Light-Matter Interactions

Peter Oppeneer

Department of Physics and Astronomy Uppsala University, S-751 20 Uppsala, Sweden

- Introduction *phenomenology*
- Electronic information vs. structural information
 - Electronic structure picture of materials
- Theory/understanding of light-matter interactions
 - The classical fields' description
 - Quantum theory with classical fields
 - Complete quantum field theory

- Phenomenology of magnetic spectroscopies
- Electronic structure theory, linear-response theory
- Theory/understanding of magnetic spectroscopies
 - Optical regime
 - Ultraviolet and soft X-ray regime

Gain information on two main information areas: *electronic & magnetic* structure and *structural* information

(with many subdivisions each)

Often very hard x-rays !

UPPSALA NIVERSITET Electronic structure information

Excitation by photon of one electronic state to another one, provides information on the materials' *electronic structure*

Can measure in photon-in / photon-out set-up, *or* photon-in / electron-out

Information on binding energies, unoccupied states, spin- and orbital properties, electron distributions, quasi-particles etc.

Detailed electronic structure information

High-resolution Angular Resolved Photoemission Spectroscopy (ARPES)

Transmission

Sample Beer-Lambert law

Absorption coefficient $\boldsymbol{\mu}$

Detailed understanding

Resonant excitation of dipole allowed transitions at edges

$$2p_{1/2}; 2p_{3/2} \Rightarrow 3d$$

Core-level absorption edges

(3d element)

X-ray magnetic circular dichroism

 $\vec{E}_{\pm}(z,t) \propto (\vec{e}_x \pm i\vec{e}_y) \cdot e^{i\omega/c(n_{\pm}\cdot z) - i\omega t}$

Provides a powerful tool to measure element-selectively the atomic magnetic moment

Theory/understanding of light-matter interactions – 3 levels

- The classical fields' description
- Quantum theory with classical fields
- Complete quantum field theory

First level:

Maxwell theory and Fresnel theory (classical fields), macroscopic materials' quantities (no quantum physics)

Second level:

Maxwell theory and Fresnel theory (classical fields), materials' quantities given by quantum theory for materials

Third level:

Quantized photon fields, coupled to quantum theory for materials (i.e., 2^{nd} quantization of photon fields)

First level: Maxwell-Fresnel theory

To describe the interaction between matter and the E-M wave field there are several ingredients:

(1) eigenwaves in vacuum & material and (2) the boundary conditions

Both (1) & (2) follow from the Maxwell equations:

 $\nabla \cdot \boldsymbol{D} = 4\pi\rho,$ $\nabla \cdot \boldsymbol{B} = 0,$ $\nabla \times \boldsymbol{H} = \frac{4\pi}{c}\boldsymbol{j} + \frac{1}{c}\frac{\partial \boldsymbol{D}}{\partial t},$ $\nabla \times \boldsymbol{E} = -\frac{1}{c}\frac{\partial \boldsymbol{B}}{\partial t},$

(in CKS units!)

Materials equations are also needed:

$$D = \epsilon \cdot E$$
$$j = \sigma \cdot E$$
$$B = \mu \cdot H$$

- **D** : displacement field
- E: electrical field
- **B**: magnetic induction
- H: magnetic field
- *j* : current density
- ρ : charge density

Materials relations

Just as important are the *materials relationships* :

$$\boldsymbol{D} = \boldsymbol{\epsilon} \cdot \boldsymbol{E} = \boldsymbol{E} + 4\pi \boldsymbol{P} \,,$$

$$\boldsymbol{B} = \boldsymbol{\mu} \cdot \boldsymbol{H} = \boldsymbol{H} + 4\pi \boldsymbol{M} \,,$$

 $j = \sigma \cdot E$

With the material specific(!) tensors:

- ε : permittivity tensor
- μ : permeability tensor
- σ : conductivity tensor
- And: **P**: electrical polarization

M: magnetization

Note: we use here $\varepsilon_0 = 1$, $\mu_0 = 1$ Note: materials fields are not uniquely defined.

These equations are valid for *constant* ε , μ , and σ . This is usually not the case!

If we don't have constant material's tensors, things become nastier when we consider the full dependence on the space and time coordinates:

$$D(\mathbf{r},t) = \int d\mathbf{r}' \int dt' \, \boldsymbol{\epsilon}(\mathbf{r}-\mathbf{r}';t-t') \cdot \boldsymbol{E}(\mathbf{r}',t')$$
$$\boldsymbol{E}(\mathbf{r},t) = \frac{1}{(2\pi)^4} \int d\mathbf{k} \int d\omega \, \boldsymbol{E}(\mathbf{k},\omega) \, \mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}$$

(homogeneous approximation!)

