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Outline — Lecture I — General Overview

UNIVERSITET

® Introduction — phenomenology
" Electronic information vs. structural information

* Electronic structure picture of materials
" Theory/understanding of light-matter interactions

* The classical fields’ description

* Quantum theory with classical fields

* Complete quantum field theory

Gamma ray X-ray Ultraviolet Visible Infrared Microwave Radio Radiation Type

1012 10710 108 0.5 x10° 108 102 10° Wavelength / m
{02 (i s > 102 %10 10 Frequency / Hz



s

B,
£

s Outline — Lecture II — Light-magnetism Interaction

UNIVERSITET

" Phenomenology of magnetic spectroscopies

® Electronic structure theory, linear-response theory

" Theory/understanding of magnetic spectroscopies
* Optical regime

e Ultraviolet and soft X-ray regime
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Phenomenology — Types of light-matter interactions

UNIVERSITET

X-ray light

Emitted e-

reflected

L~

Transmitted,
absorbed,
diffracted light

Gain information on two main information areas:
electronic & magnetic structure and structural

information

(with many subdivisions each)
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wesan  PUre structural information
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X-ray diffraction w===p Positions (crystallography, biomolecules, phonons, etc)

2
1@ IF@P = | ) fiexprmi(q-w)
J

Spots created by Spot created by
_ diffracted x-rays x-ray beam
Crystalline \

material

X-ray Collimator to
source focus beam
Photographic
film
(a) X-ray diffraction (b) X-ray diffraction pattern captured

on photographic film

Often very hard x-rays !
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ws  Electronic structure information
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Excitation by photon of one electronic state to another one, provides
information on the materials’ electronic structure

E A
Can measure in

~\__~ [Freeelectron photon-in / photon-out
states set-up, or

photon-in / electron-out

photon ?7 L
Information on binding
by energies, unoccupied
} states, spin- and orbital
_ Valence band properties, electron
distributions, quasi-particles
etc.

j—(k Core level



wesan  Detailed electronic structure information
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High-resolution Angular Resolved Photoemission Spectroscopy (ARPES)

104 | u Observation of shadow bands FeSe/STO
E - - Rebec et al, PRL 118, 067002 (2017)
b R B
| t | @m=m Superconducting gap FeSe/SrTiO;
04 Bedebod ) o6 et al, Nature 515, 245 (2014)
0 50 100

T(K) 7
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Further example: X-ray absorption

Transmission
[

S
. [ =] e

L kT T =

Sample
Beer-Lambert law

A

Absorption coefficient p

M
L3 Fe ‘
Co
L, i .
ke
- 700 800 900

Photon Energy (eV)

Detailed understanding

Resonant excitation of dipole
allowed transitions at edges

2P0 2P, = 3d



wsns Core-level absorption edges
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Basic electronic structure:

Absorption > AAAAA
I} I@*;‘?._"f;‘;f;fgf;:ad Positions of the core levels
p L end Maedges (here of a 4p element)
[ Jwease 7
[ Jsedge . . . : .
. L edge i Spin-orbit split states ~16 eV
2 e —2p (|=1/2)
& (3d element)
Ledge ... e
SO splitting of core states:
j=lxs=0£1/2 (>1
j=s=1/2 (=0
K edge 1s /

v Increase in absorption at each edge
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wws Magnetic information - XAS of ferromagnetic materials

UNIVERSITET

X-ray magnetic circular dichroism  E:(z,t) oc (e, £ie, )€ "=

magnetization 0.6 . : ; . . : T T
kgl faiials ; absorption
right circular polarization Sseticicnt
H(+) = 041
\ sample =
— C
¥z =
e
magnetization é—: 0.2~
h ; S—
left circular polarization absorp_tlon )
f} coefficient §
sample
X-ray magnetic circular dichroism (XMCD) 02 : : . : = : . :

Energy (eV)

nmmmsp Provides a powerful tool to measure element-selectively
the atomic magnetic moment

10
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wsn  Fundamentals of Light — Matter Theory

UNIVERSITET

Theory/understanding of light-matter interactions — 3 levels
* The classical fields’ description
* Quantum theory with classical fields

* Complete quantum field theory

First level:

