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MP2: Precessional dynamics
!2

Overarching theme: Landau-Lifshitz equation  

Linear excitations – spin waves  
Dispersion relations, applications in information processing  

Dissipation processes 
Intrinsic and extrinsic contributions, Gilbert damping 

Dynamics of topological solitons  
Lagrangian formulation, domain wall motion, vortex gyration
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Time scales
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Magnetisation dynamics
!4

In MP1, we saw how magnetic moments couple to each other and to their 
environment (e.g., exchange, dipole-dipole interactions).


But how do they evolve in time? Consider Heisenberg picture in quantum 
mechanics,

Consider a single spin in an applied magnetic field H. The Zeeman Hamiltonian is

To see how this works, expand out the Sx term:

[Sx, H] = �gµ0µB [Sx, SxHx + SyHy + SzHz]

= �gµ0µB (Hy[Sx, Sy] + Hz[Sx, Sz])

H = �gµ0µBS ·H

i~ d

dt
hS(t)i =

⌦⇥
S,H

⇤↵
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Magnetisation dynamics
!5

By applying the usual commutation rules for the spin operators

we obtain

[Sx, Sy] = iSz [Sy, Sz] = iSx [Sz, Sx] = iSy

[Sx, H] = �gµ0µBi (HySz � HzSy)

Combining with the other spin components, we find

This describes the precession of a spin in a magnetic field. With the definition of 
the gyromagnetic constant 

� =
gqe

2m
=

gµB

� < 0 �0 = µ0
g|µB |

� = �µ0� ~28 GHz/T

An Introduction to Micromagnetics in the Dynamic Regime 5

in (19). In the words of Cohen-Tannoudji, Diu, and Laloë, “the classical
equation is obeyed exactly, whatever the time dependence of the magnetic
field.”

Assuming the magnetic field to be time independent, multiplying (19)
successively by M and H, leads to

d
dt

[M (t)]2 = 0 ,
d
dt

[M(t) · H] = 0 . (20)

Equation (20) states that the modulus of the magnetization remains un-
changed during motion and that the angle between the field and the mag-
netization also remains constant as a function of time. Equations (19) and
(20) therefore describe a precessional motion of the magnetization around
the applied field, as sketched in Fig. 2a. The angular frequency is a linear
function of the magnetic field,

ω0 = γ0H, (21)

i.e., ≈ 28 MHz/mT in units of µ0H for a free electron spin.

dM/dtdM/dt

M

H

M

H

M× dM/dt

(a) (b)

Fig. 2. Magnetization preces-
sion. (a) Without damping.
(b) With damping

1.3 Introducing Damping

Hysteresis curves usually tell us that beyond some value of an applied field,
any magnetic sample can be considered saturated. The magnetization is then
uniform and aligned with the field. Precession alone does not allow us to
reach that limit, in contradiction to experimental evidence. Therefore, the
precession equation has to include a damping term so that, after some finite
time, the magnetization may become aligned with the applied field.

By far, the simplest way of introducing a damping term in (19) consists of
replacing the field H by an effective field including an ohmic type dissipation
term,

Heff = H − α
1

γ0Ms

dM

dt
, (22)

dS/dt

S

dhS(t)i
dt

=
gµ0µB

~ hSi ⇥H
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By averaging over the spins in the Bloch equation,

we can express the torque equation for a general magnetisation field M as

An Introduction to Micromagnetics in the Dynamic Regime 5

in (19). In the words of Cohen-Tannoudji, Diu, and Laloë, “the classical
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1.3 Introducing Damping

Hysteresis curves usually tell us that beyond some value of an applied field,
any magnetic sample can be considered saturated. The magnetization is then
uniform and aligned with the field. Precession alone does not allow us to
reach that limit, in contradiction to experimental evidence. Therefore, the
precession equation has to include a damping term so that, after some finite
time, the magnetization may become aligned with the applied field.

By far, the simplest way of introducing a damping term in (19) consists of
replacing the field H by an effective field including an ohmic type dissipation
term,

Heff = H − α
1

γ0Ms

dM

dt
, (22)

The micromagnetics approach allows for a classical description of the 
magnetisation dynamics by treating the magnetisation as a continuous field M 
subject to torques applied by magnetic fields H.

dM

dt
= ��0M⇥H

dhS(t)i
dt

=
gµ0µB

~ hSi ⇥H

M = gµBNhSi/V
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where

Generalise torque equation to any magnetic energy by replacing H with the 
effective field Heff

The energy density accounts for all relevant contributions to the magnetic 
Hamiltonian (see MP1)


Magnetisation precesses about its local effective field


Note that this torque equation conserves the norm of the magnetisation vector 
and describes dynamics at constant energy

An Introduction to Micromagnetics in the Dynamic Regime 5
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eff

dM

dt
= ��0M⇥He↵

He↵ = � 1

µ0

�E

�M

d

dt
kMk2 = 0

d

dt
(M ·He↵) = 0
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Linear excitations - Spin waves
!8

Small amplitude (linear) excitations of magnetisation are described by spin 
waves


Consider a chain of spins uniformly aligned along an applied field H0

H0

What is the smallest excitation possible? One spin reversal. There are two ways 
to accomplish this:

1) Flip one spin along the chain

2) Distribute the spin reversal by canting all spins

E = �N(gµBS)H0 ⌘ E0

E � E0 = 2J

E � E0 = ~! ⌧ 2J
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Spin waves
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λ

k⃗

Spin waves are elementary excitations of a magnetic system


Quantised spin-wave: magnon (cf phonons for elastic waves)


It is more favourable energetically to distribute flipped spin over all lattice sites, 
rather than to have it localised to one lattice site. 
 