But, going to reciprocal space makes life easy again !

$$D(\boldsymbol{k},\omega) = \boldsymbol{\epsilon}(\boldsymbol{k},\omega) \cdot \boldsymbol{E}(\boldsymbol{k},\omega)$$
$$\boldsymbol{j}(\boldsymbol{k},\omega) = \boldsymbol{\sigma}(\boldsymbol{k},\omega) \cdot \boldsymbol{E}(\boldsymbol{k},\omega)$$

<u>And:</u> $D = \epsilon \cdot E = E + 4\pi P$ $j_{ind.} = \partial P / \partial t \implies \epsilon(\omega) = 1 + \frac{4\pi i}{\omega} \sigma(\omega)$ With the material specific(!) tensors:

 ε : permittivity tensor

- μ : permeability tensor
- σ : conductivity tensor

Consequences of Maxwell equations

Solutions of the M.E. for isotropic medium: transverse plane E-M waves:

Re-write the equations (vacuum, $\boldsymbol{\varepsilon} = \varepsilon_0$, $\boldsymbol{\mu} = \mu_0$)

Solutions: E-M wave
$$\begin{cases} \boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_0 \ e^{i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)} \\ \boldsymbol{B}(\boldsymbol{r},t) = \boldsymbol{B}_0 \ e^{i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)} \end{cases}$$
Or: $\boldsymbol{E} \sim \sin(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t), \quad \cos(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)$
Also:
$$\boldsymbol{\nabla} \cdot \boldsymbol{E} = 0 \implies \boldsymbol{k} \cdot \boldsymbol{E} = 0 \implies \boldsymbol{k} \perp \boldsymbol{E}$$

$$\nabla \cdot \mathbf{E} = 0 \implies \mathbf{k} \cdot \mathbf{E} = 0 \implies \mathbf{k} \perp \mathbf{E}$$
$$\nabla \cdot \mathbf{B} = 0 \implies \mathbf{k} \perp \mathbf{B} = 0 \implies \mathbf{k} \perp \mathbf{B}$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \implies \mathbf{k} \times \mathbf{E} = \omega \mathbf{B} \implies \mathbf{E} \perp \mathbf{B}$$

Light is a transverse E-M wave

The plane-wave solution is possible under the condition:

$$(k \cdot k)\vec{E} = \frac{\varepsilon\mu}{c^2}\omega^2\vec{E}, \quad (k \cdot k)\vec{B} = \frac{\varepsilon\mu}{c^2}\omega^2\vec{B} \implies k^2 = \frac{\varepsilon\mu}{c^2}\omega^2$$

Dispersion relation

Index of refraction:
$$\vec{n} = \frac{c k}{\omega} \Rightarrow n = \sqrt{\epsilon \mu}$$
, $n = c/v$

Remarks:

- 1) For materials ε , μ are complex \longrightarrow *n* is complex & vector
- 2) The "spins cannot follow the rapid moving *H* field" $\longrightarrow \mu = 1$

$$\implies n(\omega) = \sqrt{\varepsilon \mu} = \sqrt{\varepsilon(\omega)}$$

(Dispersion relation)

Nonetheless, all magnetic information is acounted for (see later)

 $1 \text{ eV} = 0.25 \ 10^{15} \text{ Hz}$

Arguments

no unique separation between *D* and *H* in the Maxwell equations
 physically: "spins cannot follow the rapidly varying *B* field"

 $\mu(\omega) => 1$ at optical frequencies, $B(\omega) = H(\omega)$ $(k = 2\pi/\lambda \rightarrow 0)$

Energy dispersion of optical constants

In the x-ray regime, *n* is close to one and complex:

 $n(\omega) = 1 - \delta(\omega) + i\beta(\omega)$

 δ can be positive or negative !

Also, δ and β do depent on the magnetization !

Even though δ and β are small they can be measured accurately at modern synchrotrons

A combination of the M-E leads to the following wave equation *in the material* : $1 - 0^2 \mathbf{T}$

$$-\boldsymbol{\nabla}^{2}\boldsymbol{E} + \boldsymbol{\nabla}(\boldsymbol{\nabla}\boldsymbol{\cdot}\boldsymbol{E}) = -\frac{1}{c^{2}}\frac{\partial^{2}\boldsymbol{D}}{\partial t^{2}}$$

This is similar to the equation for the isotropic, constant ε case Substitute: $E(r,t) = E_0 e^{i\omega n \cdot r/c - i\omega t}$

Gives us the Fresnel equation:

$$\left[n^2\mathbf{1} - \boldsymbol{\epsilon} - \boldsymbol{n} : \boldsymbol{n}\right] \cdot \boldsymbol{E} = 0$$

The solution gives 2 \boldsymbol{n} in the material and the eigen modes E_0

Note: we used μ =1

Written in full (SI), it would be:

$$\left(n^2-rac{oldsymbol{\mu}oldsymbol{arepsilon}}{\mu_0arepsilon_0}-oldsymbol{n}:oldsymbol{n}
ight)oldsymbol{E}=0$$

 $(n:n)_{ii} = n_i n_i$

Fresnel equation, continued

The symmetry of ε tensor is an important ingredient for solving the Fresnel equation.

In short, one needs to know about the crystallographic and magnetic symmetry of the material !