Maxwell theory and Fresnel theory (classical fields), macroscopic
materials’ quantities (no quantum physics)

Second level:

Maxwell theory and Fresnel theory (classical fields), materials’ quantities
given by quantum theory for materials

Third level:

Quantized photon fields, coupled to quantum theory for materials
(i.e., 2" guantization of photon fields)

11



First level: Maxwell-Fresnel theory
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To describe the interaction between matter and the E-M wave field there
are several ingredients:

(1) eigenwaves in vacuum & material and (2) the boundary conditions

Both (1) & (2) follow from

the Maxwell equations: Materials equations are also needed:

D=¢-FE
VD = 4?1',0, j — o+ E
vV:-B = 0, B=u-H
47 , 10D
VXH = ~J T o D : displacement field
198 E : electrical field
VXE = P B : magnetic induction
H : magnetic field
(in CKS units!) J . current density

o . charge density
12



Materials relations
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Just as important are the materials relationships :

With the material specific(!) tensors:
D=e-E=FE+4rP, . ormittivity tensor
Be—p-H=H-+4rM, u . permeability tensor
o . conductivity tensor
j =oc-FE And: P: electrical polarization
M : magnetization

Note: we use here g,=1, py,=1

Note: materials fields are These equations are valid
not uniquely defined. for constant ¢, u, and o
This is usually not the case!

13
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e A closer look at the materials relationships

If we don’t have constant material’s tensors, things become nastier when
we consider the full dependence on the space and time coordinates:

D(r,t) = /dr’ /dt’e('r —rst—t) - E(r',t) (homogeneous

. approximation!)

Pt = Gy / dkf dw B (k,w) "1

But, going to reciprocal space makes life easy again !
D(k,w) = elk,w) - E(k,w) With the material

) < specific(!) tensors:
j(k,w) =o(k,w) - E(k,w) £ 1 permittivity tensor

u - permeability tensor
And: D =¢€¢-E =FE+4nP

, o . conductivity tensor
471

j..=0P/0t = e€w=1+—0oWw)

W 14
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Consequences of Maxwell equations

Solutions of the M.E. for isotropic medium: transverse plane E-M waves:

Re-write the equations (vacuum, € = €g, p = o)

_ i(k-r—wt)
Vx(VxE)=V X (—B—B) = —Mogoﬂ N % T " E(r,t) = Ej e‘_
0 3 ot? Solutions: E-M wav B(r,t) = By eilbr—ot)
2 2 0’E .
V(V-E)-VE= V'E = pogo—o7 Or: FE~sin(k-r—wt), cos(k-r—wt)
And-: Also:
2 . —
VX(VXB):uoeo%(VXE):—LLQEQ%T? Vo=l = k-EBE=V = k.l E
Y oy V=B=0 == kB=0 =% BB
2 i
Eq
By /Q\ "k Light is a transverse E-M wave
B ’ y

15



wsn  INdex of refraction
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The plane-wave solution is possible under the condition:

— — g

(k-k)E=220E, (k-k)B=0'F = =24’
C C C

Dispersion relation

= ck
Index of refraction: n=—= n=\/eu, n=c/v
)

Remarks:
1) For materials ¢, 4 are complex =====p 17is complex & vector

2) The "spins cannot follow the rapid moving #field” ) / =1

mm | (@) = JEU = +/E(D) (Dispersion relation)

Nonetheless, all magnetic information is acounted for (see later)

16



Measured relative permeability (o)

I‘.cg};
UPPSALA
UNIVERSITET

~ 100
-E -
s} Ni
= = .
iz = 9 Becg
= @ E =
< 3 10 =
:'E E “a He a “'\ M
o 5 b \-.\
w ~
E * 6 % ° ™
2 \\\.
- | d 3 .4 [
1 10 100 1000 10000 | 10 10 10
FREQUENCY wc /sec
Frequency (/) (KHz)

Kittel, Phys. Rev. 70, 281 (1946)

1eV=0.2510"Hz

Arguments

1) no unique separation between D and Hin the Maxwell equations
2) physically: ,,spins cannot follow the rapidly varying B field"

u(®) => 1 at optical frequencies, B(w) = H(w) (k =27/4 — 0)

17
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)
s : : :
s Energy dispersion of optical constants

In the x-ray regime, nis close to one and complex:

n(w)=1-o(w)+if(w)

o can be positive or
negative !