(NB. Such excitations do exist - Stoner excitations - and these are important at 
high energies)

��(�k)



European School on M
agnetism

 2018, Krakow
 – M

agnetisation Processes (M
P2) – Kim

,JV

Spin wave dispersion relations
!10

Consider a uniformly magnetised system along the positive z axis. Suppose there 
is an applied external field H0 along the positive z direction:

H0

Let

If we allow for spatial variations in m, we need to also include exchange,

From this expression, we can derive an expression for the effective field

M = Msm kmk = 1

E = EZ + Eex = �µ0MsH0mz +A

h
(rmx)

2 + · · ·
i

He↵ = � 1

µ0Ms

@E

@m
= H0ẑ+

2A

µ0Ms
r2

m
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Linearising the equations of motion
!11

Study small amplitude fluctuations of the magnetisation by linearising the 
equations of motion


Write the magnetisation in terms of static and dynamic components. Assume the 
ground state consists of uniform magnetic state along +z:

static dynamic

Similarly, decompose the effective field into static and dynamic components: 

m(r, t) = m0 + �m(r, t) = (0, 0, 1) + (mx(r, t),my(r, t), 0)

He↵ = He↵,0 + he↵(r, t)

Terms that 
depend on m0

Terms that 
depend on �m
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Linearising the equations of motion
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Rewrite the precession term in the Landau-Lifshitz equation in terms of static and 
dynamic parts, retain only linear terms in the dynamic components:

Assume plane wave solutions for the dynamic part

dynamic dynamic

Left-hand side of the torque equation becomes

dynamic magnetisation

dm

dt
= ��0m⇥He↵

dm

dt
= ��0 (�m⇥He↵,0 +m0 ⇥ he↵)

mx,y(r, t) = c0e
i(k·r�!t)

d�m

dt
= �i!


mx

my

�
�m = (mx,my, 0)
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Linearising the equations of motion
!13

In a similar way, the terms on the right-hand side (RHS) of the equation become

which leads to the matrix equation

�i�

�
mx

my

�
=

�
0 ��k

�k 0

� �
mx

my

�

�
i� ��k

�k i�

� �
mx

my

�
= 0

�k = �0

�
H0 +

2A

µ0Ms
k2

�

�m⇥H0ẑ

dm

dt
= ��0 (�m⇥He↵,0 +m0 ⇥ he↵)

ẑ⇥
✓

2A

µ0Ms
r2�m

◆
�i!


mx

my

�
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Spin wave dispersion relation
!14

Condition of vanishing determinant of the 2x2 matrix gives the dispersion 
relation for the spin waves:

where we have defined a spin-wave stiffness

� �2 + �2
k = 0

� � = �k = �0H0 + Dk2

D � 2�A

Ms

Spin waves in ferromagnets are dispersive with a “band gap” due to applied and 
anisotropy fields

�

k
�0H0

�

k
�= ��

�k

Other energy contributions will bring supplementary terms to the dispersion 
relation
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Brillouin light scattering spectroscopy
!15

Probe spin wave spectra by scattering light off surfaces


Reflected photons give information about spin waves that 
are created (Stokes) or annihilated (anti-Stokes)

76 Sergey O. Demokritov and Burkard Hillebrands

In a BLS experiment with backscattering geometry, the in-plane wave
vector q∥ = (qs−qI)∥, transferred in the light scattering process, was oriented
perpendicularly to the wires, and its value was varied by changing the angle
of light incidence θ measured from the surface normal q∥ = (4π/λLaser)×sin θ.
The collection angle of the scattered light was chosen small enough to ensure
reasonable resolution in q∥ of ±0.8×104 cm−1. It is important to mention here
once more, that, strictly speaking, due to spin-wave confinement in a wire,
the transferred wave vector q∥ cannot be considered the wave vector of the
spin-waves mode taking part in the scattering process and, thus, tested in the
experiment. Because of confinement, the spin-wave mode does not possess a
well-defined wave vector.

Figure 6 shows a typical BLS spectrum for the sample with a wire width
of 1.8 µm and a separation between the wires of 0.7 µm. A transferred wave
vector q∥ = 0.3×105 cm−1 was oriented perpendicularly to the wires, and an
external field of 500 Oe was applied along the wire axis. As seen in Fig. 6,
the spectrum contains four distinct modes near 7.8, 9.3, 10.4, and 14.0 GHz.
Note here, that in the region of interest (5–17 GHz), the scanning speed of
the interferometer was reduced by a factor of 3 to increase the accumulation
time in this region and, thus, to improve the signal-to-noise ratio. By varying

Fig. 6. Experimental Brillouin light scattering spectrum obtained from the wire
array with a wire thickness of 40 nm, a wire width of 1.8 m, and a separation
between the wires of 0.7 m. The applied field is 500 Oe oriented along the wire axis.
The transferred wave vector of q∥ = 0.3 × 105 cm−1 is oriented perpendicularly to
the wires. The discrete spin-wave modes are indicated by arrows. In the so-called
region of interest (5–17 GHz), the scanning speed was reduced by a factor of 3
increasing the number of recorded photons by the same factor (from [41])

�I

�I + ��I � �

x y

z
Backscattering  

geometry

Stokes Anti-Stokes
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Mode confinement in nanostructures
!16

Translational invariance is broken in nanostructured magnetic elements


Boundary conditions determine the quantisation conditions

∂M⃗

∂n⃗

∣

∣

∣

∣

S

= κM⃗
Boundary condition 
for magnetisation

R D McMichael & M D Stiles, J Appl Phys 97, 10J901 (2005)Micromagnetics

Elliptical

Circular
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Mode confinement in nanostructures
!17

Brillouin light scattering with nano-sized apertures and near-field imaging allows 
confined modes to be probed

Edge modes in a ferromagnetic ellipse

Experiments

350 Oe 700 Oe

1000 Oe
1570 Oe 200 nm

Microstrip
line

Permalloy
ellipse

Incident & scattered
light

Mic
row

ave

curr
ent

H

Cantileverpithtiw h

200nm

Tip apex
with a
nano-size aperture

Microfocus BLS setup

J Jersch et al, Appl Phys Lett 97, 152502 (2010)
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Spin waves as probes of magnetic properties 
!18

1.6. SPIN WAVES 41

Figure 1.11: Schematization of the lowest order perpendicular standing spin waves
where multiples of half the wavelength fit into the film thickness (see Eq. 1.92). Here
we assumed no surface pinning, which could influence the precession of the spins
near the surface due to di↵erent anisotropy fields (see [88]).