Some examples for **non-magnetic** materials:

Cubic:
$$\vec{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{xx} & \varepsilon_{xx} \end{pmatrix}$$

(1 quantity) $\vec{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xy} \\ \varepsilon_{xy} & \varepsilon_{yy} & \varepsilon_{zz} \end{pmatrix}$
Tetragonal $\vec{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{zz} \\ \varepsilon_{xx} & \varepsilon_{xx} & \varepsilon_{zz} \end{pmatrix}$
(2 quantities) (uniaxial) $\vec{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{xy} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{xz} & \varepsilon_{yz} & \varepsilon_{zz} \end{pmatrix}$
(biaxial)

Example of Fresnel equation for magnetic medium

Dielectric tensor:

$$\boldsymbol{\epsilon} = \begin{pmatrix} \boldsymbol{\epsilon}_{\mathbf{x}\mathbf{x}} & \boldsymbol{\epsilon}_{\mathbf{x}\mathbf{y}} & \mathbf{0} \\ -\boldsymbol{\epsilon}_{\mathbf{x}\mathbf{y}} & \boldsymbol{\epsilon}_{\mathbf{x}\mathbf{x}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \boldsymbol{\epsilon}_{\mathbf{z}\mathbf{z}} \end{pmatrix}$$

Why? Consequence of magnetism!

Look at
$$\sigma$$
 tensor: $\epsilon(\omega) = \mathbf{1} + \frac{4\pi i}{\omega} \sigma(\omega)$

$$\varepsilon_{xy} = \frac{4\pi i}{\omega} \sigma_{xy}, \quad \sigma_{xy} \neq$$

0

because of the magnetism! Hall current, σ_{xy}

(SI units: $\epsilon(\omega) = \epsilon_0 \mathbf{I} + \frac{i\sigma(\omega)}{\omega}$)

Examples magnetic Fresnel equation, continued

$$n_{1,2}^2 \equiv n_{\pm}^2 = \varepsilon_{xx} \pm i\varepsilon_{xy}$$

Fresnel equation, magnetic case

Eigenmodes:

$$\begin{bmatrix} \pm i\varepsilon_{xy} & -\varepsilon_{xy} \\ +\varepsilon_{xy} & \pm i\varepsilon_{xy} \\ & -\varepsilon_{zz} \end{bmatrix} \bullet \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0 \Rightarrow \begin{bmatrix} \pm i & -1 \\ +1 & \pm i \end{bmatrix} \bullet \begin{pmatrix} E_x \\ E_y \end{pmatrix} = 0 \& E_z = 0,$$
$$\Rightarrow \begin{pmatrix} E_x \\ E_y \end{pmatrix}_{\pm} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm i \end{pmatrix} \qquad \text{(normalized eigenmodes!)}$$

Solutions are circularly polarized – waves (in the material):

$$\vec{E}_{\pm}(r,t) = \frac{1}{\sqrt{2}} (\vec{e}_x \pm i\vec{e}_y) \cdot e^{i\omega/c(n_{\pm}\cdot r) - i\omega t}$$

One circularly polarized wave with helicity + corresponds to n_+ , the other one with helicity - to n_-

This situation is called "magnetic circular dichroism", i.e. 2 colors $n_{\pm} = \frac{2\pi c}{\omega \lambda_{\pm}}$

(will apply this to XAS/XMCD in Lecture II)

Materials' boundary conditions

Experiments always require at least two different media

Next to the Fresnel equation (1) we must also know the "matching" conditions (2) at the boundaries !

These will follow (again) from the Maxwell equations

Continuity of temporal and spacial wave parts at interface 1) Snell's law 2) reflection/transmission coefficients

Convenient: Jones vector formulation:

2-dim. vector
$$\vec{E} = \begin{pmatrix} E_s \\ E_p \end{pmatrix}$$

Refresher: Snell's law

Continuity of temporal and spacial wave parts at interface z=0:

Reflection/transmission coefficients, Jones formulation

Definition of reflection matrix: (similar for transmission)

$$\begin{pmatrix} E_s^r \\ E_p^r \end{pmatrix} = \begin{pmatrix} r_{ss} & r_{sp} \\ r_{ps} & r_{pp} \end{pmatrix} \bullet \begin{pmatrix} E_s^i \\ E_p^i \end{pmatrix}$$

Here r_{sp} means: *p*-polarized light in, reflected as *s*-pol. light. The r_{sp} are magnetic (Fresnel) reflection coefficients

The reflection coefficients follow from the Maxwell equations.

Example: s-polarized light, scalar dielectric constant ε

$$\frac{\text{Calculation gives:}}{\sum_{s}^{i} E_{s}^{i}} \equiv r_{ss} = \frac{n_{i} \cos \theta_{i} - n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i} + n_{t} \cos \theta_{t}}$$
$$\frac{E_{s}^{t}}{E_{s}^{i}} \equiv t_{ss} = \frac{2n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i} + n_{t} \cos \theta_{t}}$$
Similarly for p-

polarized light

Note: $r_{ps} = 0$ here ! (no magnetism!)