Also, 6 and S do depent
on the magnetization !

Eventhough 6and g are
small they can be
measured accurately at
modern synchrotrons

--------- 5 (KKT) |

760 770 780 790 800 810
photon energy [eV]

18



e Fresnel equation for the material

A combination of the M-E leads to the following wave equation /n
the material :

o2 _ 10°D
V°E+V(V-E) = 2 a2

This is similar to the equation for the isotropic, constant ¢ case

Substitute: E(r’t) = plwn 7 /c—iwt

Gives us the Fresnel equation: [’n21 —€e—n: 'n.] E =0

The solution gives 2 nin the

material and the eigen modes £ ﬁ(n ; ”)y =nn,

Note: we used u=1
Written in full (SI), it would be: ( 2_ K

19



wus  Fresnel equation, continued
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The symmetry of ¢ tensor is an important ingredient for solving the
Fresnel equation.

In short, one needs to know about the crystallographic and magnetic
symmetry of the material !

Some examples for non-magnetic materials:

gxx gxx gxy
Cubic: &= E., Monoclinic: €=| ¢, €&,
(1 quantity) € x (4 quantities) bz
(biaxial)
Tetragonal _ [ %= En €y En
h?xagonal &= € Triclinic: E= 6y &) &y
trigonal <
N zz (6 quantities) € & &z
(2 quantities) (uniaxial) .
(biaxial) 20



= Example of Fresnel equation for magnetic medium
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Magnetic medium, Mj|z:
Dielectric tensor:

- E €xx exy 0
y € = —Cry Exg U
n = ne, 0 0

Why? Consequence of magnetism!

471
Look at o tensor: €(w) =1+ — o(w)
47 :
£, :?axy, o, #0 because of the magnetism!

Hall current, o,

io(w)

(SI units: €(w) = el+ ) 51
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Examples magnetic Fresnel equation, continued

Hall current o,
Note: o, = -0,

Solve Fresnel equation:

2 2
n“—g,—n"|

2 2 2
(= (n"-¢,) +¢,]1=0

2 2 2
— :(l’l —gxx) :_gxy

2 .
= =&, Tig,

There are two solutions:

2
+

2 . .
n,=n,=¢ TiE,

22



s Fresnel equation, magnetic case

Eigenmodes:

iigxy —&, E. b E

+e.  tig o £ =0 o/ "|=0&E. =0,
e AR

| _gzz_ Ez
L, 1 (1

— g . .
E, ) N Y (normalized eigenmodes!)

Solutions are circularly polarized — - -
waves (in the material): E+(r,t) :E(ex tie))-e

io/c(nyr)—iwt

One circularly polarized wave with helicity + corresponds to n_,
the other one with helicity - to n.

This situation is called “magnetic circular dichroism”, i.e. 2 colors | n, = 7
£ .

(will apply this to XAS/XMCD in Lecture II)

23



Materials” boundary conditions
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R

Experiments always require at
least two different media

Next to the Fresnel equation (1)
we must also know the ,,matching”
conditions (2) at the boundaries !

T These will follow (again) from
the Maxwell equations

Continuity of temporal and spacial wave parts at interface wm=sp> 1) Snell”s law
2) reflection/transmission coefficients

Convenient: Jones vector formulation:

~ (E I
2-dim. vector E:KEJ

p
24



Refresher: Snell’s law
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Continuity of temporal and spacial wave parts at interface z=0:

ik, -r—iot ik, -r—iot ik, -r—iot
> o —e —e
z=0 z=0 z=0
n.@ r
> —— (k)=
C
/\l, . .
k,=smnb,,
n;
>y _
n,
>
.

k=——F

C

Use:

W, =0 =0 =0

n n

() ~
—(k,y)=

(O 7y
(k,y)
c c

N

ro__ 1 At_*
k,=sin@,., k,=sing,

y

sinf, =sin 6.

n.sin@, =n, sino,

Snell’s law
25



wsn — Reflection/transmission coefficients, Jones formulation
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Definition of reflection matrix: [ E‘:j E r. rspj [ E;j
— [