1.6.3 Perpendicular Standing Spin Waves (PSSW)

Previously we only allowed for wave vectors lying inside the sample plane, i.e. the
phase was always uniform through the film thickness for the magnetization aligned
in the plane by an external magnetic field. As we assumed an infinite thin film, the
wave length could be chosen continuously. This is not the case for the out-of-plane
wave vector k? because of the di↵erent boundary conditions: only wavelengths �

with half the wavelength fitting into the film thickness in whole numbers are allowed
due to the confinement (see Fig. 1.11). With k? = ⇡p/�, an approximation of the
dispersion relation is given by [86]:

!
2

PSSW
=


!H + !e↵ + �

2A

Ms

⇣
⇡p

d

⌘2
� 

!H + �
2A

Ms

⇣
⇡p

d

⌘2
�

. (1.92)

When expanding this equation and separating the exchange contribution from the
uniform resonance formula, one finds a term being similar to Eq. 1.91. However, in
Eq. 1.91 we expect �2Ak

2

k/Ms < !H , while in Eq. 1.92 typically �2Ak
2

?/Ms > !H is
found. This is due to the comparatively higher out-of-plane wave vectors and leads
to a shift to considerably higher frequencies. More on the observation of PSSW can
be found in [87]. In chapter 7 we present data on the observation of the thickness
mode of the order p = 1 for 40 nm thick samples and extract the exchange sti↵ness
constants A for the sample material.

1.6. SPIN WAVES 41

Figure 1.11: Schematization of the lowest order perpendicular standing spin waves
where multiples of half the wavelength fit into the film thickness (see Eq. 1.92). Here
we assumed no surface pinning, which could influence the precession of the spins
near the surface due to di↵erent anisotropy fields (see [88]).

1.6.3 Perpendicular Standing Spin Waves (PSSW)

Previously we only allowed for wave vectors lying inside the sample plane, i.e. the
phase was always uniform through the film thickness for the magnetization aligned
in the plane by an external magnetic field. As we assumed an infinite thin film, the
wave length could be chosen continuously. This is not the case for the out-of-plane
wave vector k? because of the di↵erent boundary conditions: only wavelengths �

with half the wavelength fitting into the film thickness in whole numbers are allowed
due to the confinement (see Fig. 1.11). With k? = ⇡p/�, an approximation of the
dispersion relation is given by [86]:

!
2

PSSW
=


!H + !e↵ + �

2A

Ms

⇣
⇡p

d

⌘2
� 

!H + �
2A

Ms

⇣
⇡p

d

⌘2
�

. (1.92)

When expanding this equation and separating the exchange contribution from the
uniform resonance formula, one finds a term being similar to Eq. 1.91. However, in
Eq. 1.91 we expect �2Ak

2

k/Ms < !H , while in Eq. 1.92 typically �2Ak
2

?/Ms > !H is
found. This is due to the comparatively higher out-of-plane wave vectors and leads
to a shift to considerably higher frequencies. More on the observation of PSSW can
be found in [87]. In chapter 7 we present data on the observation of the thickness
mode of the order p = 1 for 40 nm thick samples and extract the exchange sti↵ness
constants A for the sample material.

Example: Determine exchange constant A from frequencies of perpendicular 
standing spin waves (PSSW)

C Bilzer et al, J Appl Phys 100, 053903 (2008)
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Information technologies with spin waves
!19

so that the possibility of a practical realization of the gate
structures is ensured.10,12,13 The majority gate structure con-
sists of three parallel input waveguides, where the spin
waves are excited and the information is encoded into the
spin-wave phase. In the combiner, the input waveguides are
bent under an angle a towards the center waveguide, to over-
lay the spin waves and allow for interference with each
other. The bent parts have a length of 5 lm and merge with
the center waveguide at positions x1 and x2, respectively.
With this asymmetric design, the spin waves can be forced
to propagate into the direction of the connected output wave-
guide, which guarantees a high energy transmission. In the
output waveguide, the output spin wave propagates with the
same phase as the majority of the input waves.

The majority gate structure is investigated with numerical
simulations using MuMax2.14 The software performs the sim-
ulations on the graphics cards of the computer and allows for
a highly parallelized calculation of the spin-wave dynamics in
a mesoscopic magnetic system with a resolution in the order
of the exchange length. Spin-wave reflections at the end of
the waveguides are avoided by increasing the damping by a
factor of 300 over the last 4 lm in x-direction. The external
field was applied parallel to the z-axis with a strength of
l0H¼ 200 mT. The cell size in the simulation area was cho-
sen to be 14" 8" 100 nm3, so that the resolution is in the
order of the exchange length (kex¼ 18 nm)15 of YIG and
smaller than the spin-wave wave length in the microstruc-
tures. In z-direction, the usage of only one cell can be justified
since no perpendicular standing spin-wave modes are excited
at the working frequency of f¼ 1.5 GHz. To excite the spin
waves, individual coplanar waveguides (CPW) were modeled
for each input arm, to suppress dynamic magnetic fields out-
side of the excitation area. The conductor of the CPW has a
width of 400 nm and a height of 250 nm. The ground plates
have widths of 200 nm and heights of 250 nm. The center-to-
center distance between conductor and ground plate is 400 nm
each. The excitation field is then calculated using Biot-
Savart’s law for an AC-current with an amplitude of 0.1 mA
in the conductor and #0.05 mA in the ground plates and a fre-
quency of 1.5 GHz. The dynamic excitation was calculated
for 100 ns to ensure that the waves are in their steady state.
Afterwards, the magnetization configuration was saved with a
time resolution of 4 ps.

To study the performance of the majority gate design, a
single input arm was excited and the transmission of energy
into the output was investigated. In Fig. 2(a), the energy
transmission is shown in a logarithmic colorscale for the
spin-wave excitation in input 1 when the merging angle of
the waveguide is a¼ 20$ and the merging position is differ-
ent for the outer input arms (x1 6¼ x2). With this design, the
energy transmission from input 1 to the output waveguide is
64%, which is the ratio of the maximum value in the output
waveguide to the maximum value around x2. The spin waves
from input 3 have the smallest transmission of 32% and spin
waves from input 2 exhibit an energy transmission of 45%
into the output waveguide.

The transmission strongly depends on the bend angle a
and the number of merging areas which have to be passed to
reach the output. This first point can be understood when the
wavevector of the spin waves in the combiner region is split

into its components parallel to the x- and y-direction. With a
small bend angle a, the x-component of the wavevector
increases and the y-component decreases, so that the spin-
wave propagation into the direction of the output waveguide
is favored. At the same time, the propagation of the spin
waves into the opposed waveguide is suppressed due to the
non-overlapping merging areas (x1 6¼ x2). The second point
becomes clear when the merging areas are considered as
source of spin-wave reflections (e.g., in the vicinity of x1 and
x2) into the other input arms. This reflection process gives
rise to the standing interference patterns visible in Fig. 2(a).
The more merging areas are passed, the more reflections can
occur.

