

Ultrafast Spin Dynamics in Ferromagnetic Nickel

E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot

Institut de Physique et Chimie des Matériaux de Strasbourg, Unité Mixte 380046 CNRS-ULP-EHICS, 23, rue du Loess, 67037 Strasbourg Cedex, France (Received 17 October 1995)

Éric Beaurepaire 28.10.1959 – 24.04.2018

Jean-Yves Bigot 29.02.1956 – 02.05.2018

Ultrafast Spin Dynamics in Ferromagnetic Nickel

Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses

E. Beaurepaire^{a)}

IPCMS (UMR 7504 CNRS-ULP), 23 rue du Loess, BP43, F-67034 Strasbourg Cedex 2, France

G. M. Turner, S. M. Harrel, and M. C. Beard

Yale University, Chemistry Department 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520-8107

J.-Y. Bigot

IPCMS (UMR 7504 CNRS-ULP), 23 rue du Loess, BP43, F-67034 Strasbourg Cedex 2, France

C. A. Schmuttenmaer^{a)}

Yale University, Chemistry Department 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520-8107

Femtosecond Spectrotemporal Magneto-optics

J.-Y. Bigot,* L. Guidoni, E. Beaurepaire, and P. N. Saeta[†] Institut de Physique et Chimie des Matériaux de Strasbourg, Unité Mixte CNRS-ULP-ECPM, 23 rue du Loess, B.P. 43, 67034 Strasbourg Cedex, France (Received 31 October 2003; published 13 August 2004)

A new method to measure and analyze the time and spectrally resolved polarimetric response of magnetic materials is presented. It allows us to study the ultrafast magnetization dynamics of a CoPt₃ ferromagnetic film. The analysis of the pump-induced rotation and ellipticity detected by a broad spectrum probe beam shows that magneto-optical signals predominantly reflect the spin dynamics in ferromagnets.

Coherent ultrafast magnetism induced by femtosecond laser pulses

- Radboud University

LETTERS

Distinguishing the ultrafast dynamics of spin and orbital moments in solids

C. Boeglin¹, E. Beaurepaire¹, V. Halté¹, V. López-Flores¹, C. Stamm², N. Pontius², H. A. Dürr²† & J.-Y. Bigot¹

ESM Krakow - September 2018

Only laser pulses can be fast enough!

Benchmark: 180° (or 90°) switching reverse in <10⁻¹⁰ s, keep stable for 10⁸ s

Radboud University

Did it switch? Interpretation of the data...

ESM Krakow - September 2018

Part 1: classification of laser-induced effects

Part 2: the switching as such

Effects of the laser pulse: classification

I. Thermal effects:

change of M is a result of change of T

Laser-induced collapse of magnetization

Radboud University

12 ESM Krakow - September 2018

3T model and derivatives

Koopmans et al, Nature Mater. 9, 259 (2010)

Radboud University

Effects of the laser pulse: classification

II. Nonthermal photo-magnetic effects: based on photon absorption

Photo-magnetic anisotropy in garnets

Effects of the laser pulse: classification

III. Nonthermal opto-magnetic effects: do not require absorption

Inverse Faraday effect

$$\Phi = \varepsilon \varepsilon_0 E(\omega) E^*(\omega)$$

$$H(0) = -\frac{1}{\mu_0} \frac{\partial \Phi}{\partial M(0)} = -\frac{\varepsilon_0}{\mu_0} E(\omega) E^*(\omega) \frac{\partial \varepsilon}{\partial M}$$

$$\hat{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & -i\alpha M & 0 \\ +i\alpha M & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} + O(M^2) \end{pmatrix}$$

$$\mathbf{H}(0) = \frac{\varepsilon_0}{\mu_0} \alpha \left[\mathbf{E}(\omega) \times \mathbf{E}^*(\omega) \right]$$

Pitaevskii, Sov. Phys. JETP **12**, 1008 (1961). van der Ziel Phys. Rev. Lett. **15**, 190 (1965).

Inverse Faraday effect to excite spin dynamics

Effects of the laser pulse: summary

- . Thermal effects: change of M is a result of change of T
- II. Nonthermal photo-magnetic effects: based on photon absorption *displacive effect*

20

*

III. Nonthermal opto-magnetic effects: do not require absorption *impulsive effect*

Part 1: classification of laser-induced effects

Part 2: the switching as such

1. Switching based on thermal effects

Ferrimagnetic RE-TM alloys & multilayers (e.g. GdFeCo)

Toggle switching in GdFeCo

Each next image - a single unpolarized laser pulse

Radboud University

no domain wall motion, just reversal of the whole pattern

Le Guyader et al., Phys. Rev. B 93, 134402 (2016)

Dynamics of sublattices

Radu et al., Nature 472, 205 (2011)

ferri-magnet turns ferro!