. . . . 7 i
(similar for transmission) E’ Pos T ) \E,

Here r,, means: p-polarized light in, reflected as s-pol. light.
The r,,are magnetic (Fresnel) reflection coefficients

The reflection coefficients follow from the Maxwell equations.
Example: s-polarized light, scalar dielectric constant ¢

_n;cos.—n,cosb,

. ] - Er
Calculation gives: s _
ss

n.cosd. +n, coso,

E_

I
—< S
t 2n, cos 0,

S

E!' 7 n,cosf +n, cosb,

S

Similarly for p- -

polarized light _
Note: », =0 here ! (no magnetism!)
26



o . .
Magnetic Fresnel coefficients
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The calculation of the Fresnel coefficients in the case of a magnetic
material can be teadious!

- 4 y 4
X —
. ¢ |
y /\ /\
z
polar, transverse
longitudinal
Polar, longitudinal:
rsp,rpsio, Arppzo (I,. 7 \
- SS Sp
= A
Transverse: v  +/\r
U s | Top pp )

Vst =0, Ar#0

(more in Lecture II)
27



Example: Magnetic reflection coefficients
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Result for polar magnetization:  nZ = e, Liegycos g (M| z-axis)

res = (ngcos ¢ —micos @)/ (ngcos ¢; +ncos dr) ,
rop = (Micos ¢ —mgcos @) / (7icos ¢ +ngcos ¢y) ,
. —ing (N4 — n_) cos ¢
LE (fi cos @ + mg cos @;)(7icos ¢; + ng cos ¢¢) cos Py’
iy = Fps
Result for longitudinal magnetization: Same, but: 7, = 7,

€xx 0 €xz €1 0 €2 .
&= 0 e, 0 |=[ 0 ¢ 0 | = n ~e tiexsingy

—€xy, 0 €, —e2 0 €

(M || y-axis)
See: P.M. Oppeneer, in Handbook of

Magnetic Materials, Vol. 13 (2001)

28
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wsn — Second level — Quantum theory & classical fields
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Spectroscopic quantities can be related to the materials’
specific dielectric tensor ¢ (equivalently, o)
_n;cos.—n,cosb,

2
r, = =) n°l—e—mn:n|-E=0
n,cosd, +n, coso, [ ]

e(w)=1+ ? o(w)

Combine quantum theory of the solid with classical (external) E.M.
fields as given by Maxwell’s equations:

E(Fat) =§X;j(l7,l‘), E(?,t) I—a;j(f,t)/@t Coulomb gauge

Use electronic structure theory to describe/compute & (or, o)

29



wss  Electronic structure theory
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Complex many-electron problem — many particle Schrodinger equation

H — T'e T I/e—e T I/e—ion T I/ion—ion
[:I‘Pvl....vn (7"1 9'”9rn;R19'”9RN) = Evl....anPvl....vn (7"1 9"'9rn;R19'”9RN)
\Pvl...v (7geees 75 R ey R A
Many-particle wave-function
ﬁ 3d

Too difficult to solve! 3
» Want an effective, non-interacting

single electron picture 20,

O 2p,

30



wsn  AD Jnitio density-functional theory

Complex many- exact! Effective, non-interacting
electron problem /\/ single electron problem
/oY i . 1 2 -
B, (oo R, Ry ) = —%VZ +VIn()]+ V., [n(r)]|y,(r) = Ey,(r)
Evl....vnqjvl...vN(rl"'"rn;RIV“’RN) i}
e n(r)=2, | (") F
H=1 4V 4V eiontVionion 1/ (7) selfconsistent solution

Kohn-Sham single electron equation,

Density functional theory (DFT): Kohn-Sham density

1) The mapping is exact and provides a unique total energy functional £[n]; the
exact ground state energy is obtained as its minimum for the ground state density 7.
2) There is an (not exactly known) exchange-correlation energy E.. [n], which defines
the exchange-correlation potential V [n(r)]= / 5n(r)

Hohenberg-Kohn, Phys. Rev 136, B864 (1964)
(See Lecture S. Bliigel)

Kohn-Sham, Phys. Rev. 140, A1133 (1965) 31




Single particle, spin-density functional theory
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Effective single-particle 2x2 potential (with spin):

