
1

Light-Matter InteractionsLight-Matter Interactions

Peter Oppeneer                

Department of Physics and Astronomy
Uppsala University, S-751 20 Uppsala, Sweden



Outline – Lecture I – General Overview
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 Introduction – phenomenology

 Electronic information vs. structural information 

• Electronic structure picture of materials

 Theory/understanding of light-matter interactions

• The classical fields’ description

• Quantum theory with classical fields

• Complete quantum field theory



Outline – Lecture II – Light-magnetism Interaction
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 Phenomenology of magnetic spectroscopies

 Electronic structure theory, linear-response theory

 Theory/understanding of magnetic spectroscopies 

• Optical regime

• Ultraviolet and soft X-ray regime
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Phenomenology – Types of light-matter interactions

Gain information on two main information areas: 
electronic & magnetic structure and structural 

information

(with many subdivisions each)

X-ray light

reflected light

Transmitted, 
absorbed, 
diffracted light

Emitted e-



Pure structural information
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X-ray diffraction Positions (crystallography, biomolecules, phonons, etc)  

Often very hard x-rays !



Electronic structure information
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Excitation by photon of one electronic state to another one, provides 
information on the materials’ electronic structure

FE

Core level

Valence band

Free electron 
states

E

photon

Can measure in 
photon-in / photon-out 
set-up, or
photon-in / electron-out

Information on binding 
energies, unoccupied 
states, spin- and orbital 
properties, electron 
distributions, quasi-particles 
etc.



Detailed electronic structure information
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High-resolution Angular Resolved Photoemission Spectroscopy (ARPES)

Lee et al, Nature 515, 245 (2014)

Observation of shadow bands FeSe/STO 
Rebec et al, PRL 118, 067002 (2017)

Superconducting gap FeSe/SrTiO3



Further example: X-ray absorption
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Absorption coefficient m

Sample
Beer-Lambert law

3L

2L

Detailed understanding

Resonant excitation of dipole 
allowed transitions at edges

dpp 32;2 2/32/1 

3d

2/12 p
2/32 p

3L

2L

Transmission



Core-level absorption edges
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Basic electronic structure:

Positions of the core levels  
(here of a 4p element)

Spin-orbit split states ~16 eV 

SO splitting of core states:

021

121








sj

sj

Increase in absorption at each edge

(3d element)



Magnetic information - XAS of ferromagnetic materials
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XMCD

X-ray magnetic circular dichroism

Provides a powerful tool to measure element-selectively 
the atomic magnetic moment
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Fundamentals of Light – Matter Theory
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Theory/understanding of light-matter interactions – 3 levels

• The classical fields’ description

• Quantum theory with classical fields

• Complete quantum field theory

First level:

Maxwell theory and Fresnel theory (classical fields), macroscopic 
materials’ quantities (no quantum physics) 

Second level:

Maxwell theory and Fresnel theory (classical fields), materials’ quantities 
given by quantum theory for materials

Third level:

Quantized photon fields, coupled to quantum theory for materials    
(i.e.,  2nd quantization of photon fields)
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First level: Maxwell-Fresnel theory

To describe the interaction between matter and the E-M wave field there 
are several ingredients:

(1) eigenwaves in vacuum & material and (2) the boundary conditions

Both (1) & (2) follow from 
the Maxwell equations:

(in CKS units!)

Materials equations are also needed:

D : displacement field 
E : electrical field       
B : magnetic induction 
H : magnetic field

j : current density      
r : charge density           
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Materials relations

Just as important are the materials relationships :

With the material specific(!) tensors:

e : permittivity tensor

m : permeability tensor

s : conductivity tensor

And: P : electrical polarization

M : magnetization

These equations are valid 
for constant e, m, and s. 
This is usually not the case!

Note: we use here e0=1, m0=1

Note: materials fields are 
not uniquely defined.
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A closer look at the materials relationships

If we don´t have constant material´s tensors, things become nastier when 
we consider the full dependence on the space and time coordinates: 

(homogeneous  
approximation!)

But, going to reciprocal space makes life easy again !

