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Electro-magnetic wire recorder 1880‘s 

Mechanical gramophone 1870‘s 

Recording

Boom, bust, boom,…



1950‘s Magnetic hard disk (MBs) & core memory (kbs)

1930‘s Tape recorder

Recording & computers

- Analog to digital
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- Optical 
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data
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Back-up

Storage
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Seagate HDD (16TB)
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Recording & computers- Internet (PC & cloud IT)

Sony/IBM tape (330TB)

Back-up

Storage

Seagate HDD (16TB)

- Internet of Things (edge IT)

- Big data 

ZB = 109 TB = 109 people x 1TB mobile phone



Computer: PC & cloud IT
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Brain: Massively parallel neural network architecture connecting 
100billion low-power computing and memory elements 

Neuromorphic architecture

cf. Samsung 1TB Flash-SSD for smart phones with 2 trillion transistors on a chip



1.Synchronous: All components run under global clock
Artificial Neural Networks: Input/output/internal variables coded in real numbers

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)

https://cloud.google.com/blog/products/ai-machine-learning/what-makes-tpus-fine-tuned-for-deep-learning

Data (x1, x2, …)  • Parameters (w1, w2, …) = x1w1 + x2w2 + … = Output (y)



Data (x1, x2, …)  • Parameters (w1, w2, …) = x1w1 + x2w2 + … = Output (y)

1.Synchronous: All components run under global clock
Artificial Neural Networks: Input/output/internal variables coded in real numbers

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)



General purpose CPU (Intel,…)

1.1 Off-shelf

Serial & von Neumann bottleneck

1 or few big cores

1.Synchronous: All components run under global clock
Artificial Neural Networks: Input/output/internal variables coded in real numbers

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)



General purpose GPU (NVIDIA, AMD)

1.1 Off-shelf

Parallel

2,000 medium cores

1.Synchronous: All components run under global clock
Artificial Neural Networks: Input/output/internal variables coded in real numbers

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)



Neuromorphic TPU (Google)

1.2 Custom-designed

Highly parallel & tackles von Neumann bottleneck

30,000 small cores

1.Synchronous: All components run under global clock
Artificial Neural Networks: Input/output/internal variables coded in real numbers

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)



Neuromorphic TPU (Google)

1.2 Custom-designed

30,000 small cores

1.Synchronous: All components run under global clock
Artificial Neural Networks: Input/output/internal variables coded in real numbers

Mass applications – Google Brain (2012 – image recognition, 2016 – language translation)

Highly parallel & tackles von Neumann bottleneck



2. Asynchronous: Individual components have local clocks
Spiking Neural Networks: Input/output/internal variables coded in spikes and their timing

Still mostly in research phase
- Short-term: Save bandwidth & energy



Kurenkov et al. Adv. Mater. 31, 1900636 (2019)
Gerstner & Kistler, Spiking Neuron Models, Cambridge University Press (2002)

Leaky-sum-and-fire neuron

Spiking time dependent plasticity of synapse 
(“neurons that fire together wire together”) 

2. Asynchronous: Individual components have local clocks
Spiking Neural Networks: Input/output/internal variables coded in spikes and their timing

Still mostly in research phase
- Long term: Help understand neuroscience, develop General Artificial Intelligence



2.1 Off-shelf based

FPGA DeepSouth (Sydney Univ.)

Mobile CPU SpiNNaker (Manchester Univ.)
Thakur et al. Frontiers in Neuroscience 12, 891(2018)

2. Asynchronous: Individual components have local clocks
Spiking Neural Networks: Input/output/internal variables coded in spikes and their timing

2.2 Custom-designed CMOS

Individual circuit components mimic 
bio-neuron structure and functions



CMOS digital CMOS analog

Bio

Benjamin et al. Proceedings of the IEEE 102, 699 (2014)

2.2 Custom-designed CMOS

Individual circuit components mimic 
bio-neuron structure and functions

2. Asynchronous: Individual components have local clocks
Spiking Neural Networks: Input/output/internal variables coded in spikes and their timing



2.2.1 CMOS digital
TrueNorth (IBM) – 1M neurons
Low-power execution
Learning done externally

2.2.2 CMOS mixed digital/analog 
Neurogrid (Stanford) – 60k neurons
Dynap-SEL (Zurich Univ.) – 1000 neurons
HICANN (Heidelberg Univ.) – 500 neurons
Benjamin et al. Proceedings of the IEEE 102, 699 (2014)

Digital communication 
Analog neuron
Analog synapse with weights stored in digital RAM

Loihi (Intel) – 100k neurons
Includes learning

Merolla et al. et Science 345, 668 (2014)