_ ~ - A = Y
V(P =V (P4 B ()6, B (F)=—oo
om(r)
Effective Kohn-Sham Hamiltonian: Exchange field
~ | V2 1 . AA A
H = —2—+V6,N(17)+V0(17) 1+B_(r)-c+&l-0
i m | \_Y_’
Spin-density (2x2): Spin-orbit coupling

n(7) = {n, (7)1 + i(F)- 53 /2

Not yet fully relativistic; better is Kohn-Sham- n(r) =ny(r)+n,(r)
Dirac equation to include all relativistic effects. m(r) = {nT (r)—n, (17)}

32



wx  Combine effective Hamiltonian with classical fields
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Classical (external) E.M. fields in Maxwell equations:

E(F,t):%x;l(ﬁt), E(F,t)=-82(?,t)/@t Coulomb gauge

With A(7t) the vector potential

Combine with single-particle electron Hamiltonian:

2 1 2 A A -

H0:|:—2 p +V(r)+ch(r)} Use: p=p—ed
m

—

= H =[—1(f?—e;1)2 +V(I”)+ch('”)} {—21152 +V(l”)+ch('”)}+e(ﬁ-A)
m

2m m
Unperturbed H, Perturbation H’

33



o Perturbation treatment of light-matter interaction
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A)=(j-A)

<H

The light-matter interaction is given by ﬁ'zf(
m

This can be rewritten as  H'=—e (1% EU
[Using that 4= (B x r)/2 and (4.r) =0 ]

For linear optics & magneto-optics:
Compute effect of perturbation to first order in £

j(k,td) — O'(k,QJ) ’ E(kaw)

L Linear-order response function

Use perturbation theory or linear-response theory

The described effects will be linear in perturbing field (£ or A).

More work is needed to include non-linear optical effects!
34
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wsn  Result of linear-response theory
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474
Dielectric tensor/ Conductivity tensor  €(w) =1+ — o (w)
Conductivity is the response
function to the £ -field: Ja(t) = f dt’ oap(t — 1 )Eﬁ (t )
% E(t) = Ee it
. f(ﬁﬂ _ (Fﬂa’) I Hﬁr
G : o - n'n 17
lves: | ¢ ﬁ({"-’) mzﬁy ; l\\\ W — Wy —|—i,/';r
\
Fermi function
And: I3 = (n|pa(n’) Single particle
By = €5 — €, eigenstates &

eigenenergies

For a derivation, see the Appendix! e
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wsw  Electronic structure picture
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Expression sums
contributions from all
optical transitions,
with 1-photon in,
and 1-photon out

k=277r:>k small

Dipole transitions:
Al=%x1, Am=%1,0

Due to matrix
elements

Energy (eV)

Sum all optical transitions
6 i ." \‘“'-III
.-lIllII Illl-.
3 -
\
! A\
0 i f i

%
A4
5
b
. W by
- \ L
% Al [
i / ol

36



ursin — EXpressions for dielectric tensor
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Use relation between tensors: e(w)=1+ il o(w)
W
4r%e’ U
Im{z,(@)]=——— ZZRe {1, 11, }6(0 - ,,)
Re[e,, ()] = th ZZIm{H" I, }16(0-o,,)

(for 1/t -> 0)

un. occ.

Thus, we have an electronic structure expression for g,
from which we can in principle compute all spectra!

1) Examples of compute x-ray magnetic spectra come in Lecture II.

2) These equations are equivalent to those of the Fermi’s golden rule.

37
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Some examples ...

Fe

Optical Constants n, k
6
|

ENERGY (V)

The comparison ab initio theory —
experiment is often very good!