With the material 
specific(!) tensors:

e : permittivity tensor

m : permeability tensor

s : conductivity tensor
And: 

 tPjind .
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Consequences of Maxwell equations

Solutions of the M.E. for isotropic medium: transverse plane E-M waves:

Light is a transverse E-M wave
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Index of refraction

The plane-wave solution is possible under the condition:

2
2

2 em
c

k B
c

BkkE
c

Ekk 2
2

2
2

)(,)( emem


Index of refraction: vcnn
kc

n  ,em


Dispersion relation

1) For materials e, m are complex n is complex & vector

Remarks:

2) The ”spins cannot follow the rapid moving H field” m =1

)()( eem n

Nonetheless, all magnetic information is acounted for (see later)

(Dispersion relation)



Measured relative permeability m() 
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Kittel, Phys. Rev. 70, 281 (1946)

m() => 1 at optical frequencies, 

1 eV = 0.25 1015 Hz

Ni

1) no unique separation between D and H in the Maxwell equations 
2) physically: „spins cannot follow the rapidly varying B field“

Arguments

)02(  k
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Energy dispersion of optical constants

)()(1)(  in 

In the x-ray regime, n is close to one and complex:

 can be positive or 
negative !

Also,  and  do depent 
on the magnetization !

Eventhough  and   are 
small they can be 
measured accurately at 
modern synchrotrons
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Fresnel equation for the material

A combination of the M-E leads to the following wave equation in 
the material :

This is similar to the equation for the isotropic, constant e case

Substitute:

Gives us the Fresnel equation:

The solution gives 2 n in the 
material and the eigen modes E0 jiij nnnn ):(
Note: we used m=1

Written in full (SI), it would be:



20

Fresnel equation, continued

The symmetry of e tensor is an important ingredient for solving the 
Fresnel equation.   

In short, one needs to know about the crystallographic and magnetic 
symmetry of the material ! 
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eTriclinic:

(1 quantity)

(2 quantities)

(4 quantities)

(6 quantities)

(biaxial)

(biaxial)

Some examples for non-magnetic materials:
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Example of Fresnel equation for magnetic medium

M

k

E
z

x
y

Magnetic medium, M||z:
Dielectric tensor:

Why? Consequence of magnetism!

Look at s tensor:

because of the magnetism!

Hall current, sxy

0,
4

 xyxyxy

i ss

e

(SI units:   ) 
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Examples magnetic Fresnel equation, continued

z

x

y

Hall current sxy

Note: sxy = -syx

xyyx ee Thus:

M

n2 exx exy

exy n2 exx

n2 ezz  n2

 

 

 
 
 

 

 

 
 
 

 0

Solve Fresnel equation:

ezz[(n
2 exx )2  exy

2 ]  0

 (n2 exx )2  exy
2

 n2  exx  iexy

There are two solutions:

xyxx inn ee  
22

2,1
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Fresnel equation, magnetic case

Eigenmodes:
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
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(normalized eigenmodes!)

Solutions are circularly polarized 
waves (in the material):

tirnci
yx eeietrE

 


 )(/
)(

2

1
),(

One circularly polarized wave with helicity + corresponds to n+, 
the other one with helicity - to n-

This situation is called ”magnetic circular dichroism”, i.e. 2 colors


 


c
n

2

(will apply this to XAS/XMCD in Lecture II)
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Materials´ boundary conditions

Experiments always require at 
least two different media

Next to the Fresnel equation (1) 
we must also know the „matching“ 
conditions (2) at the boundaries !

M

R

T These will follow (again) from 
the Maxwell equations

Continuity of temporal and spacial wave parts at interface   1) Snell´s law
2) reflection/transmission coefficients

Ep

Es

Convenient: Jones vector formulation:











p

s

E

E
E2-dim. vector
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Refresher: Snell´s law
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Continuity of temporal and spacial wave parts at interface z=0:
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Reflection/transmission coefficients, Jones formulation

Definition of reflection matrix:

(similar for transmission) 
















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
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
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
i
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i
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spss

r
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r
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E

E

rr

rr

E

E

Here rsp means: p-polarized light in, reflected as s-pol. light. 
The rsp are magnetic (Fresnel) reflection coefficients

The reflection coefficients follow from the Maxwell equations.

Example: s-polarized light, scalar dielectric constant e

Calculation gives:

ttii

ii
ssi

s

t
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ttii

ttii
ssi
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coscos

cos2

coscos

coscos









Note: rps= 0 here ! (no magnetism!)

