Magnetic memories from a broad IT, materials, and physics perspectives

T. Jungwirth Institute of Physics, Czech Academy of Sciences University of Nottingham, United Kingdom jungw@fzu.cz

Recording & computers
 Conventional & neuromorphic computing
 Non-CMOS materials and devices
 Physical principles of operation of magnetic devices

Recording

Mechanical gramophone 1870's

Electro-magnetic wire recorder 1880's

Boom, bust, boom,...

Recording & computers

sound & video

1930's Tape recorder

1980's Compact disk (100sMB-GBs)

- Analog to digital
- Phase-change
- Optical

1990's - Spintronic

Sony/IBM tape (330TB)

Storage

Seagate HDD (16TB)

Everspin MRAM (1Gb)

data

1950's Magnetic hard disk (MBs) & core memory (kbs)

Back-up

- Internet (PC & cloud IT)

- Internet of Things (edge IT)

Recording & computers

- Big data

Zettabytes of data created

44*

50

2013

2016

2020

2025

4.4

16

Back-up

Sony/IBM tape (330TB)

Storage

Seagate HDD (16TB)

 $ZB = 10^9 TB = 10^9 people x 1TB mobile phone$

100

Nearly 20 per cent (about 32ZB) of the data created will be critical to daily life and the smooth running of government and businesses.

163*

200

150

International technology roadmap for semiconductors

Transistor 1947 Integrated circuit 1958

International technology roadmap for semiconductors

Transistor 1947 Integrated circuit 1958

1. Recording & computers

- 2. Conventional & neuromorphic computing
- 3. Non-CMOS devices and materials
- 4. Physical principles of operation of magnetic devices

Let's racap

		- von Neumann
	do differently	Revisit the architecture to tackle the bottleneck
	uo uijjerentiy	- Analog to digital
		Revisit the noise vs. complexity trade-off
í		
		- Spintronic
		- Phase-change
S		Exploit full potential of non-CMOS devices
	do more	
		- Optical
		Explore speed and energy efficiency limits

1. Recording & computers

2. Conventional & neuromorphic computing

- 3. Non-CMOS devices and materials
- 4. Physical principles of operation of magnetic devices

Let's racap

	 - von Neumann Revisit the architecture to tackle the bottleneck - Analog to digital Revisit the noise vs. complexity trade-off
	- Spintronic - Phase-change
5	Exploit full potential of non-CMOS devices
	do more - Optical
	Explore speed and energy efficiency limits

Neuromorphic architecture

Brain: Massively **parallel** neural network architecture connecting 100billion low-power **computing and memory** elements

cf. Samsung 1TB Flash-SSD for smart phones with 2 trillion transistors on a chip

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)

https://cloud.google.com/blog/products/ai-machine-learning/what-makes-tpus-fine-tuned-for-deep-learning

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)

1.1 Off-shelf

General purpose CPU (Intel,...)

1 or few big cores

OUTPUT

Serial & von Neumann bottleneck

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)

1.1 Off-shelf

General purpose GPU (NVIDIA, AMD)

2,000 medium cores

		(17)	100	100	(11)	100	100	100	1	100
		5 ill	800	80	81	810	80	811	88	8
		(四間)	1700	100	一日間	100	100	100	100	1000
		81	80	81	े सी	80	80	800	60	50
		(10)	100	100	(10)	100	100	100	170	100
		٥ Ш	80	8 10	68	8 0	80	0.00	80	80
		()司)	1122	10	(III)	100	「爾」	1	100	1
=Wx+b	· · · · · · · · · · · · >	811	80	80	8 88	80	80	8.00	٥ Ш (80
		1		1	1	100	(間)	(11)	100	(間)
		े सी	800	80	811	80	80	े सी	80	80
OFTWARE		1753	(間)	(B)	100	(四間)	100	1778	(間)	100
		64	80	80	80	80	80	800	80	80
		(四部)	100	100	100	1		(1)	100	100
		8.00	80	8 📾	84	811	80	811	80	8
		T	100	一貫	100	100	「南」	(11)	(18)	「爾」
		81	810	8 8	810	8個	811	811	80	8 8
		100	100	100	100	100		- (TT)	100	「爾」
		8 ill	810	80	80	88	80	811	80	8
					F	Paral	lel			

OUTPUT

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)

Highly parallel & tackles von Neumann bottleneck

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)

OUTPUT

Highly parallel & tackles von Neumann bottleneck

Still mostly in research phase

- Short-term: Save bandwidth & energy

Still mostly in research phase

- Long term: Help understand neuroscience, develop General Artificial Intelligence

Spiking time dependent plasticity of synapse ("neurons that fire together wire together")

Gerstner & Kistler, Spiking Neuron Models, Cambridge University Press (2002)

Kurenkov et al. Adv. Mater. 31, 1900636 (2019)

2.1 Off-shelf based

FPGA DeepSouth (Sydney Univ.)

Mobile CPU SpiNNaker (Manchester Univ.)