The calculation of the Fresnel coefficients in the case of a magnetic material can be teadious!

(more in Lecture II)

Example: Magnetic reflection coefficients

Result for polar magnetization: $n_{\pm}^2 = \epsilon_{xx} \pm i\epsilon_{xy}\cos\phi_t^{\pm}$ (M || z-axis)

$$\begin{array}{lll} r_{ss} &=& \left(n_0 \cos \phi_{\rm i} - \bar{n} \cos \phi_{\rm t}\right) / \left(n_0 \cos \phi_{\rm i} + \bar{n} \cos \phi_{\rm t}\right) \,, \\ r_{pp} &=& \left(\bar{n} \cos \phi_{\rm i} - n_0 \cos \phi_{\rm t}\right) / \left(\bar{n} \cos \phi_{\rm i} + n_0 \cos \phi_{\rm t}\right) \,, \\ r_{ps} &=& \frac{-in_0 \left(n_+ - n_-\right) \cos \phi_{\rm i}}{\left(\bar{n} \cos \phi_{\rm t} + n_0 \cos \phi_{\rm i}\right) (\bar{n} \cos \phi_{\rm i} + n_0 \cos \phi_{\rm t}) \cos \phi_{\rm t}} \,, \\ r_{sp} &=& r_{ps} \,. \end{array}$$

Result for longitudinal magnetization:

Same, but: $r_{sp} \rightarrow -r_{ps}$

$$\boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_{\mathrm{xx}} & 0 & \epsilon_{\mathrm{xz}} \\ 0 & \epsilon_{\mathrm{yy}} & 0 \\ -\epsilon_{\mathrm{xz}} & 0 & \epsilon_{\mathrm{zz}} \end{pmatrix} \equiv \begin{pmatrix} \epsilon_1 & 0 & \epsilon_2 \\ 0 & \epsilon_1' & 0 \\ -\epsilon_2 & 0 & \epsilon_1 \end{pmatrix} \implies n_{\pm}^2 \approx \epsilon_1 \pm i\epsilon_2 \sin \phi_{\mathrm{t}}^{\pm}$$

(M || y-axis)

See: P.M. Oppeneer, in Handbook of Magnetic Materials, Vol. 13 (2001)

Spectroscopic quantities can be related to the materials' specific dielectric tensor ε (equivalently, σ)

$$r_{ss} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t} \longleftrightarrow \left[n^2 \mathbf{1} - \boldsymbol{\epsilon} - \boldsymbol{n} : \boldsymbol{n} \right] \cdot \boldsymbol{E} = 0$$
$$\boldsymbol{\epsilon}(\omega) = \mathbf{1} + \frac{4\pi i}{\omega} \boldsymbol{\sigma}(\omega)$$

Combine quantum theory of the solid with classical (external) E.M. fields as given by Maxwell's equations:

$$\vec{B}(\vec{r},t) = \vec{\nabla} \times \vec{A}(\vec{r},t), \quad \vec{E}(\vec{r},t) = -\partial \vec{A}(\vec{r},t) / \partial t$$
 Coulomb gauge

Use electronic structure theory to describe/compute \mathcal{E} (or, σ)

Complex many-electron problem – many particle Schrödinger equation

$$\hat{H} = \hat{T}_{e} + \hat{V}_{e-e} + \hat{V}_{e-ion} + \hat{V}_{ion-ion}$$
$$\hat{H}\Psi_{v_{1}...,v_{n}}(r_{1},...,r_{n};R_{1},...,R_{N}) = E_{v_{1}...,v_{n}}\Psi_{v_{1}...,v_{n}}(r_{1},...,r_{n};R_{1},...,R_{N})$$

$$\Psi_{v_1...v_n}(r_1,...,r_n;R_1,...,R_N)$$

Many-particle wave-function

Too difficult to solve!

Want an effective, non-interacting single electron picture

Ab initio density-functional theory

Complex manyelectron problem

$$\hat{H}\Psi_{\nu_{1}...\nu_{n}}(r_{1},...,r_{n};R_{1},...,R_{N}) = \\E_{\nu_{1}...\nu_{n}}\Psi_{\nu_{1}...\nu_{N}}(r_{1},...,r_{n};R_{1},...,R_{N})$$

$$\hat{H} = \hat{T}_{a} + \hat{V}_{a-a} + \hat{V}_{a-ion} + \hat{V}_{ion-ion}$$

Density functional theory (DFT):

Effective, non-interacting single electron problem $\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V[n(r)] + V_{xc}[n(r)] \end{bmatrix} \psi_i(r) = E_i \psi_i(r)$ $n(r) = \sum_i |\psi_i(r)|^2$ $\psi_i(r) \text{ selfconsistent solution}$

Kohn-Sham single electron equation, Kohn-Sham density

1) The mapping is exact and provides a unique total energy functional E[n]; the exact ground state energy is obtained as its minimum for the ground state density n_G .

exact!