Longitudinal relaxation in multi-sublattice magnets

$$\frac{dS_1}{dt} = \lambda_e (H_1 - H_2) + \lambda_1 H_1$$
$$\frac{dS_2}{dt} = -\lambda_e (H_1 - H_2) + \lambda_2 H_2$$

Mentink et al., PRL 108, 057202 (2012);

where
$$S_i = M_i / \gamma_i$$

and
$$H_i = -\delta W / \delta S_i$$

exchange

relativistic (usual damping)

 $\lambda_e(T) = \lambda_e(J_{12}(T)) \qquad \lambda_i(T) \sim T/T_C$

conservation Stot

Bloch relaxation

$$\frac{dS_1}{dt} = -\frac{dS_2}{dt}$$

$$\frac{dS_i/dt = -S_i/\tau_i}{\tau_i = \chi_i/\lambda_i} \qquad \lambda_i \propto \frac{2\alpha_i \gamma k_B T}{\mu_i}$$

Crossover from temperature- to exchange-dominated

derived in Mentink et al., PRL 108, 057202 (2012);

see Kirilyuk et al., Rep. Prog. Phys. 76, 026501 (2013) for summary

The range of switching

Vahaplar et al, PRB 85, 104402 (2012)

Mangin et al, Nature Materials 13, 286 (2014)

Mechanism: thermal, fast sublattice-selective demagnetization + exchange-driven reversal

Time-scale: ~1 ps reversal, 30-1000 ps recovery

2. Photo-magnetic switching in dielectrics

Co-substituted YIG film

 $Y_2CaFe_{3.9}Co_{0.1}GeO_{12}$ on GGG (001) thickness d=7.5 µm (grown by LPE)

magnetic anisotropy:

 $K_1 = -10^4 \text{ erg/cm}^3$

 $K_U = 10^3 \text{ erg/cm}^3$

domain structure: metastable states

Single-pulse switching

A. Stupakiewicz et al., Nature **542**, 71 (2017)

Time resolved observation of switching

precessional switching!

A. Stupakiewicz et al., Nature **542**, 71 (2017)

Precise atomic-scale control of anisotropy?

A. Stupakiewicz et al., to be published

Mechanism: photo-magnetic anisotropy driving the precessional reversal (nonthermal I)

Time-scale: precessional motion in the anisotropy field: 20-60 ps

3. Opto-magnetic effect (but not only...)

More universal?

Co/Pt, FePt

All-optical control of ferromagnetic thin films and nanostructures

C-H. Lambert,^{1,2} S. Mangin,^{1,2*} B. S. D. Ch. S. Varaprasad,³ Y. K. Takahashi,³ M. Hehn,² M. Cinchetti,⁴ G. Malinowski,² K. Hono,³ Y. Fainman,⁵ M. Aeschlimann,⁴ E. E. Fullerton^{1,5*} Science **345**, 1337 (2014)

 σ L
 20 μm
 410 nW
 D

 σ 20 μm
 705
 502
 435
 362 nW

 20 μm
 20 μm
 20 μm
 10 μm
 10 μm

Helicity-effect in the ultrafast demagnetization

Radboud University

ESM Krakow - September 2018

38

Pulse width dependence

R. Medapalli et al, PRB 96, 224421 (2017)

Number-of-pulses dependence in Co/Pt, Co/Pd

The initial nucleation is due to randomized demagnetization, and is followed by helicity-dependent growth

Domain wall motion (CoPd sample from HGST)

The (too) high speed probably implies after-pulse motion

thermal (MCD) or opto-magnetic?

Role of entropy

F. Schlickeiser et al, PRL 113, 097201 (2014)

Both thermal, based on MCD

why would they be so sensitive to the pulse width??

42 ESM Krakow - September 2018

Entropy, thermal magnons?

W.Jiang et al, PRL **110**, 177202 (2013)

Magnon flow

Radboud University

inverse Faraday effect

Vahaplar et al, PRB 85, 104402 (2012)

Combination of thermal + opto-magnetic, better with longer pulses difficult to estimate the effective field!

Mechanism: demagnetization-driven nucleation followed by domain-wall motion (magnons, entropy, iFE?) - i.e. thermal + nonthermal II

Time-scale: DW motion of few nm/pulse

Summary:

 Metallic ferrimagnets: thermally-induced, exchange driven toggle switching

 Multilayers with strong spin-orbit: domain wall motion by inverse Faraday effect

 Dielectrics: non-thermal, change of anisotropy by photo-magnetic effects
 before

Spare slides

Controlling the route of the phase transition

de Jong et al, PRL 108, 157601 (2012)

thermal + opto-magnetic

Polarization dependent...

Stanciu et al, Phys. Rev. Lett. 99, 047601 (2007)

Different ferrimagnets: TbFeCo

Different ferrimagnets: NdFeCo and PrFeCo

J. Becker et al, Phys. Rev. B 92, 180407(R) (2015)

Morin 1st order phase transition in DyFeO₃

Dynamics: from precession to the new phase

difference with 2nd order

D. Afanasiev et al, PRL **116**, 097401 (2016)

thermal + opto-magnetic

