

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Synchrotron radiation

Marcin Sikora

Academic Centre for Materials and Nanotechnology, AGH-UST, Krakow, Poland marcin.sikora@agh.edu.pl

Origin of light

And God Said

and *then* there was light.

1. Charge: a source of electric field, $\vec{D} = \varepsilon_0 \vec{E}$.

- 2. Charge motion results in variable field, $\partial \vec{D}/dt \neq 0$, a source of perpendicular magnetic field, $\vec{B} = \mu_0 \vec{H}$.
- 3. Variable magnetic field, $\partial \vec{H}/dt \neq 0$, a source of perpendicular \vec{E} field ...

Emission of light (E-M wave) requires that $\partial^2 \vec{E}/dt^2 \neq 0$, i.e. acceleration of charge

Origin of synchrotron light

Synchrotron light spectrum

Critical energy

 $\hbar\omega_c$ [keV] = 0.665 \mathcal{E}^2 [GeV] B[T]

WILEY

THE ELECTROMAGNETIC SPECTRUM

Development of SR sources

Properties of SR, instrumentation

Applications of SR

- diffraction
- imaging
- spectroscopy

Applications to magnetism

- magnetic structure
- element selective magnetometry
- magnetic imaging
- time resolved study
- extreme conditions

Theoretical and experimental foundations

1865: J.C.Maxwell's paper <u>A Dynamical Theory of the Electromagnetic Field</u>

1887: experimental observation of E-M waves by H.Hertz

1897: discovery of electron by J.J.Thompson

- 1898-1900: Liénard and Wiechert formulate the theory of retarded potential
- 1907: G.A.Schott's formulates the full theory of radiation from electrons travelling at close to the speed of light

Cyclic particle accelerators

1932: First cyclotron build by S.Gaál and E.O.Lawrence (4.8 MeV, \emptyset = 69 cm)

rnest Orland o Lawrence erkeley National Laborato

1935: First betatron build by M.Steenbeck (original concept from Rolf Widerøe)

1944-1945: First synchrotrons by Vladimir Veksler and Edvin McMillan's

Discovery

- 1944: Ivanenko and Pomeranchouk calculate energy loss of electrons in betatron
- 1945: observation of modified trajectory of electrons in 100MeV betatron (Blewett), no traces of radiation detected
- 1947, April 24: Pollock, Langmuir, Elder and Gurewitsch observe light produced inside vacuum tube of newly built 70MeV synchrotron (GE, Schenectady, Nowy Jork), called **synchrotron radiation**
- 1949: Schwinger's theory of SR
- 1969: Ginzburg & Syrovatskiy publish <u>Development of the Theory of</u> <u>Synchrotron Radiation and Its</u> <u>Reabsorption</u> based on Shklovsky's theory of cosmic radiation

Synchrotron lattice

Guiding and lateral focussing of el. bunches using magnets: dipole, quadrupole, sextupole, N-pole ...

В

B

Insertion devices

Maximum angular deviation of the electron orbit, ϕ_{max} , define undulator parameter:

$$K = \phi_{\max} \, \gamma = \frac{eB_0}{mck_{u,w}}$$

 $= 0.934 \lambda_{u,w} [\text{cm}] B_0[\text{T}]$

undulators

bending magnets and wigglers

high B (superconducting)

10

1

Photon energy [keV]

(b)

normal

0.1

B

Willmott P. An Introduction to Synchrotron Radiation, Willey 2011

Wavelength

shifter

100

Generations of SR sources

Willmott P. An Introduction to Synchrotron Radiation, Willey 2011

Willmott P. An Introduction to Synchrotron Radiation, Willey 2011

Unique properties od SR

- Stable, high flux source of photons
- Broad spectrum
- Collimated and coherent
- Discrete time structure
- Polarized (linearly, circularly)

Attwood D. Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press 1999

Synchrotron radiation labs

There are more than 50 light sources in the world (operational, or under construction). Most of them offer free of charge access upon succesful beamtime applications (peer-reviewed).

