

Leibniz Institute for Solid State and Materials Research Dresden

(T)EM for Magnetic Materials

Axel Lubk

What are relevant fields and magnetic structures?

- Domain walls
- Vortices, Bubbles, Skyrmions
- Memory devices

Magnetic length scales

- Magnetic energy $E = A \left(\frac{\partial m_i}{\partial x_j}\right)^2 + K \sin^2 \theta$ $\downarrow \text{Exchange} \qquad \downarrow \text{Anisotropy}$ $J/m \qquad J/m^3$
- Anisotropy exchange length $A_{\rm H} = \sqrt{4/K} + 1 \, \text{nm} \rightarrow 100 \, \text{r}$

IFW

3D Nanomagnetism – A new paradigm in magnetism

3D domain walls in NWs

topological 3D spin textures

Fernandez-Pacheco, A. et al., Nat Commun 2017, 8, 15756.

High-Resolution Magnetic Imaging

Transmission Electron Microscopy

Scanning Tunneling Microscopy

Magnetic Force Microscopy

X-ray Magnetic Chiral Dichroism

Scanning Electron Microscopy with Polarization Analysis

Spin-Polarized Low-Energy Electron Microscopy

Magneto-Optic Kerr Effect Microscopy

Recommended reading:

1. M. D. Graef, Magnetic imaging and its applications to materials, Academic press (2001).

1. Electron microscopies for magnetic materials

- a. TEM based magnetic imaging techniques
 - i. Differential Phase Contrast
 - ii.Lorentz TEM
- b.SEM based magnetic imaging techniques
- Electron spectroscopies and time-resolved approaches for magnetic materials

 a. EELS and Energy-Loss-Chiral Dichroism
 b. Ultrafast TEM

3. Summary

* Why modern TEM's "only" achieve 50 pm (and why do we not bother)?

Transmission Electron Microscopy

TEM principle Electron gun generation and acceleration of electrons Condenser system beam shaping by set of magnetic lenses and apertures **Objective lens** imaging lens of the TEM Intermediate lens switching between imaging and diffraction mode. **Projective lenses** post magnification of second intermediate image. Image observation detection of images or diffraction patterns.

* Does anybody sees the reciprocity between TEM and STEM?

≈ turning the magnification wheel

TEM techniques

Atomic resolution imaging

interface, defect studies

Electron Diffraction

100 nm

nanocrystal crystallography

Holography

nanomagnetic fields

Tomography

Electron Energy Loss Spectroscopy

bulk / surface plasmons, excitons

element, valency, magnetic state

3D nanomagnetic textures

Scanning Electron Microscopy

Comparison TEM - SEM

	SEM	ТЕМ
accel. voltage	1-30 kV	60-300 kV
spatial resolution	50Å	1Å
information	topography, atomic number, chemical composition, crystallography, electric and magnetic fields	atomic number, chemical composition, crystallography, strain low-energy excitations, electric and magnetic fields
Magnetic imaging modes	SEM with Polarization Analysis	Lorentz TEM, Electron Holography, Differential Phase Contrast, Electron- Energy-Loss Magnetic Chiral Dichroism

1. Electron microscopies for magnetic materials

a. TEM based magnetic imaging techniques

i. Differential Phase Contrast

- ii.Lorentz TEM
- b.SEM based magnetic imaging techniques
- Electron spectroscopies and time-resolved approaches for magnetic materials

 a.EELS and Energy-Loss-Chiral Dichroism
 b.Ultrafast TEM

3. Summary

minimal model

annular

Differential phase contrast - principle

mż.

* Please derive the formula by yourself

Differential phase contrast – image reconstruction

17

Differential phase contrast - Evolution of magnetization

[FeCoB/AIN] _N magnetic multilayer

DPC: Pros & Cons

Pro:

- linear signal
- simple quantification
- sensitivity adjustable
 - trade off with resolution
- suppression of dynamical scattering

Con:

- (fast detector required)
- not so fast
- calibration of small scattering angles
- artifacts due to sub-beam diameter sample variations

- 1. Electron microscopies for magnetic materials
 - a. TEM based magnetic imaging techniques
 - i. Differential Phase Contrast

ii.Lorentz TEM

b.SEM based magnetic imaging techniques

 Electron spectroscopies and time-resolved approaches for magnetic materials

 a. EELS and Energy-Loss-Chiral Dichroism
 b. Ultrafast TEM

3. Summary

* Electrons are waves! (more on that tomorrow)

22

Converting phase shifts to contrasts: Fresnel imaging

23

Converting phase shifts to contrasts: Fresnel imaging

Fresnel image through-focus series

Phase grating φ

Magnetic Skyrmions

[1] T. H. Skyrme, Proc. R. Soc. Lond. Ser. A 260, 127 (1961)[2] E. Ruff et *al.*, Phys Rev B 96, 165119 (2017)
 [3] A. O. Leonov et *al.*, New J. Phys. 18 (2016) 065003
 [4] S. Seki, M. Mochizuki, SpringerBriefs in Physics (2016)
 [5] A. K. Nayak et *al.*, nature 548 (2017)

Converting phase shifts to contrasts: Fresnel imaging

Skyrmions in isotropic helimagnet FeGe

Cubic P2₁3 crystal structure

Sample from Marcus Schmidt (MPI-CPfS)