Reviews:
Thakur et al. Frontiers in Neuroscience 12, 891(2018)
Yu (ed.), Neuro-inspired Computing Using Resistive Synaptic Devices, Springer (2017)
Burr et al. Adv. Phys. X 2, 89 (2017)

2. Asynchronous: Individual components have local clocks
Spiking Neural Networks: Input/output/internal variables coded in spikes and their timing



3.1 Analog memristive synapse
CBRAM (Michigan Univ.)
Jo et al. Nano Lett., 10, 1297 (2010)

RRAM (Pohang Univ.)
Moon et al. Nanotechnology 25, 495204 (2014) 

PCRAM (IBM)
Eryilmaz et al. Frontiers in Neuroscience 8, 205(2014)

FRAM (Panasonic)
Ueda et al. PLOS ONE 9, e112659 (2014)

MRAM (Tohoku Univ.)
Borders et al. Appl. Phys. Exp. 10, 013007 (2017)

with SW or CMOS HW neurons 

3. Mixed CMOS/non-CMOS 

3.2 Analog memristive synapse & neuron
Analog PCRAM (IBM)
Pantazi et al. Nanotechnology 27, 355205 (2016)

Spiking NN
Analog MRAM (Tohoku Univ.)
Kurenkov et al. Adv. Mater. 31, 1900636 (2019)

Analog AFMEM (Prague/Nottingham/Mainz/…)
Discrete synapse or neuron
Kaspar et al. preprint (2019)

Ferromagnetic domains

Ferroelectric domains

Antiferromagnetic domains

Reviews:
Thakur et al. Frontiers in Neuroscience 12, 891(2018)
Yu (ed.), Neuro-inspired Computing Using Resistive Synaptic Devices, Springer (2017)
Burr et al. Adv. Phys. X 2, 89 (2017)

Crystalline AmorphousDefects in insulator

MRAM

CBRAM/RRAM PCRAM FRAM

AFMEM



modificationsto increasethemetal electrodethickness,so that theline
resistanceswerereduced to about 800V for thetop layer of thecross-
bar and 600V for itsbottom layer.Thecrossbarsretained theexcellent
uniformity of virgin (pre-formed) crossbar-integrated devices (see
Supplementary Figs 3, 4 and 5), allowing individual electric forming
and tuning of each memristor. Theelectroforming wasperformed by
grounding the corresponding bottom electrode and applying a cur-
rent-controlled ramp-up to the top electrode, while leaving all other
line potentials floating (Supplementary Fig. 4). To minimize current
leakageduring thesubsequent forming of other devices, each formed
memristor wasimmediately switched into itslow-current (OFF) state.
The measured individual characteristics of the formed memristors
weremostly similar to thoseof stand-alonedevices,except for asome-
what smaller ( 100) ON/OFF current ratio. This difference may be
partly explained by current leakage through other crosspoints at the
measurements,and partly by thesomewhat smaller switchingvoltages
used for thecrossbar to lower therisk of devicedamage. In addition,
some deviations from the optimal device performance could be
caused by theelectron-beam evaporation of thicker electrodes, which
required breaking of thevacuum, asopposed to thefully in situ sput-
tering of single device layers, and their subsequent annealing (see
Supplementary Information).

Thefabricated memristivecrossbar wasused to implement asimple
artificial neural network with thetop-level (functional) schemeshown
in Fig. 2. This isasingle-layer perceptron22 with ten inputsand three
outputs, fully connected with 10 3 3 5 30 synaptic weights(Fig. 2b).

Astheschemeshows, theperceptron’soutputsfi (with i 5 1, 2, 3) are
calculated asnonlinear ‘activation’ functions:

fi~ tanh bI ið Þ ð1Þ

of thevector-by-matrix product components:

I i~
X10

j~ 1

WijVj ð2Þ

HereVj with j 5 1,…,9 are theinput signals, V10 isaconstant bias, b
is a parameter controlling the function’s nonlinearity, and Wij are
adjustable (trainable) synaptic weights. Such a network is sufficient
for performing, for example, the classification of 3 3 3-pixel black-
and-white images into three classes, with nine network inputs
(V1,…,V9) corresponding to the pixel values. We tested the network
on a set of N 5 30 patterns, including three stylized letters (‘z’, ‘v’
and ‘n’) and three sets of nine noisy versions of each letter, formed
by flipping one of the pixels of the original image (see Fig. 2c).
Becauseof thevery limited sizeof theset, it wasused for both training
and testing.