Elements of X-ray optics and instrumentation

www.synchrotron.pl

http://ftp.esrf.fr/pub/scisoft/xop2.3/

ub/scisoft/xop2.3/

X-ray mirrors

Monochromators

Attwood D. Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press 1999

Monochromators

Crystals, multilayers

hard X-rays

Bragg law

 $n\lambda = 2\frac{a}{\sqrt{h^2 + k^2 + l^2}}sin\theta$

bent crystals/gratings Rowland circle geometry

Attwood D. Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press 1999

Compound refractive lenses

hard X-rays

Focusing optics

Coated glass capilary hard X-rays

Willmott P. An Introduction to Synchrotron Radiation, Willey 2011

Detectors

- Ionization chambers
- Scintilators
- Si/Ge pin diodes
- Silicon drift detectors (SDD)
- Avalanche photodiode (APD)
- Position sensitive detectors (PSD)
- Photocurent
- Drain current
- Phosphor screen + CCD
-

www.ketek.net; www.dectris.com; www.hamamatsu.com; www.canberra.com

Development of SR sources

Properties of SR, instrumentation

Applications of SR

- diffraction
- imaging
- spectroscopy

Applications to magnetism

- magnetic structure
- element selective magnetometry
- magnetic imaging
- time resolved study
- extreme conditions

X-ray diffraction

Vimeo.com/diamondlightsource

Crystal structure of proteins

e.g. RuBisCO enzyme

www.wikipedia.org

Time resolved and in-situ study

Release of oxygen from Myoglobine protein

Courtesy: esrf.eu

Phase contrast image

Coherent photon beam ~20µm *lateral size up to 150m projection*

Contrast due to small variations of refractive index

Courtesy: esrf.eu

Phase contrast tomography

Non-destructive testing of fossils

e.g. anatomical details of ancient snakes

Courtesy: esrf.eu

Interaction of X-rays with matter

X-ray absorption

E_F 4p 3d

Dipol selection rules: $\Delta l = \pm 1$ $\Delta j = \pm 1 \text{ or } 0$ $\Delta s = 0$

Element selective & symmetry sensitive probe of unoccupied electronic structure

Magnetic scattering and absorption

Atomic form factor

$$f = f_0 + f'(E) + if''(E)$$

Elastic Reflectivity Absorption

Magnetic vs. charge scattering

X-ray magnetic circualar dichroism

Sum rules

B.T.Thole et al., PRL 68 (1992) 1943 P.Carra et al., PRL 70 (1993) 694

where **n** denotes the number of holes in the final states

Enable to separate spin and orbital moments

Magnetic X-ray microscopy

XMCD using ultrasmall X-ray beam or magnification optics & position sensitive detector for photons/photoelectrons

STXM, SPEM TXM X-PEEM Polychromatic Monochromatic X Rays X Rays Magnified Image Phosphor Screen Condensor Zone Plate Zone Plate Focusing Lens SPFM Projection Lens Monochromator Fluorescence Pinhole ~20µm Photons Photoelectrons Sample IIII Aperture Scanning Sample Stage Objective Lens Micro Zone Plate STXM Monochromatic Photoelectrons X Rays Sample CCD X-Ray Camera Detector

A.P. Hitchcock, J. Electron Spectrosc. Relat. Phenom. (2015)

F. Noltig in Magnetism and Synchrotron Radiation New Trends, Springer 2010

 E_{F}

A.Baron, arxiv.org/1504.01098

Resonant (Inelastic) X-ray Scattering

Complete polarisation analysis allows to disentangle the origin of elementary excitation probed:

magnon

orbital (d-d) excitation

elastic scattering

L. Ament et al., Phys. Rev. Lett. (2009)

Development of SR sources

Properties of SR, instrumentation

Applications of SR

- diffraction
- imaging
- spectroscopy

Applications to magnetism

- magnetic structure
- element selective magnetometry
- magnetic imaging
- time resolved study
- extreme conditions

Femtoscale Magnetically Induced Lattice Distortions in Multiferroic TbMnO₃

H. C. Walker,¹* F. Fabrizi,^{1,2,3} L. Paolasini,¹ F. de Bergevin,¹ J. Herrero-Martin,¹ A. T. Boothroyd,³ D. Prabhakaran,³ D. F. McMorrow²

Magnetic diffraction

SCIENCE VOL 333 2 SEPTEMBER 2011 1273

ESM-2018, Krakow, 26/9/2018

Magnetic remanence in single atoms

XMCD spectroscopy

F. Donati,¹ S. Rusponi,¹ S. Stepanow,² C. Wäckerlin,¹ A. Singha,¹ L. Persichetti,²
R. Baltic,¹ K. Diller,¹ F. Patthey,¹ E. Fernandes,¹ J. Dreiser,^{1,3} Ž. Šljivančanin,^{4,5}
K. Kummer,⁶ C. Nistor,² P. Gambardella,^{2*} H. Brune^{1*}