Similarly for p-
polarized light
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Magnetic Fresnel coefficients

The calculation of the Fresnel coefficients in the case of a magnetic 
material can be teadious! 

polar, 
longitudinal

transverse












ppppps

spss

rrr

rr
r


Polar, longitudinal: 

0,0,  pppssp rrr

Transverse:

0,0,  pppssp rrr

x

z
y

(more in Lecture II)
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Example: Magnetic reflection coefficients

Result for polar magnetization:

Result for longitudinal magnetization: Same, but: pssp rr 

(M || y-axis)

(M || z-axis)

See: P.M. Oppeneer, in Handbook of 
Magnetic Materials, Vol. 13 (2001)



Second level – Quantum theory & classical fields
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Combine quantum theory of the solid with classical (external) E.M. 
fields as given by Maxwell’s equations:

Spectroscopic quantities can be related to the materials’ 
specific dielectric tensor e (equivalently, s)

ttrAtrEtrAtrB  ),(),(,),(),(


Coulomb gauge

Use electronic structure theory to describe/compute e (or, s)

ttii

ttii
ss nn

nn
r

qq
qq

coscos

coscos








Electronic structure theory
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Complex many-electron problem – many particle Schrödinger equation

),...,;,...,(),...,;,...,(ˆ
11........11.... 111 NnNn RRrrERRrrH

nnn  

ionionioneeee VVVTH   ˆˆˆˆˆ

Too difficult to solve! 

Many-particle wave-function

),...,;,...,( 11...1 Nn RRrr
n

 Want an effective, non-interacting 
single electron picture

3d

2/12 p
2/32 p



Ab initio density-functional theory
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Complex many-
electron problem

),,;,,(

),,;,,(ˆ

11.......

11...

11

1

Nn

Nn

RRrrE

RRrrH

Nn

n













Ĥ  T̂e  V̂ee  V̂eion  V̂ionion

Effective, non-interacting 
single electron problem

exact!

n(r)  |yii
å (r) |2

Kohn-Sham single electron equation, 
Kohn-Sham densityDensity functional theory (DFT):

1) The mapping is exact and provides a unique total energy functional E [n]; the 
exact ground state energy is obtained as its minimum for the ground state density nG.

selfconsistent solutionyi (r)

Hohenberg-Kohn, Phys. Rev 136, B864 (1964)

Kohn-Sham, Phys. Rev. 140, A1133 (1965)

2) There is an (not exactly known) exchange-correlation energy Exc [n], which defines 
the exchange-correlation potential Vxc[n(r)]  Exc[n] n(r)

(See Lecture S. Blügel)
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Single particle, spin-density functional theory
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


s 

Effective Kohn-Sham Hamiltonian:

Not yet fully relativistic; better is Kohn-Sham-
Dirac equation to include all relativistic effects.

Exchange field

Spin-orbit coupling
2/})(1)({)( 0 s

 rmrnrn
Spin-density (2x2): 
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Combine effective Hamiltonian with classical fields
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Classical (external) E.M. fields in Maxwell equations:

ttrAtrEtrAtrB  ),(),(,),(),(


Coulomb gauge

With A(r,t)  the vector potential

Combine with single-particle electron Hamiltonian:
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Perturbation H’Unperturbed H0



Perturbation treatment of light-matter interaction
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The light-matter interaction is given by )ˆ()ˆ('ˆ AjAp
m

e
H




This can be rewritten as )ˆ('ˆ EreH




[Using that A= (B x r)/2 and (A.r) =0 ]

For linear optics & magneto-optics: 
Compute effect of perturbation to first order in E

Use perturbation theory or linear-response theory 
The described effects will be linear in perturbing field (E or A).  
More work is needed to include non-linear optical effects!

Linear-order response function

P1



Slide 34

P1 Peter, 6/2/2018



Result of linear-response theory
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Dielectric tensor/ Conductivity tensor

Conductivity is the response 
function to the E -field:

Gives:

And:

Fermi function

For a derivation, see the Appendix!

Single particle 
eigenstates & 
eigenenergies



Electronic structure picture
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Expression sums 
contributions from all 
optical transitions, 
with 1-photon in,      
and 1-photon out

smallkk 

2

Dipole transitions:

Due to matrix 
elements

0,1,1  ml

Sum all optical transitions



Expressions for dielectric tensor
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Thus, we have an electronic structure expression for e,
from which we can in principle compute all spectra!

2) These equations are equivalent to those of the Fermi´s golden rule.

Use relation between tensors:

(for 1/t -> 0)

1) Examples of compute x-ray magnetic spectra come in Lecture II.