2) There is an (not exactly known) exchange-correlation energy $E_{xc}[n]$, which defines the exchange-correlation potential $V_{xc}[n(r)] = \delta E_{xc}[n]/\delta n(r)$

Hohenberg-Kohn, Phys. Rev **136**, B864 (1964) Kohn-Sham, Phys. Rev. **140**, A1133 (1965)

(See Lecture S. Blügel)

Single particle, spin-density functional theory

Effective single-particle 2x2 potential (*with spin*):

$$V_{xc}(\vec{r}) = V_0(\vec{r})\mathbf{1} + \vec{B}_{xc}(\vec{r}) \cdot \hat{\vec{\sigma}}, \quad \vec{B}_{xc}(\vec{r}) = -\frac{\delta E_{xc}}{\delta \vec{m}(\vec{r})}$$

Effective Kohn-Sham Hamiltonian:
$$\hat{H} = \left[-\frac{\nabla^2}{2m} + V_{e,N}(\vec{r}) + V_0(\vec{r})\right]\mathbf{1} + \vec{B}_{xc}(\vec{r}) \cdot \hat{\vec{\sigma}} + \xi \hat{\vec{\ell}} \cdot \hat{\vec{\sigma}}$$

Spin-density (2x2): $n(\vec{r}) = \{n_0(\vec{r}) + \vec{m}(\vec{r}) \cdot \vec{\sigma}\}/2$ Spin-orbit coupling

Not yet fully relativistic; better is Kohn-Sham-Dirac equation to include all relativistic effects. $\begin{cases} n(\vec{r}) = n_{\uparrow}(\vec{r}) + n_{\downarrow}(\vec{r}) \\ m(\vec{r}) = \mu_B \left\{ n_{\uparrow}(\vec{r}) - n_{\downarrow}(\vec{r}) \right\} \end{cases}$

Combine effective Hamiltonian with classical fields

Classical (external) E.M. fields in Maxwell equations:

$$\vec{B}(\vec{r},t) = \vec{\nabla} \times \vec{A}(\vec{r},t), \quad \vec{E}(\vec{r},t) = -\partial \vec{A}(\vec{r},t) / \partial t$$

Coulomb gauge

With A(r,t) the vector potential

Combine with single-particle electron Hamiltonian:

 $\hat{H}_{0} = \left[-\frac{1}{2m} p^{2} + V(r) + V_{xc}(r) \right] \qquad \text{Use:} \qquad \hat{p} \Rightarrow \hat{p} - e\vec{A}$ $\implies \hat{H} = \left[-\frac{1}{2m} (\hat{p} - e\vec{A})^{2} + V(r) + V_{xc}(r) \right] \approx \left[-\frac{1}{2m} \hat{p}^{2} + V(r) + V_{xc}(r) \right] + \frac{e}{m} (\hat{p} \cdot \vec{A})$ $\qquad \text{Unperturbed } \mathsf{H}_{0} \qquad \text{Perturbation } \mathsf{H}'$

The light-matter interaction is given by $\hat{H} = \frac{e}{m}(\hat{\vec{p}} \cdot \vec{A}) = (\hat{\vec{j}} \cdot \vec{A})$

This can be rewritten as $\hat{H} = -e \ (\hat{\vec{r}} \cdot \vec{E})$

[Using that $A = (B \ge r)/2$ and (A.r) = 0]

For linear optics & magneto-optics: Compute effect of perturbation to first order in *E*

$$\boldsymbol{j}(\boldsymbol{k},\omega) = \boldsymbol{\sigma}(\boldsymbol{k},\omega) \boldsymbol{\cdot} \boldsymbol{E}(\boldsymbol{k},\omega)$$
Linear-orde

- Linear-order response function

Use perturbation theory or linear-response theory

The described effects will be linear in perturbing field (E or A). More work is needed to include non-linear optical effects!

SI	i	d	е	3	4
	-	~	-	~	

Peter, 6/2/2018

UPPSALA NIVERSITET Result of linear-response theory

Dielectric tensor/ Conductivity tensor
$$\begin{aligned} \epsilon(\omega) &= \mathbf{1} + \frac{4\pi i}{\omega} \,\boldsymbol{\sigma}(\omega) \end{aligned}$$
Conductivity is the response function to the *E*-field:
$$j_{\alpha}(t) &= \int_{-\infty}^{t} dt' \sigma_{\alpha\beta}(t-t') E_{\beta}(t') \\ \sum_{n=0}^{\infty} E(t) &= E e^{-i\omega t} \end{aligned}$$
Gives:
$$\begin{aligned} \sigma_{\alpha\beta}(\omega) &= -\frac{ie^{2}}{m^{2}\hbar V} \sum_{nn'} \frac{f(\epsilon_{n}) - f(\epsilon_{n'})}{\omega_{nn'}} \frac{\prod_{n'n}^{\alpha} \prod_{nn'}^{\beta}}{\omega - \omega_{nn'} + i/\tau} \end{aligned}$$
Fermi function
And:
$$\begin{aligned} \prod_{nn'}^{\alpha} &\equiv \langle n|p_{\alpha}|n' \rangle \\ \hbar \omega_{n'n} &\equiv \epsilon_{n'} - \epsilon_{n} \end{aligned}$$
Single particle eigenstates & eigenenergies

For a derivation, see the Appendix!