Importance of precise

transition matrix elements ———)

Helbectvity [Ya)

BO

6l ¢

&0

21

- -l = @EpEiment
—m—gxp, n, K
thaory

o (10" s7)

Photon anargy (&Y)

. .
—@— exp. Schoenes CeN
constant ME
full ME ) i
N
1 1 1 1 1
2 4 6 8 10 12
Photon energy (eV)

38



i Limitations of the single-particle approach
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! / .
NiO
20 :
: R .
| 15| XAS @,
= P L
81 — | , — |
> LaFeO CoO NIO 2 1 |
= I S 10 I
5 / M = ik L
E 10 | I".__ A | 2 -1'..': I'Ii L | .“'-.-'1,'. Exp-arimgn_l;
LJJ | k' —--)I "-\_ _= ' . E 0-5 L i I || 1 = e — - e—— — |
* - — - =
E f % rl IL,"
1 — | 4
E 5 J—!IT-:. | CG { Nl .- |"\ . -_'|1| “I'.. Theﬂr\’; |
I\ . 00—’ Al A
I e 845 B850 B55 860 865 B70 875 880 B85
0 4 Y Photon energy (eV)

/ /
700 710 720 730770 780 780 800 B850 860 BTO 880

Photon Energy (eV) Single-ion

calculations 3d8

Multiplet structures due atomic multi-electron
configurations not included in 1-particle model Groot, Coord. Chem.
Rev. 249, 31 (2005)

39



e TO go beyond these limitations
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Atomic multiplets with multiconfigurational SCF approach
("active space”) . .

EXP ——
RASPT2 ——
RASSCF ——

XA intensity

850 855 860 865 870 875
Excitation energy [eV]

Josefsson et al, JPCL 3, 3565 (2012)

40
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wsa  Other approaches beyond effective single-e theory

1) Dyson equation:

2 T

GW self-energy (accounts for many-body
electron-electron interaction effects)

2) With explicit core-hole interaction:

core-hole effect

{p—2+ V() +Vy(r)+ Vc(r)} G(r,r'; E)+
2m

Id3r” X(r,y";E)YG(",r;E)=FE G(r,r";E)

|

electron-core hole Bethe-Salpeter equation

Improvement especially for non-metallic materials

|

2 e
|: P + Vext + VH:|Wnk (I‘) +Id3r’ Z(l’,l"; Enk) Wik (l") - Enk Wik (l’)

electron state energy, wave function

MgO

20 +

calc., non-int.

15 ¢

calc., inter.

measured

5 1|0 1|5 210 2|5 310 3|5 40
Photon Energy (eV)
(E. Shirley, J.J. Rehr) 41



wsn — 3Fd level — quantized photon field
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The 3 level is a next step, where the photon is a guantized field

H=K +V_+V__+V +Zha)&,;&k2—j dFD(F,t)-Z“”(F,t)]

e—ion ion-ion

in 2nd quantization.

The vector potential is not just the external one, but is renormalized
due to the electron response (feedback effect on the fields or “photon

dressing”) [_iz—vsz(r )——J(r )

2
C

Gives set of coupled Maxwell-Kohn-Sham equatlons that need to

be solved selfconsistently!
nt K —zkr+iat]

A7, 1) o j dkz \/7 a.£,e" " +alce

Example: small molecule in an optical cavity
(Fick et al, ACS Photon. 5, 992 (2018)
42
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usn — SUMMAarizing light-matter interaction
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Most basic principles of (macroscopic) light-matter interaction are
given by the Maxwell-Fresnel theory

Combining classical Maxwell fields with ab /nitio quantum theory
(effective single particle theory) gives often quite accurate valence
band and X-ray optical spectra of many materials

(Ab initio DFT approache gives reasonable description of electronic
structure properties for relatively low computational costs)

Current frontlines:

1) Beyond DFT single-particle theory to include many-particle
interactions in the excited state

2) Quantized photon fields coupled selfconsistently to DFT Kohn-Sham
equations

43
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Appendix I: Linear response theory
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Density matrix definition: P(t) = e _BH/Z Z =Tr{exp(—SH)}
(partition function)

Expectation value of operator 0: (O(t)) = Tr {p(¢)O}
(Schrodinger picture)

For the time-dependence of any dp(t) 1

expectation value of operator O: TR [H(t), p(t)]

¢
. 1 .
Linear-approximation in H,: p'(t) =~ po + = [ dt' [Hi(t"), po]
— 00

(interaction picture)

Ai(l‘) _ eiHOt/hAse—iHot/h ’ ‘l//(t)>l _ eiHOt/h‘W(t»S J

45



wsn — Linear response theory, continued
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For any operator O we get the
time-dependence induced through

t
the perturbing Hamiltonian: (O()) = (O), + % / dt'([O'(t), H(')]),

(Ensamble average with respect to the ﬂ
unperturbed states, interaction picture)