Thakur et al. Frontiers in Neuroscience 12, 891(2018)

2.2 Custom-designed CMOS

Individual circuit components mimic bio-neuron structure and functions

2.2 Custom-designed CMOS

Individual circuit components mimic bio-neuron structure and functions

2.2.1 CMOS digital TrueNorth (IBM) – 1M neurons Low-power execution Learning done externally Merolla et al. et Science 345, 668 (2014)

Loihi (Intel) – 100k neurons Includes learning

2.2.2 CMOS mixed digital/analog
Neurogrid (Stanford) – 60k neurons
Dynap-SEL (Zurich Univ.) – 1000 neurons
HICANN (Heidelberg Univ.) – 500 neurons
Benjamin et al. Proceedings of the IEEE 102, 699 (2014)
Digital communication
Analog neuron
Analog synapse with weights stored in digital RAM

Reviews:

Thakur et al. Frontiers in Neuroscience 12, 891(2018) Yu (ed.), Neuro-inspired Computing Using Resistive Synaptic Devices, Springer (2017) Burr et al. Adv. Phys. X 2, 89 (2017)

3. Mixed CMOS/non-CMOS

3.1 Analog memristive synapse CBRAM (Michigan Univ.) Jo et al. Nano Lett., 10, 1297 (2010) **RRAM** (Pohang Univ.) Moon et al. Nanotechnology 25, 495204 (2014) **PCRAM** (IBM) Eryilmaz et al. Frontiers in Neuroscience 8, 205(2014) **FRAM** (Panasonic) Ueda et al. PLOS ONE 9, e112659 (2014) **MRAM** (Tohoku Univ.) Borders et al. Appl. Phys. Exp. 10, 013007 (2017) with SW or CMOS HW neurons

Ferromagnetic domains

MRAM

Defects in insulator

CBRAM/RRAM

FRAM

3.2 Analog memristive synapse & neuron Analog PCRAM (IBM)

Pantazi et al. Nanotechnology 27, 355205 (2016)

Spiking NN

Analog MRAM (Tohoku Univ.)

Kurenkov et al. Adv. Mater. 31, 1900636 (2019)

Analog AFMEM (Prague/Nottingham/Mainz/...)

Discrete synapse or neuron

Kaspar et al. preprint (2019)

Antiferromagnetic domains

Reviews: Thakur et al. Frontiers in Neuroscience 12, 891(2018) Yu (ed.), Neuro-inspired Computing Using Resistive Synaptic Devices, Springer (2017) Burr et al. Adv. Phys. X 2, 89 (2017)

AFMEM

Revi

3. Mixed CMOS/non-CMOS

3.3 Analog memristive weighted-sum (dot product) array RRAM passive array (UCSB) *Prezioso et al. Nature 521, 61 (2015)* **RRAM 1T1R array (**Mass. Univ., HP) *Hu et al. Nature Elec. 1, 52 (2018)*

Kirchhoff's rule

Non-CMOS vs. CMOS for neuromorphics

Digital artificial neural networks for cloud IT Compete with Google

Analog spiking neural devices for edge IoT More realistic R&D start

1. Recording & computers

- 2. Conventional & neuromorphic computing
- 3. Non-CMOS devices and materials
- 4. Physical principles of operation of magnetic devices

Let's racap

	1 1.00 11	- von Neumann Revisit the architecture to tackle the bottleneck
	ao alfferentiy	- Analog to digital
		Revisit the noise vs. complexity trade-off
	[
		- Spintronic - Phase-change
es		Exploit full potential of non-CMOS devices
	do more	
		- Optical
		Explore speed and energy efficiency limits

Non-CMOS memristive materials

CoFeB IrMn																				
MRAM	Metal		PCRAM Metalloid										CBRAM, RRAM Nonmet							
	H AFMEM											V				~	He			
	Li	Be											В	С	N	0	F	Ne		
	Na	Mg											Al	Si	Р	S	Cl	Ar		
	к	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe		
	Cs	Ва	La-Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn		
	Fr	Ra	Ac-Lr																	

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Conductive-Bridging RAM

Adesto EEPROM CBRAM 1µs & 512kb

Bipolar switching Micron/Sony 16Gb, 10µs prototype binary CBRAM

> Yu (ed.), Neuro-inspired Computing Using Resistive Synaptic Devices, Springer (2017) Burr et al. Adv. Phys. X 2, 89 (2017)

Analog synapse 0.8 Ag/Si(~1-10 nm) 300µs-pulse 0.7 D Current (100 nA) 0.6 0.5 0.4 0.3 20 40 60 80 0 Pulse # (after 1.0 x 10⁷ cycles)

Jo et al. Nano Lett., 10, 1297 (2010)

Resistive RAM

Moon et al. Nanotechnology 25, 495204 (2014)

Phase change RAM

Phase change RAM

Phase change RAM

Zhong et al. Phys. Stat. Sol. RRL 9, 414 (2015)

Borders et al. Appl. Phys. Exp. 10, 013007 (2017)

UDP

Ethernet PHY

PC

Ethernet PHY

FPGA Development Board

Ferromagnetic domains

Kurenkov et al. Adv. Mater. 31, 1900636 (2019)

Single 100 fs pulse of ~1-10s mJ/cm² and reversal time ~10s ps

Ostler et al. Nat. Comm. 3, 666 (2012) Stupakiewicz et al. Nature 542, 71 (2017)