In Fig. 2(b), the extreme situation is shown when the
waveguides are merged under an angle of 90$ at the same
positions (x1¼ x2) and when the spin waves are excited in
the center waveguide. In this case, the wavevector of the
incoming spin wave points directly into the output wave-
guide, and a high energy transmission of 72% through the
gate can be achieved, while only 14% of the energy is trans-
mitted to the adjacent input waveguides. For reasons of sym-
metry, the spin waves which are excited in inputs 1 or 3 have
an energy transmission into the output waveguide of 14%,
while the energy transmission into the opposed waveguide is
72%. The example shows that spin-wave networks can be
realized with two-dimensional rectangular crossings in the
out-of-plane magnetized geometry. This allows for via-free
crossings of spin-wave waveguides which is a huge advant-
age of the spin-wave technology, which can examplarily be
used in magnonic holographic memories16 or magnonic full
adders, based on majority gates.17

As mentioned above, the interference patterns in Fig.
2(a) result from back reflections in the combiner regions and
are not originating from scattering processes into higher
dipolar spin waves or exchange spin waves as in in-plane
magnetized gates.7 This can be understood by examining the
dispersion relations18 for the first three width modes n of the
waveguide which are shown in Fig. 3. Here, n is the number

FIG. 2. Energy transmission for single arm excitations for different majority
gate structures. (a) For the case a¼ 20$ and x1 6¼ x2, a large output signal is
obtained from the outer input arms. (b) For the case a¼ 90$ and x1¼ x2, an
energy transmission of 72% into the opposed waveguide is achieved.

212406-2 Klingler et al. Appl. Phys. Lett. 106, 212406 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
129.175.97.14 On: Fri, 19 Jun 2015 08:45:54

Spin wave majority gates
S Klingler et al, Appl Phys Lett 106, 212406 (2015)

A field-effect transistor, which is the key element of modern
complementary metal oxide semiconductor (CMOS)
technology, is used in microprocessors, static random

access memory and other digital logic circuits. Nevertheless, the
future of CMOS is not clear, since both the miniaturization of
single-element sizes and the operational speed will reach their
ultimate limits in the near future1. Therefore, one of the primary
tasks facing modern science is the search for alternative concepts
to CMOS. Distinct achievements in this direction are the
development of transistors based on carbon nanotubes and
graphene nanoribbons2,3, spin torque transistors4,5 as well as
three-dimensional spintronic circuits6. However, these
approaches do not resolve another drawback of CMOS
technology: the generation of waste heat during switching that
is responsible for an increase in the power consumption of CMOS
devices. Moreover, the waste heat increases with increasing data-
processing speed due to the high switching frequencies. This
fundamental drawback is inherent not only in CMOS, but in
electronics in general since it is associated with a translational
motion of electrons. Thus, there is a strong need for the
development of new particle-less technologies for data transport
and processing. Magnons, which are the quanta of spin waves7,8,
are excellent candidates for carriers in such technologies.

Magnonics, the field of science dealing with magnon-based
data operations9–12, encompasses a full spectrum of phenomena
used in general wave-based signal processing13–17. The data can
be coded into magnon phase or density and processed using wave
effects such as interference. This approach has already been
realized in spin-wave logic gates performing XNOR and NAND
operations18–21. The main drawback of these gates is that the
input data were coded in a form of direct current electric pulses
manipulating magnon phases, while the output signal was carried
by the magnons themselves. Obviously, that made it impossible to
combine two logic gates without additional magnon-to-voltage
converters. Moreover, the processing of large amounts of data has
to be made on the same magnetic chip exclusively within the

magnonic system. This fact stimulated a search for a way to
control one magnon by another magnon and for the development
of the all-magnon device presented in this paper. In addition,
recent discoveries in the fields of spin transfer torque22,23, spin
pumping and inverse spin Hall effects24–26 made it possible to
perform interconversion of currents of magnons to electron-
carried spin- and charge-currents and combine, in such a way,
magnonic circuits with spintronic or CMOS devices.

Here we report on the realization of an insulator-based
magnon transistor. The information is carried and processed in
this three-terminal device using magnons and is fully decoupled
from free electrons. The device demonstrated here has the
potential to be scaled down27 to the sub-ten nanometer scale
using exchange magnons26,28. Regarding frequency, there is large
potential for ultra-fast data processing since magnon frequencies
can reach up into the THz range28–30.

Results
Transistor’s design. The magnon transistor is shown schemati-
cally in Fig. 1a. Its main element is an artificial magnetic
material—a magnonic crystal31–38 designed in the form of a
yttrium iron garnet (YIG) strip with periodic modulation of its
thickness33,38: in our demonstrator, an array of 20 parallel
grooves was etched into the surface of the strip (see Methods).
The flow of magnons propagating through the crystal is
partially (around one per cent33) reflected from each groove
and the influence of the grooves is negligible for most of the
magnons. Nevertheless, the magnons which have wavelengths
satisfying the Bragg conditions ka¼m " p/a (where m is an
integer and a¼ 300mm is the crystal lattice constant) will
be resonantly scattered back resulting in the generation of
rejection bands (band gaps) in a spin-wave spectrum over which
magnon propagation is fully prohibited10–12,31–38. The measured
magnonic-crystal transmission spectrum shows pronounced band
gaps and is displayed in the inset of Fig. 2b.