Electronic structure picture

Expression sums contributions from all optical transitions, with 1-photon in, and 1-photon out

$$k = \frac{2\pi}{\lambda} \Longrightarrow k \quad small$$

Dipole transitions:

$$\Delta l = \pm 1, \quad \Delta m = \pm 1, 0$$

Due to matrix elements

Sum all optical transitions

Expressions for dielectric tensor

Use relation between tensors:

$$\boldsymbol{\epsilon}(\omega) = \mathbf{1} + \frac{4\pi i}{\omega} \, \boldsymbol{\sigma}(\omega)$$

$$\mathbf{m}[\varepsilon_{xx}(\omega)] = \frac{4\pi^2 e^2}{m^2 V \hbar \omega^2} \sum_{n} \sum_{n'} \operatorname{Re}\{\Pi_{n'n}^x \Pi_{nn'}^x\} \delta(\omega - \omega_{nn'})$$

$$\operatorname{Re}[\varepsilon_{xy}(\omega)] = \frac{4\pi^{2}e^{2}}{m^{2}V\hbar\omega^{2}} \sum_{n} \sum_{n'} \operatorname{Im}\{\Pi_{n'n}^{x}\Pi_{nn'}^{y}\}\delta(\omega - \omega_{nn'})$$

$$\underset{un. \ occ.}{\operatorname{for} 1/\tau \to 0}$$

Thus, we have an electronic structure expression for ϵ , from which we can in principle compute all spectra!

- 1) Examples of compute x-ray magnetic spectra come in Lecture II.
- 2) These equations are equivalent to those of the Fermi's golden rule.

UPPSALA

The comparison *ab initio* theory – experiment is often very good!

Importance of precise transition matrix elements

Limitations of the single-particle approach

calculations 3d⁸

Multiplet structures due atomic multi-electron configurations not included in 1-particle model

De Groot, Coord. Chem. Rev. **249**, 31 (2005)

Atomic multiplets with multiconfigurational SCF approach ("active space")

Josefsson et al, JPCL 3, 3565 (2012)

Other approaches beyond effective single-e theory

Improvement especially for non-metallic materials

(E. Shirley, J.J. Rehr) 41

The 3rd level is a next step, where the photon is a *quantized field*

$$\hat{H} = K_e + V_{e-e} + V_{e-ion} + V_{ion-ion} + \sum \hbar \omega \,\hat{a}^+_{k\lambda} \hat{a}^-_{k\lambda} - \int d\vec{r} \Big[\vec{j}(\vec{r},t) \cdot \vec{A}^{tot}(\vec{r},t) \Big]$$

in 2nd quantization.

The vector potential is not just the external one, but is renormalized due to the electron response (feedback effect on the fields or "photon dressing") $(1 e^{2})$

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\vec{A}(\vec{r},t) = \frac{4\pi}{c}\vec{J}(\vec{r},t)$$

Gives set of coupled Maxwell-Kohn-Sham equations that need to be solved selfconsistently!

$$\vec{A}(\vec{r},t) \propto \int d\vec{k} \sum_{\lambda} \frac{1}{\sqrt{2\omega_k}} \left[\hat{a}_k \varepsilon_{\lambda} e^{ik\cdot r - i\alpha t} + \hat{a}_k^+ \varepsilon_{\lambda}^* e^{-ik\cdot r + i\alpha t} \right]$$

Example: small molecule in an optical cavity (Fick et al, ACS Photon. **5**, 992 (2018)

Most basic principles of (macroscopic) light-matter interaction are given by the Maxwell-Fresnel theory

Combining classical Maxwell fields with *ab initio* quantum theory (effective single particle theory) gives often quite *accurate* valence band and X-ray optical spectra of many materials

(*Ab initio DFT* approache gives reasonable description of electronic structure properties for relatively low computational costs)

Current frontlines:

- 1) Beyond DFT single-particle theory to include many-particle interactions in the excited state
- 2) Quantized photon fields coupled selfconsistently to DFT Kohn-Sham equations

Here we briefly go through some steps of the Kubo theory derivation:

Density matrix definition:
$$ho(t) = e^{-\beta H}/Z$$
 $Z = Tr \{exp(-\beta H)\}$ (partition function)

Expectation value of operator \boldsymbol{o} : $\langle \mathcal{O}(t) \rangle = \text{Tr} \{ \rho(t) \mathcal{O} \}$

(Schrödinger picture)