If you want details,
see the appendix!

t
This is already linear-response theory: (O(t)) ~ / dt'R(t —t')F(t")

With: H,(t) = BF(¢) —

~response function®

|

Note: 7=+, response is always causal R(T) = %9(7)( [O'(7), B'(0)] Yo

46



U“i;;i Conductivity response to EM field
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t

Conductivity is the response .
function to the E-field: Ja(t) = f dt'c af (t — t’)Eﬁ (t')

— 0

E(t) = Ee %t

The perturbing hamiltonian it
can be written as: Hy =e Z"'z E(t) = Be
Joeyi wTSwti

1 . . —
Thus, we have to work out:  J,(¢) = = / dt' ([Jo(t), B'(t)]) e it

PI for total current J:
t

dt'{[Ji(t), B (¢ 1),

—jwT
—oo i

e T 1

—iwt ik

Jo (t) = —([J‘ (t), B'(t)]),
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Conductivity response
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with:  Bi(¢ _le ‘E=-J\(t)- E

2
And: ([JL(t), B'(t)]), = —ezz< 7i,a(0),75,8(0)]) Es = ﬂNﬁagEg

. .|.tf

& LY t — i
—) (1) = V08 g o it —% ]dt'([Ja(t),Jg(t')])DEﬁe.

mw™t iwT

Comparing with the equation for ¢ gives:

%EQN(SQ;;(S

o =t) = T (t—t') + ([Ja(t —t"),J3(0)]),

Vhwt
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ws Conductivity response, continued

Fourier transform:

ie2 N6, 1
Tap(w) = Vmw+ﬁ+Vhw+ [d‘rﬁ'(’r)([ (1), J8(0)])p ™
i€>Ndqap 17 _p (k| Jo |k (K'|Jg|K)
— o L\ —E./kT _  —E_/kET a B
7 () Vmwt  Vwt [e © ] hwt — (B — Ey)
With:

i 5 =N 5 N Linv
J——ezi:vl.— mZpi mzl-“( ih)V.
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wswn — Single particle formulation
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Rewrite for single particle states:

’iBQN(Sag e f(en - f( ) o 5
Tap(w) = Vmwt T m2V hwt Z wt — Wy, Hipp

with: II%., = (n|pa|n’)  Aw,n, = €y — €,

f En f(en’) n' nﬂnn
Z

Wnn! \i\ wt — Wnn!

Use: Nius = fon aﬁ—zf‘fn)(ﬂ| ’*"mpﬁ“”> Fermi function

Can be written as: | cqap(w) = m2 T

flen) — f(e )
= Z - ih - T'g-nfﬂf’n




Appendix II: Transition matrix elements
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The matrix elements have special properties, called selection rules

m ‘
Rewrite: II = F [Ha ‘T'] mmmD>  JI,, = % (En — en’) (¢n |T | ?ﬁn’)

and consider an atomic basis: v .(¥)~ > C" (k) f; ("), (7)
Im

This leads to: (v, |7 |, ) — j aQy” (MY, (F)
S

\_Y_/

YViig oo —> [=0'tl, m=mtl,0

m=====> Dipolar transitions have: Al ==+1, Am==1,0

Selection rules on m:
(‘

2p states -> 3d states, £, =&, +ie, = Am=+I

4s states (L-edge) — e.=¢&,—iE, > Am=-1

c.=& =>Am=0
- 0 I
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wswn — Appendix III: Fermi’s golden rule
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u@) < 3|y, 67y, ) 8(E ~E, ~ho)
J

From Fermi’s golden rule  w,_, =27”\M\25(E —E, —ho)

with M =(y, |H'|y,) = [y, (HH' Fw,()dF

ik-r

and H'=e(e-7r)e (perturbation due to radiation field)
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Practicals’ problem:

UNIVERSITET

1) Material with magnetization
in the scattering plane

2) Lin. pol. light £vector at 45°
to the magnetization

3) Consider R(+M)-R(-M)

Use the reflection coefficients to show that R(+M)-R(-M) is a
measure of the magnetization and derive an expression for

the magn. asymmetry: ROLM) — R(-M)

A =
R(M)+ R(—M)
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