Magnon transistor scheme
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Figure 1 | Schematic of the magnon transistor, spatial distribution of the gate magnons and the transistor’s operational principle. (a) The transistor is
based on a magnonic crystal designed in the form of a yttrium iron garnet (YIG) film with an array of parallel grooves at its surface. The magnons are
injected into the transistor’s source and are detected at its drain using microstrip antennas (other methods of injection, for example, via magnon
conduits40, might also work). The magnons that control the source-to-drain magnon current are injected directly into the magnonic crystal (transistor’s
gate) using an identical antenna. (b) Brillouin light scattering spectroscopy has been used to measure the spatial distribution of the gate magnons in the
absence of source magnons. Strong magnon localization and the formation of a standing-wave-like intensity profile is visible. The asymmetry of the
intensity profile might be related to the injection mechanism by means of the microstrip antenna influenced by the dynamic demagnetizing field of the
adjacent grooves. (c) A magnon transistor allows for the suppression of the source-to-drain magnon current (shown with blue spheres) via the injection of
the gate magnons (red spheres) into the gate region. A nonlinear four-magnon scattering mechanism is responsible for the transistor’s operational
principle: when magnons from the transistor’s source enter the gate region, they are scattered by the gate magnons and, thus, reach the transistor’s drain
with attenuation. The high degree of gate magnon localization inside the crystal consequently leads to high scattering probabilities provided by the
magnonic crystal, which, hence, serves as an enhancer of the nonlinear effects. The secondary magnons generated due to the scattering have large
wavevectors and small group velocities that prohibit their flow out of the gate region.
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Fig. 1.  Sketch of a spin-wave based computing system, with 
sources, phase shifters and detectors. A standard CMOS 
circuitry is used to configure the input oscillators and read-out 
the resulting spin-wave amplitudes.  

Fig. 2.  Spin-wave distribution generated by a singe 30 nm 
diameter spin-torque source. The source is placed on a 5 nm 
thick Permalloy film. There is a constant 1.0 T magnetic 
film pointing 80o to the film plane. The decay of spin wave 
intensity is close to a 1/r law, as expected from a point 
source. 

 

 
 

Fig. 3. A series of spin-torque sources are acting as a line 
source. The contour plot shows the out-of-plane component of 
the magnetization distribution. 

Fig. 4. A double-slit interference pattern from spin waves 

  
Fig 5. A focusing lens can be made by applying a local 
magnetic field, which changes the phase velocity of the spin 
waves. In this calculation the external field is altered in a 
‘negative lens’ shape, focusing the waves. 

Fig. 6. An area with a variable magnetic field can act as a 
tunable phase shifter. A Bz = 0.7 T magnetic field applied in 
the white area in the center. 
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Magnetic relaxation
!20

T2
T1

Overall result: 

M spirals to 
equilibrium

Relaxation times 

T1:  longitudinal 
T2:  transverse

Two possibilities:


(i)  Two-step process 	(T2 << T1)	 	 ||M|| is not conserved


(ii)  Viscous damping 	(2T2 = T1)	 	 ||M|| is conserved

How does magnetisation reach equilibrium?

dM

dt
= ��0M⇥He↵ = 0 at equilibrium
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Phenomenology
!21

(i) Two-step processes: Bloch-Bloembergen terms – ||M|| is not conserved

(ii) Viscous damping: Gilbert term – ||M|| is conserved

T2
T1

An Introduction to Micromagnetics in the Dynamic Regime 5

in (19). In the words of Cohen-Tannoudji, Diu, and Laloë, “the classical
equation is obeyed exactly, whatever the time dependence of the magnetic
field.”

Assuming the magnetic field to be time independent, multiplying (19)
successively by M and H, leads to

d
dt

[M (t)]2 = 0 ,
d
dt

[M(t) · H] = 0 . (20)

Equation (20) states that the modulus of the magnetization remains un-
changed during motion and that the angle between the field and the mag-
netization also remains constant as a function of time. Equations (19) and
(20) therefore describe a precessional motion of the magnetization around
the applied field, as sketched in Fig. 2a. The angular frequency is a linear
function of the magnetic field,

ω0 = γ0H, (21)

i.e., ≈ 28 MHz/mT in units of µ0H for a free electron spin.

dM/dtdM/dt

M

H

M

H

M× dM/dt

(a) (b)

Fig. 2. Magnetization preces-
sion. (a) Without damping.
(b) With damping

1.3 Introducing Damping

Hysteresis curves usually tell us that beyond some value of an applied field,
any magnetic sample can be considered saturated. The magnetization is then
uniform and aligned with the field. Precession alone does not allow us to
reach that limit, in contradiction to experimental evidence. Therefore, the
precession equation has to include a damping term so that, after some finite
time, the magnetization may become aligned with the applied field.

By far, the simplest way of introducing a damping term in (19) consists of
replacing the field H by an effective field including an ohmic type dissipation
term,

Heff = H − α
1

γ0Ms

dM

dt
, (22)

dMz

dt
= ��0 (M⇥He↵)z �

Mz �Ms

T1

dMx,y

dt
= ��0 (M⇥He↵)x,y �

Mx,y

T2

dM

dt
= ��0M⇥He↵ +

↵

Ms
M⇥ dM

dt

Only the Gilbert term is compatible with the basic assumption of 
micromagnetics
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Gilbert vs Landau-Lifshitz
!22

The Gilbert term can be rewritten in the following way to make the physics more 
transparent

directed along 
precession  
trajectory

directed towards 
instantaneous 
effective field

This is referred to as the Landau-Lifshitz equation.


Note that α – the damping constant – determines the rate at which energy dissipation 
can occur:

	 

	 –	 Governs magnetisation reversal times

	 –	 Governs switching fields, currents


The Landau-Lifshitz equation gives a good description of the damped magnetisation 
dynamics in strong ferromagnets (on the ~ns time scale).

�
1 + ↵2

� dM
dt

= ��0M⇥He↵ � ↵�0
Ms

M⇥ (M⇥He↵)



European School on M
agnetism

 2018, Krakow
 – M

agnetisation Processes (M
P2) – Kim

,JV

Spin wave damping
!23

With the inclusion of Gilbert damping, linearised equations give

�i!


1 ↵
�↵ 1

� 
mx

my

�
=


0 �!k

!k 0

� 
mx

my

�

This leads to the complex frequencies

! =
1

1 + ↵2
(±!k � i↵!k)

! ⇡ ±!k � i�k ↵ ⌧ 1 Weak damping

�k

!k

mx,y

t

Spin waves represent damped oscillations 
in the magnetisation
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Spin wave susceptibilities
!24

From linear response theory, it can be shown that the frequency-dependent 
magnetic susceptibility can be written as

�(!) =
X

k

1

! � !k + i�k

The susceptibility is a complex-valued Green’s function and describes the 
magnetic response to a driving field

m(!) = �(!)h(!)

!