Some examples ...
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theory

The comparison ab initio theory –
experiment is often very good!

Importance of precise 
transition matrix elements



Limitations of the single-particle approach
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Multiplet structures due atomic multi-electron 
configurations not included in 1-particle model

Single-ion 
calculations 3d8

De Groot, Coord. Chem. 
Rev.  249,  31 (2005)

NiO



To go beyond these limitations
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Atomic multiplets with multiconfigurational SCF approach 
(”active space”)

Josefsson et al, JPCL 3, 3565 (2012)



Other approaches beyond effective single-e theory
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1) Dyson equation:
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GW self-energy (accounts for many-body
electron-electron interaction effects)

electron state energy, wave function

2) With explicit core-hole interaction:
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core-hole effect

electron-core hole Bethe-Salpeter equation

Improvement especially for non-metallic materials (E. Shirley, J.J. Rehr)



3rd level – quantized photon field
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The 3rd level is a next step, where the photon is a quantized field
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The vector potential is not just the external one, but is renormalized 
due to the electron response (feedback effect on the fields or ”photon 
dressing”)

Gives set of coupled Maxwell-Kohn-Sham equations that need to 
be solved selfconsistently!

in 2nd quantization. 
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Example: small molecule in an optical cavity 
(Fick et al,  ACS Photon. 5, 992 (2018)



Summarizing light-matter interaction
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Combining classical Maxwell fields with ab initio quantum theory 
(effective single particle theory) gives often quite accurate valence 
band and X-ray optical spectra of many materials

(Ab initio DFT approache gives reasonable description of electronic 
structure properties for relatively low computational costs)

Most basic principles of (macroscopic) light-matter interaction are 
given by the Maxwell-Fresnel theory 

Current frontlines: 
1) Beyond DFT single-particle theory to include many-particle 

interactions in the excited state
2) Quantized photon fields coupled selfconsistently to DFT Kohn-Sham 

equations 
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Appendix I: Linear response theory

Density matrix definition:
(partition function)

For the time-dependence of any 
expectation value of operator O:

Linear-approximation in H1:

Here we briefly go through some steps of the Kubo theory derivation:

Expectation value of operator O:

(interaction picture)
s

tiHitiH
s

tiHi teteAetA )()(,)( /// 000 yy   

(Schrödinger picture)



46

Linear response theory, continued

This is already linear-response theory: 

(Ensamble average with respect to the 
unperturbed states, interaction picture)

For any operator O we get the 
time-dependence induced through 
the perturbing Hamiltonian:

With:
„response function“

Note: t = t-t´, response is always causal

If you want details, 
see the appendix!
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Conductivity response to EM field

Conductivity is the response 
function to the E-field:

The perturbing hamiltonian 
can be written as:

Thus, we have to work out:

PI for total current J :

å
i

ireJ 

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Conductivity response

With:

And:

Comparing with the equation for s gives:
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Conductivity response, continued

Fourier transform:

ååå 
i

i
i

i
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m

e
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m

e
veJ





)(With:
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Single particle formulation

Rewrite for single particle states:

With:

Can be written as:

Use: Fermi function
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Appendix II: Transition matrix elements

The matrix elements have special properties, called selection rules

Rewrite:

and consider an atomic basis: )ˆ()()(~)( rYrfkCr lm
lm

n
lm

n

kn lmå


y

This leads to: )ˆ(ˆ)ˆ(|| ''
*

' rYrrYdr
S

mlnn lm yy 

0,1',1'0,1',1'  mmllY ml

Dipolar transitions have: 0,1,1  ml

Example:

2p states -> 3d states, 
4s states (L-edge)

0

1

1

||0 









m

mi

mi

xyxx

xyxx

ee

eee

eee
Selection rules on m :



Appendix III: Fermi’s golden rule
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)()(
2

yeym 


 å if
j

ij EEr

)(
2 2 




 iffi EEMW

rdrrHrHM ifif


)()(')(' * yyyy 

From Fermi’s golden rule

with

(perturbation due to radiation field) rkiereH
  )(' eand
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Practicals’ problem:

1) Material with magnetization 
in the scattering plane

2) Lin. pol. light E-vector at 45°
to the magnetization

3) Consider R(+M)-R(-M)

Use the reflection coefficients to show that R(+M)-R(-M) is a 
measure of the magnetization and derive an expression for 
the magn. asymmetry:

)()(

)()(

MRMR

MRMR
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

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