For the time-dependence of any expectation value of operator *O*:

$$\frac{d\rho(t)}{dt} = \frac{1}{i\hbar} \big[H(t), \rho(t) \big]$$

Linear-approximation in H_1 :

Linear-approximation in
$$\mathcal{H}_{1}$$
: $\rho^{i}(t) \approx \rho_{0} + \frac{1}{i\hbar} \int_{-\infty}^{t} dt' [\mathcal{H}_{1}^{i}(t'), \rho_{0}]$
 $A^{i}(t) = e^{iH_{0}t/\hbar} A_{s} e^{-iH_{0}t/\hbar}, \quad |\psi(t)\rangle^{i} = e^{iH_{0}t/\hbar} |\psi(t)\rangle_{s}$ (interaction picture)

+

Linear response theory, continued

For any operator *O* we get the time-dependence induced through the perturbing Hamiltonian:

$$\langle \mathcal{O}(t) \rangle \approx \langle \mathcal{O} \rangle_0 + \frac{1}{i\hbar} \int_{-\infty}^t dt' \langle \left[\mathcal{O}^{\mathbf{i}}(t), H_1^{\mathbf{i}}(t') \right] \rangle_0$$

If you want details, see the appendix!

(Ensamble average with respect to the unperturbed states, interaction picture)

This is already linear-response theory:

Note: $\tau = t - t'$, response is always causal

With:
$$H_1(t) = BF(t)$$

$$\langle \mathcal{O}(t) \rangle \approx \int_{-\infty}^{t} dt' R(t-t') F(t')$$

"response function"

$$\label{eq:R} \begin{split} R(\tau) &= \frac{1}{i\hbar} \theta(\tau) \big\langle \left[\mathcal{O}^{\rm i}(\tau), B^{\rm i}(0) \right] \big\rangle_0 \end{split}$$

Conductivity response to EM field

Conductivity is the response function to the E-field:

$$j_{\alpha}(t) = \int_{-\infty}^{t} dt' \sigma_{\alpha\beta}(t - t') E_{\beta}(t')$$
$$\boldsymbol{E}(t) = \boldsymbol{E} e^{-i\omega t}$$

The perturbing hamiltonian can be written as:

can be written as:
$$\vec{J} = -e \sum_{i} \dot{\vec{r_i}}$$

$$H_1 = e \sum_i \boldsymbol{r}_i \cdot \boldsymbol{E}(t) \equiv B e^{-i\omega^+ t}$$
$$\omega^+ \equiv \omega + i\delta$$

Thus, we have to work out:
$$J_c$$

$$J_{\alpha}(t) = \frac{1}{i\hbar} \int_{-\infty}^{t} dt' \left\langle \left[J_{\alpha}^{i}(t), B^{i}(t') \right] \right\rangle_{0} e^{-i\omega^{+}t'}$$

PI for total current J:

$$J_{\alpha}(t) = \frac{1}{i\hbar} \left\langle \left[J_{\alpha}^{i}(t), B^{i}(t) \right] \right\rangle_{0} \frac{e^{-i\omega^{+}t}}{-i\omega^{+}} - \frac{1}{i\hbar} \int_{-\infty}^{t} dt' \left\langle \left[J_{\alpha}^{i}(t), \dot{B}^{i}(t') \right] \right\rangle_{0} \frac{e^{-i\omega^{+}t'}}{-i\omega^{+}}$$

Conductivity response

With:
$$\dot{B}^{i}(t) = e \sum_{i} \dot{r}^{i}_{i} \cdot E = -J^{i}(t) \cdot E$$

And:
$$\left\langle \left[J^{i}_{\alpha}(t), B^{i}(t) \right] \right\rangle_{0} = -e^{2} \sum_{ij} \left\langle \left[\dot{r}_{i,\alpha}(0), r_{j,\beta}(0) \right] \right\rangle_{0} E_{\beta} = \frac{ie^{2}\hbar}{m} N \delta_{\alpha\beta} E_{\beta}$$

Comparing with the equation for σ gives:

$$\sigma_{\alpha\beta}(t-t') = \frac{ie^2 N \delta_{\alpha\beta}}{Vm\omega^+} \delta(t-t') + \frac{1}{V\hbar\omega^+} \left\langle \left[J_\alpha(t-t'), J_\beta(0) \right] \right\rangle_0$$

Conductivity response, continued

Fourier transform:

$$\sigma_{\alpha\beta}(\omega) = \frac{ie^2 N \delta_{\alpha\beta}}{Vm\omega^+} + \frac{1}{V\hbar\omega^+} \int_{-\infty}^{\infty} d\tau \,\theta(\tau) \big\langle \big[J_{\alpha}(\tau), J_{\beta}(0) \big] \big\rangle_0 \,\mathrm{e}^{\,i\omega^+\tau}$$

$$\sigma_{\alpha\beta}(\omega) = \frac{ie^2 N \delta_{\alpha\beta}}{Vm\omega^+} + \frac{i}{V\omega^+} \sum_{\kappa\kappa'} \frac{1}{Z} \Big[e^{-E_{\kappa'}/kT} - e^{-E_{\kappa'}/kT} \Big] \frac{\langle\kappa|J_{\alpha}|\kappa'\rangle\langle\kappa'|J_{\beta}|\kappa\rangle}{\hbar\omega^+ - (E_{\kappa'} - E_{\kappa})}$$