Im(�)Re(�)

! = !k

!
! = !k

Linewidth measure 
of damping
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Relaxation processes
!25

k = 0

k ≠ 0

q ≠ 0magnons

magnons

phonons equilibrium

electrons

Time

dM

dt
= ��0M⇥He↵ +

↵

Ms
M⇥ dM

dt
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Relaxation processes (intrinsic)
!26

Magnon-magnon Magnon-electron
4-magnon process

Time

Exchange, anisotropy, … sd coupling, spin-orbit

Also 2-, 3-magnon 
processes 

Magnon-phonon Similar to pictures above
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Relaxation processes (extrinsic)
!27

Two-magnon scattering

Uniform (FMR) mode is damped by scattering to finite k spin wave

k = 0

k & 0

Time

Note that linear momentum is not conserved in 
this process 
 
Question: How might this occur?
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Relaxation processes (extrinsic)
!28

layer in the full range of !H . The increase of " Hpp in the
full range of !H cannot be explained by two-magnon scatter-
ing, because the linewidth due to two-magnon scattering is
zero around !H!0°.20 To our knowledge, such an increase
of " Hpp is only explainable by the increasing of # .12,13

The experimental data of Hres vs !H and " Hpp vs !H
were analyzed using the method described in Sec. III. The
examples of the results of fitting are shown in Figs. 5$a% and
5$b% with the solid lines. The calculated data are well fitted to
the experimental data for " Hpp and Hres . Three components
of the calculated " Hpp , which are " H in /!3 and the first
and the second terms of " Hex /!3, are shown in Figs. 5$a%
and 5$b% with the broken, the dotted and the dotted-and-
broken lines, respectively. The magnitudes of these three
components of " Hpp are proportional to # , " (4& M eff), and
" !H from Eqs. $8% and $9%. Therefore, " (4& M eff) and " !H
are almost the same between the two films, and only # is
significantly different.
Analysis of the other films showed that only # systemati-

cally depended on dCu and the presence of the Pt layer. The
value of g for these films was about 2.11, which agreed with

another reported value.21 The value of 4& M eff was found to
be about 7.5 kG. This value is almost same as the average
value of 4& MS!7.2 kG for these films, so that K! is neg-
ligible for the films, and this agrees with other reports.22 No
dependences of " (4& M eff) or " !H on dCu and the presence
of the Pt layer are also reasonable findings, because
" (4& M eff) and " !H for a thin Py layer are considered to be
due to the local fluctuation of dPy and the waviness of the Py
layer,12 and such structural imperfections cannot be influ-
enced by an overlayer structure.
Figure 6 shows G for Cu/Py $30 Å%/Cu (dCu)/Pt and

Cu/Py $30 Å%/Cu (dCu) films as a function of dCu . The value
of G was evaluated from # using g and MS for each film.
The errors in G are mostly due to the uncertainties of MS .
The trend of G for Cu/Py/Cu (dCu)/Pt and Cu/Py/Cu (dCu)
films is similar to that of " Hpp shown in Fig. 3$b%. In the
thin region of dCu , G for Cu/Py/Cu/Pt films is found to be
about two times larger than that for films without the Pt
layer. G for Cu/Py/Cu/Pt films decreases monotonically with
increasing dCu . G for Cu/Py/Cu films is close to the bulk
value of G for Py in Ref. 23 at dCu!100 Å and increases
slightly as dCu increases. G for both films becomes equal at
dCu!2000–3000 Å.

V. DISCUSSION

The large " Hpp for Cu/Py/Pt films in Fig. 3$a% or G for
Pt/Py/Pt films in Refs. 12 and 13 can be explained qualita-
tively by theories for Gilbert damping for bulk FM.14 Similar
explanations have been made for the enhancement of G in
epitaxial Fe and Ni ultrathin films.10,11 However, the rapid
decrease of " Hpp in Fig. 3$a% implies that such an explana-
tion is difficult for Cu/Py/Cu/Pt films, and some other
mechanism should be taken into consideration for the expla-
nation of the enhancement of G for these films. In discussing
the mechanism of the enhancement of G for Cu/Py/Cu/Pt

FIG. 5. The out-of-plane angular dependence of " Hpp for $a%
Cu/Py $30 Å%/Cu $100 Å% and $b% Cu/Py $30 Å%/Cu $100 Å%/Pt film,
respectively. Insets show the out-of-plane angular dependence of
Hres . Open circles represent the experimental data. Solid lines are
the calculated data and are fitted to the experimental ones. Broken,
dotted, and dotted-and-broken lines are the three components of the
calculated " Hpp . The best-fitted parameters are g!2.11, 4& M eff

!7.5 kG, #!0.0065, " (4& M eff)!175 G, and " !H!0.057° for
Cu/Py $30 Å%/Cu $100 Å% and g!2.11, 4& M eff!7.4 kG, #
!0.012, " (4& M eff)!205 G, and " !H!0.052° for Cu/Py $30
Å%/Cu $100 Å%/Pt, respectively.

FIG. 6. dCu dependence of Gilbert damping coefficient G for
Cu/Py $30 Å%/Cu (dCu)/Pt films $open circle% and Cu/Py $30 Å%/Cu
(dCu) films $solid circle%. Lines are the calculated data and are fitted
to the experimental ones using Eqs. $25%, $33%, and $34% with GPy

!0.69"108 s#1, 'p!9.8"10#7 $in cgs unit%, Dp!120 cm
2/s, l p

!2000 Å, and (!30 cm/s. Solid and broken lines correspond to
#S

#1→0 and #S!0, respectively.
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of the resonance magnetic field via A
!L"
i 1 A

!R"
i , whereas

A
!L"
r 1 A

!R"
r increases the relative resonance linewidth.

From now on we focus on ferromagnetic films which
are thicker than the coherence length lfc ! p#!k" 2 k#",
where k"# are the spin-up and spin-down Fermi wave vec-
tors, i.e., thicker than a few monolayers in the case of
transition metals. In this regime, spin-up and spin-down
electrons transmitted or scattered from one N-F interface
interfere incoherently at the other interface, t"# vanishes,
and the mixing conductance g"# is governed by the reflec-
tion coefficients of the isolated N-F interfaces.

Ai ! Img"# vanishes for ballistic and diffusive con-
tacts as well as nonmagnetic tunnel barriers [16]. First-
principles calculations find very small Ai for Cu-Co and
Fe-Cr [18]. It is, therefore, likely that Ai may be disre-
garded in many systems. If Ai does vanish on both sides
of the ferromagnetic film, it follows from Eqs. (7) and
(8) that the resonance frequency is not modified g ! g0
and the enhancement of the Gilbert damping is given by
a0 ! gL$A!L"

r 1 A
!R"
r %#4 pM.