Converting phase shifts to contrasts: Fresnel imaging of Skyrmion dynamics

Converting phase shifts to contrasts: Fresnel imaging of Skyrmion dynamics

Fresnel imaging: Pros & Cons

Pro:

- simple
- fast
- sensitivity adjustable

Con:

- (partially) non-linear contrast
- defocus \rightarrow unsharp images
- quantification difficult (but possible)
- sensitiv to dynamical scattering

Can be overcome by Holography! (tomorrow)

3(

- 1. Electron microscopies for magnetic materials
 - a. TEM based magnetic imaging techniques
 - i. Differential Phase Contrast
 - ii.Lorentz TEM

b.SEM based magnetic imaging techniques

 Electron spectroscopies and time-resolved approaches for magnetic materials

 a.EELS and Energy-Loss-Chiral Dichroism
 b.Ultrafast TEM

3. Summary

SEM with polarization analysis

Koike et al in 1984

SEM with polarization analysis

example of SEMPA imaging: 10µm Py Pad

SEM with polarization analysis

- 1. Electron microscopies for magnetic materials
 - a. TEM based magnetic imaging techniques
 - i. Differential Phase Contrast
 - ii.Lorentz TEM
 - b.SEM based magnetic imaging techniques

2. Electron spectroscopies and time-resolved approaches for magnetic materials a.EELS and Energy-Loss-Chiral Dichroism

b. Ultrafast TEM

3. Summary

X-ray magnetic circular dichroism (XMCD)

- ferromagnetic materials: imbalance of spinup and spin-down electrons in 3d (4f...) shell
- measure difference through spin-dependent x-ray absorption process [1]
- angular momentum of light is transferred to photoelectron
- helicity of photon imposes constraints for the change of angular momentum in dipole transitions
- spin-orbit coupling in 2p states couples angular momentum to spin momentum
- absorption coefficient as function of energy is proportional to the final d states density.

XMCD and Electron energy-loss circular dichroism (EMCD)

Model of the 'virtual photon'

- The FOURIER component of \vec{E} giving rise to an electronic transition is parallel to momentum transfer $\hbar \vec{q}$.
- Interpretation as an absorbed effective photon with polarisation $\vec{\varepsilon} \parallel \vec{q}$.
- EMCD = transfer of circularly polarised virtual photon.
- Electron (virtual photon) changes angular momentum by ±ħ.

Classical EMCD

- Pertubation leading to an electric transition is an electric field $\vec{E} \propto \vec{q} \Re \left[e^{i(\omega t + \phi)} \right]$.
- Force two scattering vectors to exhibit a phase difference $\delta \phi = \phi' \phi = \frac{\pi}{2}$.

• $\vec{E} + \vec{E}' = ... = \vec{q} \cos(\omega t + \phi) - \vec{q}' \sin(\omega t + \phi)$. (circular polarized virtual photon)

• Mirroring the position of the aperture gives opposite polarization.

Classical EMCD

- Similarity between electron scattering and photon absorption leads to equivalence of EMCD and XMCD [3, 4].
- Scattering vector q replace the polarisation ε .
- Prerequisites:
 - (i) Superposition of two linear polarized waves (with a phase shift of $\pi/2$) to a circular polarized wave
 - (ii) Optimal for $q \perp q'$
 - (iii) Change of helicity

Diffraction pattern (zone axis) Three beam case

[3] C. Hébert and P. Schattschneider , Ultramicroscopy 96 (2003)[4] P. Schattschneider et al., Nature 441 (2006)

First experimental EMCD spectra

- (10 ± 2)-nm-thick Fe single crystal film.
- XMCD spectra from a focused 50 µm spot.
- EMCD spectra from illuminated area with 200 nm diameter.

[3] P. Schattschneider et al., Nature 441 (2006)

40

Quantifying magnetic properties of FePt nanoparticles

• Using sum rules [7]:

$$m_l/m_s = \frac{2q}{9p-6q} = 0.08 \pm 0.02$$

can be calculated, which agrees well with XMCD results [8, 9].

[7] J. Rusz et al., Physical Review B, 75 (2007)
[8] C. Antoniak et al., PRL 97 (2006)
[9] V. Dupuis et al., J. of Magn. and Magn. Mat. (2015)

41 IFW

Towards atomic magnetic measurements

42

tribuz

[7] M. Uchida and A. Tonomura, Nature 464 (2010)
[8] J. Verbeeck et al., Nature 467 (2010)
[9] B. McMorran et al.. Science 331 (2011)

- 1. Electron microscopies for magnetic materials
 - a. TEM based magnetic imaging techniques
 - i. Differential Phase Contrast
 - ii.Lorentz TEM
 - b.SEM based magnetic imaging techniques
- Electron spectroscopies and time-resolved approaches for magnetic materials

 a. EELS and Energy-Loss-Chiral Dichroism
 b.Ultrafast TEM

3. Summary

Early work: Osaka (1978), TU Berlin (80's), Caltech (2005), LLNL (2006)44

<u>Ultrafast</u> Transmission Electron Microscopy

Ultrafast Transmission Electron Microscopy (UTEM)

rottie Liebniz

A. Feist et al., Nature **521**, 200 (2015) A. Feist *et al.*, Ultramicroscopy (2017)

Current-driven magnetic vortex dynamics

Top View

Current-driven magnetic vortex dynamics

Top View

Summary

