

-

Scanning probe microscopies for magnetism

Olivier FRUCHART

Univ. Grenoble Alpes / CEA / CNRS, SPINTEC, France

Quizz...

THE EUROPEAN SCHOOL ON

Motivation for microscopy

Motivation for microscopy

Versatility

- Samples made with lithography or ex situ OK ?
- Need for sample preparation ?
- Compatible with various environments ? (temperature, field etc.)

Access

- Large-scale instrument or in-lab ?
- Expensive or cheap ?

spintec

Imaging speed

- □ Sample preparation needed ?

What is probed

- Surface or volume technique ?
- Sensitivity ?
- Magnetization, stray field, other ?
- No universal technique
- Many criteria to be balanced

Inventing the Scanning Tunneling Microscopy

1982 : inventing the scanning tunneling microscope

Spintec Olivier FRUCHART – SPM for magnetism

8

Inventing the Scanning Tunneling Microscopy

1982 : inventing the scanning tunneling microscope

G. Binnig, H. Rohrer, C. Gerber & E. Weibel Tunneling through a controllable vacuum gap Appl. Phys. Lett. 40, 178 (1982)

Olivier FRUCHART – SPM for magnetism

Spintec

ESM2019, Brno, Czech Republic

9

The Nobel Prize in Physics 1986

Ernst Ruska Prize share: 1/2

Gerd Binnig Prize share: 1/4

Heinrich Rohrer Prize share: 1/4

The Nobel Prize in Physics 1986 was divided, one half awarded to Ernst Ruska "for his fundamental work in electron optics, and for the design of the first electron microscope", the other half jointly to Gerd Binnig and Heinrich Rohrer "for their design of the scanning tunneling microscope".

https://www.nobelprize.org

Scanning Tunneling Microscopy

High resolution and sensitivity 100 x 100 nm

O. Fruchart et al., Phys. Rev. Lett. 23 (14), 2769 (1999)

Spintec Olivier FRUCHART – SPM for magnetism

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy

http://research.physics.berkeley.edu/crommie

Mapping surface quantum well states Fe atoms on Copper, low temperature

<u>For magnetism</u>: H. Oka et al., Spin-polarized quantum confinement in nanostructures: Scanning tunneling microscopy, Rev. Mod. Phys. 86, 1127-1168 (2014)

Spin-polarized Scanning Tunneling Microscopy

Courtesy: W. Wulfhekel

Spintec Olivier FRUCHART – SPM for magnetism

THE EUROPEAN SCHOOL ON

Spin-polarized Scanning Tunneling Microscopy

Spin-polarized Scanning Tunneling Microscopy

Spintec Olivier FRUCHART – SPM for magnetism

Spin-polarized Scanning Tunneling Microscopy – Selected highlights

R_t Wiesendanger et al., Rev. Mod. Phys. 81, 1495 (2009)

Ballistic-Electron Magnetic Microscopy (BEMM)

Atomic force microscopy

Probing

- Mechanical force -> Topography, tribology (adhesion etc.)
- Magnetic force -> magnetic domains
- Electric forces -> ferroelectric domains, semiconductor memory cells etc.

Detecting

- Laser deflection / interference
- Capacitance

Atomic force microscopy

Atomic force microscopy

First report : Y. Martin et al., Appl. Phys. Lett. 50, 1455 (1987)Review :R. Proksch et al., Modern techniques for characterizing
magnetic materials, Springer, p.411 (2005)

HE EUROPEAN SCHOOL ON

Quantitative analysis, see e.g.: H. Hug, J. Appl. Phys. 83, 5609 (1998) and followers

Spintec Olivier FRUCHART – SPM for magnetism

ESM2019, Brno, Czech Republic

Ultimate spatial resolution: 20nm?

FePt, epitaxial (4nm)

spintec

- Definition-dependent: FWHM, variance, 85% etc.
- Make statistics: object, orientation etc.
- Advanced: modeling, deconvolution

Tricks lie in tips

All matters: sensitivity, resolution, invasivity, coercivity...

MRFM – Magnetic resonance force microscopy

- Measures the longitudinal (static) moment
- Magnetic biasing of the sample with the stray field of tip allows some kind of imaging

HE EUROPEAN SCHOOL ON

MRFM – Magnetic resonance force microscopy

NV center microscopy

L. Rondin et al., Nat. Comm. 4, 2279 (2013)

Spintec Olivier FRUCHART – SPM for magnetism

THE EUROPEAN SCHOOL ON

NV center microscopy

L. Rondin et al., Nat. Comm. 4, 2279 (2013)

Assets

- High sensitivity
- Possibly quantitative in field
- Quantitative reconstruction of magnetization pattern not straightforward
- Imaging under high magnetic field not possible

Spintec Olivier FRUCHART – SPM for magnetism

Courtesy: M. Miron, Grenoble

Spintec Olivier FRUCHART – SPM for magnetism

30

SNOM – Scanning near-field optical microscopy

Courtesy: M. Miron, Grenoble

Spintec Olivier FRUCHART – SPM for magnetism

31

Overview of pros and cons (personal feelings)

	THE EUROPEAN SCHOOL ON
	MAGNETISM
1	WINCHT HOW

	Sp-STM	MFM	NV	BEMM	SEMPA	SPLEEM	TEM	XMCD -PEEM	XMCD- microscopy (Fresnel ZP)	SNOM
Resolution	<1nm	15nm	5-10 nm	1-5nm	10nm	10nm	1-2nm	25nm → 10nm	15nm	50-100nm?
Sensitivity	High	Med	High	Med	Med	High	Low	High	High	Med
In-field	YES	Limited	Limited	YES	local	No?	Limited	No?	YES	YES
Versatile*	No	YES	Yes	No	Limited	UHV	Limited	Yes	Limited	Limited
Dynamics	Part	Part	No	No	No	No	Part	Yes	Yes	Yes
Element- sensitive	Limited	No	No	No	Limited	Limited	Limited	Yes	Yes	No
	m _i	H _d	H _d	m _i	m	m	$m_{x,y}$	m _k	m _k	unsure

Single domains, domains and domain walls

More extensive slides on: http://magnetism.eu/esm/repository-topics.html#techniques

Lecture notes from undergraduate lectures, plus various slides on microscopy (MFM etc.): <u>http://fruchart.eu/olivier/slides/</u>

[1] Handbook of magnetism and advanced magnetic materials, H. Kronmüller and S. S. P. Parkin Eds., Wiley (2007). VOLUME 3: Novel Techniques for Characterizing and Preparing Samples

- [2] Magnetic microscopy of nanostructures, Oepen Ed., Springer (2005)
- [3] Modern techniques for characterizing magnetic materials, Y. Zhu Ed., Springer (2005)
- [4] Magnetic domains, A. Hubert, R. Schäfer, Springer (1999, reed. 2001

100

I wish you a nice second week in ESM !

<u>www.spintec.fr</u> | in

email: olivier.fruchart@cea.fr