With:
$$\vec{J} = -e\sum_{i} \vec{v}_{i} = -\frac{e}{m}\sum_{i} \vec{p}_{i} = -\frac{e}{m}\sum_{i} (-i\hbar)\vec{\nabla}_{i}$$

Single particle formulation

Rewrite for single particle states:

$$\sigma_{\alpha\beta}(\omega) = \frac{ie^2 N \delta_{\alpha\beta}}{Vm\omega^+} + \frac{ie^2}{m^2 V \hbar \omega^+} \sum_{nn'} \frac{f(\epsilon_n) - f(\epsilon_{n'})}{\omega^+ - \omega_{n'n}} \Pi^{\alpha}_{nn'} \Pi^{\beta}_{n'n}$$

With: $\Pi_{nn'}^{\alpha} \equiv \langle n | p_{\alpha} | n' \rangle$ $\hbar \omega_{n'n} \equiv \epsilon_{n'} - \epsilon_n$

Can be written as:

$$\sigma_{\alpha\beta}(\omega) = -\frac{ie^2}{m^2 \hbar V} \sum_{nn'} \frac{f(\epsilon_n) - f(\epsilon_{n'})}{\omega_{nn'}} \frac{\Pi_{n'n}^{\alpha} \Pi_{nn'}^{\beta}}{\omega^+ - \omega_{nn'}}$$
Use: $N\delta_{\alpha\beta} = \sum_n f(\epsilon_n) \delta_{\alpha\beta} = \sum_n f(\epsilon_n) \langle n | [r_{\alpha}, p_{\beta}] | n \rangle \frac{1}{i\hbar}$ Fermi function

$$= \sum_{nn'} \frac{f(\epsilon_n) - f(\epsilon_{n'})}{i\hbar} r_{nn'}^{\alpha} \Pi_{n'n}^{\beta}$$

$$= -\frac{1}{m\hbar} \sum_{nn'} \frac{f(\epsilon_n) - f(\epsilon_{n'})}{\omega_{nn'}} \Pi_{nn'}^{\alpha} \Pi_{n'n}^{\beta}.$$

Appendix II: Transition matrix elements

The matrix elements have special properties, called selection rules

Rewrite:
$$\Pi = \frac{im}{\hbar} [H, r] \longrightarrow \Pi_{nn'} = \frac{im}{\hbar} (\epsilon_n - \epsilon_{n'}) \langle \psi_n | r | \psi_{n'} \rangle$$

and consider an atomic basis: $\psi_{n\bar{k}}(\vec{r}) \sim \sum_{lm} C_{lm}^n(\vec{k}) f_{lm}^n(r) Y_{lm}(\hat{r})$
This leads to: $\langle \psi_n | \vec{r} | \psi_{n'} \rangle \rightarrow \int_S d\Omega Y_{lm}^*(\hat{r}) \hat{r} Y_{l'm'}(\hat{r})$
 $Y_{l'\pm l,m'\pm l,0} \rightarrow l = l'\pm 1, \quad m = m'\pm 1,0$
Dipolar transitions have: $\Delta l = \pm 1, \quad \Delta m = \pm 1,0$
Example:
2p states -> 3d states,
4s states (L-edge)
$$\varepsilon_1 = \varepsilon_{xx} - i\varepsilon_{xy} \Rightarrow \Delta m = -1$$

 $\varepsilon_0 = \varepsilon_{\parallel} \Rightarrow \Delta m = 0$

51

$$\mu(\omega) \propto \sum_{j} \left| \left\langle \psi_{j} \left| \vec{\varepsilon} \cdot \vec{r} \right| \psi_{i} \right\rangle \right|^{2} \delta(E_{f} - E_{i} - \hbar \omega)$$

From Fermi's golden rule $W_{i \to f} = \frac{2\pi}{\hbar} |M|^2 \delta(E_f - E_i - \hbar\omega)$

with
$$M = \left\langle \psi_f \left| H' \right| \psi_i \right\rangle = \int \psi_f^*(\vec{r}) H'(\vec{r}) \psi_i(\vec{r}) d\vec{r}$$

and $H' = e(\vec{\varepsilon} \cdot \vec{r})e^{i\vec{k} \cdot \vec{r}}$ (perturbation due to radiation field)

Practicals' problem:

- 1) Material with magnetization in the scattering plane
- 2) Lin. pol. light *E*-vector at 45° to the magnetization
- 3) Consider R(+M)-R(-M)

Use the reflection coefficients to show that R(+M)-R(-M) is a measure of the magnetization and derive an expression for the magn. asymmetry:

$$A = \frac{R(+M) - R(-M)}{R(M) + R(-M)}$$