Physically,each input signal wasrepresentedbyavoltageVj equal to
either 1 0.1 V or 2 0.1 V, corresponding, respectively, to theblack or
whitepixel, whilethebiasinput V10 wasequal to 2 0.1V.Such coding
makes the benchmark input set balanced, in particular ensuring that
the sum of all input signals across all patterns of a particular class
is close to zero, which speeds up the convergence process28. To
sustain this balance at the network’s output as well, each synapse
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Figure 1 | Memristor crossbar. a, Integrated 123 12crossbar with an Al2O3/
TiO2 2 x memristor at each crosspoint. b, A typical current–voltagecurveof a
formedmemristor.c,Absolutevaluesof conductancechangeunder theeffect of

500-msvoltagepulsesof two polarities, asafunction of theinitial conductance,
for variouspulseamplitudes. The inset in b showsthedevicecross-section
schematically.
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3.3 Analog memristive weighted-sum (dot product) array 
RRAM passive array (UCSB)
Prezioso et al. Nature 521, 61 (2015)

RRAM 1T1R array (Mass. Univ., HP)
Hu et al. Nature Elec. 1, 52 (2018)

Dot product (weighted sum)                    → Kirchhoff’s rule 

3. Mixed CMOS/non-CMOS 

RRAM



Digital artificial neural networks for cloud IT
Compete with Google

Analog spiking neural devices for edge IoT
More realistic R&D start

Non-CMOS  vs. CMOS for neuromorphics
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MRAM PCRAM CBRAM, RRAM

Non-CMOS memristive materials

AFMEM



Bipolar switching
Micron/Sony 16Gb, 10μs prototype  binary CBRAM

Yu (ed.), Neuro-inspired Computing Using
Resistive Synaptic Devices, Springer (2017)
Burr et al. Adv. Phys. X 2, 89 (2017) 

Conductive-Bridging RAM

300μs-pulseAg/Si(~1-10 nm)

Analog synapse

Jo et al. Nano Lett., 10, 1297 (2010)

Adesto
CBRAM 
1μs & 512kb

EEPROM

Filamentary



Filamentary

Resistive RAM

Bipolar switching
SanDisk/Toshiba 32Gb, 230μs, prototype binary RRAM

Yu (ed.), Neuro-inspired Computing Using
Resistive Synaptic Devices, Springer (2017)
Burr et al. Adv. Phys. X 2, 89 (2017) 

Analog synapse

Yu et al. Adv. Mater. 25, 1774 (2013)

HfOx (4 nm)

Panasonic/Fujitsu
RRAM 
10ms & 8Mb

EEPROM



100μs-pulse

Moon et al. Nanotechnology 25, 495204 (2014) 

Bipolar switchingTiN

Pr(Ca)MnO3 (30 nm)

Pt

Resistive RAM

Analog synapse

Non-filamentary



Kim et al. Nanotechnology 29, 265204 (2018) 

Analog leaky-sum-and-fire neuron

Analog synapse    with   short term memory 

Bipolar switchingTiN

Pr(Ca)MnO3 (30 nm)

Pt

Resistive RAM

Non-filamentary



~ 610o C

~ 350o C

Unipolar switching

Ge2Sb2Te5 (GST) 

Intel/Micron 
XPoint-PCRAM
1μs & 128Gb

Phase change RAM



Rao et al., Science 358, 1423 (2017)

Unipolar switching

Intel/Micron 
XPoint-PCRAM
1μs & 128Gb

Phase change RAM
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by analytical solution of the heat equation for an impulsive 

optical source (we note that our analytical thermal model does 

not include phonon-carrier interaction and relaxation proc-

esses often included in more complex two-temperature type 

models [  29  ]  of fast thermal processes; however the crystallisa-

tion process will be dominated by the relatively long (ns order) 

thermal time constant of the optical disc-like sample used here, 

rather than the very short thermalisation time which is typically 

less than 5 ps for Ge 2 Sb 2 Te 5  
[  30  ]  – see Supporting Information 

for more details).  

 Now we are ready to implement base-10 addition. Having 

already set the threshold change in optical refl ectivity to occur 

between the 9 th  and 10 th  excitations as in Figure  2 c, we can 

compute a base-10 addition directly by inputting a number of 

excitations equal to the fi rst addend, followed by excitations 

equal in number to the second addend. [  9  −    11  ]  The phase-change 

‘processor’ automatically sums the two addends due to its accu-

mulation property, simultaneously storing the result (at the 

same physical location). To access the stored result, excitations 

are applied until the threshold is reached, the number of excita-

tions required and the calculation base revealing the result. As a 

practical example, starting in the amorphous phase, we applied 

excitations of the form in Figure  2 c (i.e. 25  ́   85 fs pulses  =  

1 excitation) to perform the summation (7  +  2). Of course the 

answer is 9 and so the result of the sum should lead to a refl ec-

tivity change below the 5% threshold. This was indeed the case; 

after inputting the fi rst addend (7 excitations) the experimental 

change in refl ectivity was 2.2%; inputting excitations equal to 

the second addend (2) took the total refl ectance change to 4.5%. 