The coefficient Ar can be estimated by simple model
calculations [16]. For ballistic (point) contacts, AB

r !
!1 1 p"g with the polarization p ! !g"" 2 g##"#!g"" 1
g##" and the average conductance g ! !g"" 1 g##"#2. For
diffusive N-F hybrids, AD

r ! gN , the conductance of the
normal metal part. A nonmagnetic tunneling barrier be-
tween F and N suppresses the spin current exponentially.
The magnetization precession of a magnetic insulator can
also emit a spin current into a normal metal, since g"#

does not necessarily vanish because the phase shifts of
reflected spin-up and spin-down electrons at the interface
may differ [18].

Let us now estimate the damping coefficient a0 for thin
films of permalloy (Ni80Fe20, Py), a magnetically very
soft material of great technological importance. Mizukami
et al. [12] measured the ferromagnetic resonance linewidth
of N-Py-N sandwiches and discovered systematic trends
in the damping parameter as a function of Py layer thick-
ness d for different normal metals. The spin polarization
of electrons emitted by Py has been measured to be p &
0.4 in point contacts [19], the magnetization per atom is
f & 1.2, and the Landé factor is gL & 2.1 [12]. The in-
terface conductance of metallic interfaces with Fe or Co
is of the order of 1015 V21 m22, with significant but not
drastic dependences on interface morphology or material
combination [20]. This corresponds to roughly one con-
ducting channel per interface atom. Assuming the Fermi
surface of the normal metal is isotropic, we arrive at the
estimate a0 & 1.1#d!Å". The factor 1#d does not reflect
an intrinsic effect; a reduced total magnetization is simply
more sensitive to a given spin-current loss at the interface.
Comparing with the intrinsic a0 & 0.006 of permalloy
[12,21] the spin-current induced damping becomes impor-
tant for ferromagnetic layers with thickness d , 100 Å.
We can refine the estimate by including the significant
film-thickness dependence of the magnetization measured

by the same group [12]. We, therefore, improve our above
estimate as

a0!d" & k 3
1.1

d!Å"
3

f0

f!d" , (9)

where f0 and f!d" are the atomic magnetization of the
permalloy bulk and films. k is an adjustable parameter
representing the number of scattering channels in units of
one channel per interface atom, which should be of the
order of unity.

The experimental results for the damping factor a and
the relative magnetization f#f0 for N-Py-N sandwiches
with N ! Pt, Pd, Ta, and Cu are shown in the insets of
Fig. 2. Our estimate (9) appears to well explain the depen-
dence of a on the permalloy film thickness d (see Fig. 2)
for reasonable values of k. First-principles calculations
are called for to test these values.

The lack of a significant thickness dependence of damp-
ing parameter of the Cu-Py system requires additional at-
tention. An opaque interface might be an explanation, but
it appears more likely that due to long spin-flip relaxation
times in Cu, the 5 nm thick buffer layers in [12] do not
provide the ideal sink for the injected spins as assumed
above. This means that a nonequilibrium spin accumu-
lation on Cu opposes the pumped spin current and nul-
lifies the additional damping when h#tsfd is comparable
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FIG. 2. The lines show our theoretical result (9) with k ! 1.0,
0.6, and 0.1; the data points are derived from the measurements
[12] shown in the two insets. Insets: Measured Gilbert damping
constant a (lower inset) and the relative atomic magnetization
f#f0 (upper inset) in permalloy film of varied thickness dPy in
a trilayer structure N-Py-N .
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Example of non-local damping. Spin flips occur in neighbouring films.

S Mizukami et al, Jpn J Appl Phys 40, 580 (2001)

S Mizukami et al, Phys Rev B 66, 104413 (2002)
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m(x) ! m(x� vt),m[x�X0(t)]?

Dynamics of solitons
!29

We’ve seen that domain walls, vortices and skyrmions are nonuniform, nontrivial 
spin configurations – topological solitons


By knowing their static profiles, how can we describe their motion (at velocity v)?

Plane wave Domain wall

q(t)

Unlike plane waves, in general it is not possible to translate static solution to 
obtain moving solution. Need to satisfy Landau-Lifshitz!


Need to use method of collective coordinates, Lagrangian formulation

eikx ! ei(kx�vt)



European School on M
agnetism

 2018, Krakow
 – M

agnetisation Processes (M
P2) – Kim

,JV

Lagrangian formulation
!30

In order to describe domain wall motion, it is convenient to use a slight different 
approach to describe the magnetisation dynamics


Instead of trying to solve the Landau-Lifshitz equation, we can use another 
formulation in terms of the Lagrangian

L =
Ms

�
�̇(1 � cos �) � E Lagrangian density

L =

�
dV L

The idea is that if we can describe the domain wall in terms of its position X and 
conjugate momentum P, then we can derive its dynamics directly from the 
Lagrangian:

Lagrangian

d

dt

�L

�Ẋ
� �L

�X
= 0

d

dt

�L

�Ṗ
� �L

�P
= 0
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Dissipation - Gilbert damping
!31

To describe the full dynamics, we need to include the dissipation term 
 
Gilbert damping can be accounted for through a Rayleigh dissipation function of 
the form:

F =
1

2

�Ms

�

�
�̇2 + sin2 � �̇2

�

which appears in the equations of motion as

F =

�
dV F

d

dt

�L

�q̇
� �L

�q
+

�F

�q̇
= 0

where

and the q’s are generalised coordinates.

Equations of motion with 
dissipation
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Domain wall dynamics
!32

How does a domain wall move in response to applied fields and currents?


Recall Landau-Lifshitz equation

At equilibrium, the magnetisation is aligned along the direction of Heff.


