorbed effective

photon with polarisation

• EMCD = transfer of circularly polarised

virtual photon. 

• Electron (virtual photon) changes angular 

momentum by ±ħ.

[2] P. Schattschneider, Linear and Chiral Dichroism in the Electron 

Microscope. CRC Press (2012)

sample electron

[2]

XMCD and Electron energy-loss circular dichroism 

(EMCD)
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• Pertubation leading to an electric transition

is an electric field

• Force two scattering vectors to exhibit a 

phase difference

•

(circular polarized virtual photon)

• Mirroring the position of the aperture gives

opposite polarization. 

Classical EMCD
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Classical EMCD

Diffraction pattern (zone axis) 

• Similarity between electron scattering and photon absorption

leads to equivalence of EMCD and XMCD [3, 4].

• Scattering vector q replace the polarisation .  

• Prerequisites:

(i)  Superposition of two linear polarized waves

(with a phase shift of /2) to a circular

polarized wave

(ii)  Optimal for qqʹ

(iii) Change of helicity

Three beam case

/2/2

q q'tilting

[3] C. Hébert and P. Schattschneider , Ultramicroscopy 96 (2003)

[4] P. Schattschneider et al., Nature 441 (2006) 39



• (10 ± 2)-nm-thick Fe single crystal film.

• XMCD spectra from a focused 50 µm spot.

• EMCD spectra from illuminated area with 200 nm diameter.

[3]

[3] P. Schattschneider et al., Nature 441 (2006)

Experimental XMCD spectra Experimental and simulated EMCD spectra

First experimental EMCD spectra
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• Using sum rules [7]:

can be calculated, which agrees well with 

XMCD results [8, 9].

[7] J. Rusz et al., Physical Review B, 75 (2007)

[8] C. Antoniak et al., PRL 97 (2006)

[9] V. Dupuis et al., J. of Magn. and Magn. Mat. (2015)

p q

Quantifying magnetic properties of FePt nanoparticles

41



EMCD with vortex beams on magnetic 

nanostructures and nanoparticles

(measuring out-of-plane magnetisation).

[7] M. Uchida and A. Tonomura, Nature 464 (2010)

[8] J. Verbeeck et al., Nature 467 (2010)

[9] B. McMorran et al.. Science 331 (2011)

[7]

[8] [8][9]

Towards atomic magnetic measurements
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1. Electron microscopies for magnetic materials

a.TEM based magnetic imaging techniques

i. Differential Phase Contrast

ii.Lorentz TEM

b.SEM based magnetic imaging techniques

2. Electron spectroscopies and time-resolved approaches for

magnetic materials

a.EELS and Energy-Loss-Chiral Dichroism

b.Ultrafast TEM

3.Summary



sample

Nanometric

Tip 

e-

• Photoelectron emission

from tips produces

spatially coherent beam 

of electrons

excitation pulse

(pump)

electron

pulse 

(probe)

photoemission

pulse

electron source

detector
100-300 keV energy

Early work: Osaka (1978), TU Berlin (80’s), Caltech (2005), LLNL (2006)

Ultrafast Transmission Electron Microscopy
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Stroboscopic approach:

sensitive to reversible     

dynamics

photoemission

pulse

detector

Ultrafast Transmission Electron Microscopy
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A. Feist et al., Nature 521, 200 (2015)

A. Feist et al., Ultramicroscopy (2017)

Liu et al., J. Vac. Sci Tech. 

(2010).

ZrO/W(100) Schottky

Feldemitter

1 µm

 rms-Emittance: 𝜺 = 𝟐 𝒑𝒎 ∙ 𝒓𝒂𝒅 (m. Apertur)

Peak Brillance: 1.75⋅1013 A/m2sr

Temporal/spatial/spectral electron pulse 

properties

-2 -1 0 1 2

Energie (eV)

0.6 eV

-600 0 600

Zeit (fs)

200 

fs

1 nm

0.85x0.8 nm

Ultrafast Transmission Electron Microscopy (UTEM)

46



Top View

Sample holder

Time-averaged imaging:

S. D. Pollard et al., Nature Comm. 3, 1028 (2012).

See also Time-resolved SEMPA: R. Frömter et al., 

APL (2016)

Current-driven magnetic vortex dynamics
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Top View

Sample holder

4 ps pulses,

100 MHz resonance,
RMS dev.: 2 nm

M. Möller et al., arXiv: 1907.04608 (2019)

Current-driven magnetic vortex dynamics
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Summary

(surface only)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

resolution

quantification

dynamics

ease-of-use

Floppy comparison of EM magnetic imaging techniques

DPC (U)LTEM Holography EMCD SEMPA
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