To access the result of the computation we input further excita-

tions until the threshold is passed; in this case only one fur-

ther excitation was needed, taking the total experimental refl ec-

tivity change to 6.3%, comfortably above the threshold and 

revealing the correct result of the sum (9 in this case). A micro-

scopic image of the physical mark stored in the phase-change 

sample as a result of this addition is shown in  Figure    3   and is 

just about discernible to the eye. Note that should the result of 

the sum be greater than the base, the phase-change material 

is reset to amorphous each time the threshold is exceeded and 

the number of resets reveals the multiples of the base in the 

fi nal sum. Re-amorphization is readily achieved in the current 

arrangement by a single (i.e. 1  ́   85 fs) 11.7 mJ cm  - 2  pulse, as 

also shown in Figure  3 .  

 Since multiplication is simply sequential addition, it is clear 

that this too can be readily implemented using the process 

described above. 

 Turning to division, this can be implemented by using 

the divisor to defi ne the threshold, then applying a number 

of pulses equal to the dividend (and re-setting each time the 

threshold is passed). For example 14÷10 is executed by setting 

the threshold to be passed after 10 input excitations (because 

this is the divisor, not because we are in base-10) and applying 

14 excitations. This would require the system to be re-set once 

(after the 10 th  excitation), leaving 4 stored in the phase-change 

medium; hence the result is 1 remainder 4. We have performed 

exactly this computation using our phase-change processor. 

Since we have already set the threshold to occur at 10, which is 

equal to the divisor in this case, all that remains to perform the 

division is to input excitations equal in number to the dividend 

    Figure  2 .     Experimentally measured accumulation property of Ge 2 Sb 2 Te 5 . a) 

Schematic of the set up for the femtosecond laser experiments. b) Experi-

mentally measured (squares) change in optical refl ectivity ((R–R a )/R a ) 

where R a  is amorphous phase refl ectivity) of the Ge 2 Sb 2 Te 5  sample as a 

function of the number of 85 fs, 3.61 mJ/cm 2  pulses applied. c) Experimen-

tally measured (squares) change in refl ectivity as a function of excitation 

events (for fi rst 12 events), with a single excitation event comprising 25  ́   

85 fs, 3.61 mJ/cm 2  pulses and chosen so that a threshold can be set for 

the implementation of base-10 addition and multiplication. Result shows 

clearly the energy accumulation property and the threshold (at 5% change in 

optical refl ectivity) is set between the 9 th  and 10 th  excitations; also shown are 

microscopic images of the mark formed after 10 excitations (6.3% change 

in refl ectivity) and after 12 excitations (11% change in refl ectivity), as well as 

the initial amorphous starting phase (white scale bar is 50  m m). Also shown 

in 2b and 2c is the simulated change in refl ectivity (solid lines), calculated 

using the rate equation and effective medium models and a sample tem-

perature distribution obtained by analytical solution of the heat conduction 

equation for an impulsive optical source (Supporting Information).  
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Wright et al. Adv. Mater. 23, 3408 (2011)

Amorphization
85 fs, 3.61 mJ/cm2 pulse

Crystallization

Optical pulse counter

GST(20nm)

Unipolar switching

Intel/Micron 
XPoint-PCRAM
1μs & 128Gb

Phase change RAM



Analog synapse

GST 

Zhong et al. Phys. Stat. Sol. RRL 9, 414 (2015)

Unipolar switching

Intel/Micron 
XPoint-PCRAM
1μs & 128Gb

Phase change RAM

1.5–2 V, 40 ns
0.75–1.25 V, 500ns 



Bipolar switching

Magnetic RAM Everspin
MRAM
10ns & 1Gb



Borders et al. Appl. Phys. Exp. 10, 013007 (2017)

R=3kΩ

Bipolar switching

Magnetic RAM Everspin
MRAM
10ns & 1Gb

Artificial NNAnalog synapse

Ferromagnetic domains



Bipolar switching

Magnetic RAM Everspin
MRAM
10ns & 1Gb

Spiking time dependent plasticity 
synapse

Spiking sum-and-fire 
neuron

Kurenkov et al. Adv. Mater. 31, 1900636 (2019)

Ferromagnetic domains



4 ps, 1kHz
1.3 mJ/cm2

Co(0.6nm)/Pt(3nm)

Analog synapse 
optical polarization-dependent writing

Binary switching in ferrimagnets GdFeCo(20nm), YIG:Co(7.5 μm): 
Single 100 fs pulse of ~1-10s mJ/cm2 and reversal time ~10s ps

Ostler et al. Nat. Comm. 3, 666 (2012)

Stupakiewicz et al. Nature 542, 71 (2017)

Magnetic RAM

Bipolar switching

Everspin
MRAM
10ns & 1Gb