PRL 107, 233401 (2011)

Spin and Orbital Magnetic Moments of Free Nanoparticles

S. Peredkov,¹ M. Neeb,² W. Eberhardt,¹ J. Meyer,³ M. Tombers,³ H. Kampschulte,³ and G. Niedner-Schatteburg³

¹Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

²Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin, Germany

³Fachbereich Chemie und Forschungszentrum OPTIMAS, TU Kaiserslautern, 67663 Kaiserslautern, Germany

(Received 27 June 2011; published 30 November 2011)

Element selective magnetometry

Direct evidence for an interdiffused intermediate layer in bi-magnetic core-shell nanoparticles[†]

Amélie Juhin,^{*a} Alberto López-Ortega,^{*bc} Marcin Sikora,^d Claire Carvallo,^a Marta Estrader,^{be} Sònia Estradé,^{fg} Francesca Peiró,^f Maria Dolors Baró,^h Philippe Sainctavit,^a Pieter Glatzelⁱ and Josep Nogués^{bhj}

Spatially and time-resolved magnetization dynamics driven by spin-orbit torques

Manuel Baumgartner^{1*}, Kevin Garello^{1,2*}, Johannes Mendil¹, Can Onur Avci¹, Eva Grimaldi¹, Christoph Murer¹, Junxiao Feng¹, Mihai Gabureac¹, Christian Stamm¹, Yves Acremann³, Simone Finizio⁴, Sebastian Wintz⁴, Jörg Raabe⁴ and Pietro Gambardella^{1*}

с

SOT-induced magnetization switching

Nature Nanotechnology 12 (2017) 980

Three-dimensional magnetization structures revealed with X-ray vector nanotomography

Claire Donnelly^{1,2}, Manuel Guizar–Sicairos², Valerio Scagnoli^{1,2}, Sebastian Gliga³, Mirko Holler², Jörg Raabe² & Laura J. Heyderman^{1,2}

Tomography

Magnetization topology inside GdCo₂ nanopillar

Three-dimensional magnetization structures revealed with X-ray vector nanotomography

Claire Donnelly^{1,2}, Manuel Guizar–Sicairos², Valerio Scagnoli^{1,2}, Sebastian Gliga³, Mirko Holler², Jörg Raabe² & Laura J. Heyderman^{1,2}

Tomography

Magnetization topology inside GdCo₂ nanopillar

Extreme conditions

R. Torchio et al., Coordination Chem. Rev. (2014)

Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle

James Badro,^{1*} Jean-Pascal Rueff,² György Vankó,³ Giulio Monaco,³ Guillaume Fiquet,¹ François Guyot¹

Extreme conditions

110

100

90

80

70

60 **§** 50 **SH**

40

30

20

10

0

-10

125 150

Further reading

An Introduction to Synchrotron Radiation Techniques and Applications

Jens Als-Nielsen • Des McMorrow

Elements of Modern X-ray Physics

Second Edition

CRC Pr

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION Principles and Applications

DAVID ATTWOOD

Center for X-Ray Optics and Advanced Light Source (-RAY DATA BOOKLET

Settimio Mobilio : Federico Boscherini Carlo Meneghini Editors

Synchrotron

Radiation

Basics, Methods and Applications

Synchrotron training

HERCULES European School

Home

Application

Programs Resources

-07

Sciences du Vivan

About the School

Neutrons & Synchrotron Radiation for Science:

This 1-month school, established in 1991, provides training for students, postdoctoral and senior scientists from European and non-European universities and laboratories, in the field of **Neutron and Synchrotron Radiation** for condensed matter studies (Biology, Chemistry, Physics, Materials Science, Geosciences, Industrial applications).

It includes lectures, practicals, tutorials, and visits of Large Facilities: ALBA in Barcelona, ANKA/KIT in Karlsruhe, DESY and European XFEL in Hambourg, ELETTRA and FERMI in Trieste, ESRF, ILL in Grenoble, Soleil and LLB in Paris-Saclay, and SLS/PSI in Villigen.

The next HERCULES session will take place from 18 March to 19 April 2019

For regional synchrotron schools and specialized workshops check regularly at <u>www.lightsources.org</u>, <u>www.calipso.eu</u> and <u>www.ceric-eric.eu</u>

arc = o---