Consider torques due to an applied field, H0, along +z direction (i.e., left domain)

dM

dt
= ��0M⇥He↵ � ↵�0

Ms
M⇥ (M⇥He↵)

��0M⇥H0

��0M⇥ (M⇥H0)

z, H0

x
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Domain wall dynamics
!33

Motion of the domain wall can be described by a one-dimensional model with 
two variables:

X0(t)

�0(t)

position of domain wall centre

“tilt” angle, measured from xz plane
z

y

x

✓

�

m

X0(t) translates wall profile along x (direction of propagation),  
φ0(t) ensures that Landau-Lifshitz is satisfied (not Galilean 
invariant):

✓(x, t) = 2 tan�1


exp

✓
�x�X0(t)

�

◆�

�(x, t) = �0(t)

m = (cos� sin ✓, sin� sin ✓, cos ✓)

Collective 
coordinates
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Domain wall Lagrangian
!34

Take energy terms from MP1 (exchange, anisotropy, dipolar, Zeeman …) and 
integrate out the spatial degrees of freedom using trial solution to obtain Lagrangian

✓(x, t) = 2 tan�1


exp

✓
�x�X0(t)

�

◆�
�(x, t) = �0(t)

Trial solutionm = (cos� sin ✓, sin� sin ✓, cos ✓)

LB =
Ms

�

Z
dV �̇ (1� cos ✓)

Eex = A (rm)2

EK = �K (m · ê)2

EZ = �µ0M ·H0

Ed = �1

2
µ0M ·Hd

U(X0,�0) =

Z
dV

+

+

+

L = LB � U

Integrate out spatial variables

Berry phase (“Kinetic energy”) (Potential) Energy

(Domain wall) Lagrangian
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Domain wall equations of motion
!35

From the Lagrangian and the dissipation function, derive the equations of motion 
for the domain wall:

��̇0 +
�Ẋ0

�
= � �

2Ms

�U

�X0

Ẋ0

�
+ ��̇0 = �1

2
�0Ms sin 2�0 � �

2Ms�

�U

��0

d

dt

�L

�Ẋ0

� �L

�X0
+

�F

�Ẋ0

= 0

d

dt

�L

��̇0

� �L

��0
+

�F

��̇0

= 0

Generalised forces

Generalised forces

� �

�
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Domain wall motion under applied field
!36

Creep and Flow Regimes of Magnetic Domain-Wall Motion in Ultrathin Pt=Co=Pt Films
with Perpendicular Anisotropy

P. J. Metaxas,1,2,* J. P. Jamet,1 A. Mougin,1 M. Cormier,1 J. Ferré,1 V. Baltz,3 B. Rodmacq,3 B. Dieny,3 and R. L. Stamps2

1Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France
2School of Physics, M013, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia

3SPINTEC, URA CNRS/CEA 2512, CEA-Grenoble, 38054 Grenoble Cedex 9, France
(Received 26 February 2007; published 21 November 2007)

We report on magnetic domain-wall velocity measurements in ultrathin Pt=Co!0:5– 0:8 nm"=Pt films
with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field
characteristics are obtained, enabling an examination of the transition between thermally activated creep
and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly
disordered media. The dissipation limited flow regime is found to be consistent with precessional domain-
wall motion, analysis of which yields values for the damping parameter, !.

DOI: 10.1103/PhysRevLett.99.217208 PACS numbers: 75.60.Ch, 62.20.Hg, 75.60.Jk, 75.70.Ak

Understanding the dynamics of an elastic interface
driven by a force through a weakly disordered medium is
a challenging problem relevant to many physical systems.
Examples include domain walls in ferromagnetic [1– 3]
and ferroelectric [4] materials, vortices in type-II super-
conductors [5], charge density waves [6], and contact lines
during wetting of solids by liquids [7]. While theory pre-
dicts three main regimes of motion [5,8– 10], only the low
force regime of creep has been experimentally studied
through direct observation of the interface [1,2,4].
Regimes beyond that of creep, namely, depinning and
flow, have, however, been evidenced indirectly via ac
susceptibility measurements [11,12]. In this Letter we re-
port on direct observation of magnetic domain-wall motion
in ultrathin Pt=Co=Pt films over all motion regimes. This
allows for a careful study of the wall velocity, in particular,
at the transition from creep to flow and in the high field
flow regime, where we consider the internal wall dynamics
[13– 15].

At zero temperature, an elastic interface in the pres-
ence of weak disorder will be pinned for all driving
forces, f, below the depinning force, fdep, at which a cri-
tical depinning transition [8] occurs [Fig. 1(a)]. At finite
temperature the depinning transition becomes smeared due
to thermal activation [10] and a finite velocity is then
expected for all nonzero forces. This is true even for f#
fdep, where the thermally activated interface motion is
known as creep [5,8]. At the other extreme, once f is
sufficiently beyond fdep, disorder becomes irrelevant re-
sulting in a dissipative viscous flow motion with v / f [8].
Ultrathin Pt=Co=Pt films with perpendicular anisotropy are
systems in which one can easily study the field driven
motion of quasi-1D domain walls (interfaces with elastic-
ity due to their per-unit-length energy) in a quasi-2D Ising
system with appropriate weak quenched disorder due to
nanoscale inhomogeneities [1,12,16].

We have investigated domain-wall dynamics in four
such films with structure Pt!4:5 nm"=Co!tCo"=Pt!3:5 nm"

and Co layer thickness, tCo, of 0.5, 0.6, 0.7, and 0.8 nm
($0:05 nm). The films were sputter grown at %300 K on
etched Si=SiO2 substrates. Each film has a low density of
efficient nucleation sites which allows us to measure
domain-wall motion at high field without excessive nu-
cleation. The films’ magnetic parameters are given in
Table I. First and second order effective perpendicular
anisotropy fields for each sample were determined using
polar magneto-optic Kerr effect (PMOKE) anisotropy
measurements [18]. To estimate the wall width, !, we
integrated these two fields into a total effective anisotropy
field, Heff , which includes the demagnetizing field of the
perpendicularly saturated film. Out of plane PMOKE and
SQUID hysteresis loops were used to determine each
sample’s coercive field, HC, and saturation magnetization,
MS, respectively. The Curie temperature of each film, TC,
was deduced from the temperature dependence of the
PMOKE signal at remanence. On reducing tCo, both TC
and MS are also reduced compared to their bulk values of
1388 K and 1446 erg=G cm3, respectively [19], consistent

FIG. 1. (a) Theoretical variation of the velocity, v, of a 1D
interface (domain wall) in a 2D weakly disordered medium
submitted to a driving force, f (magnetic field, H), at zero and
finite temperature, T. The creep, depinning, and flow regimes are
labeled. (b) Regimes of domain-wall flow motion in an ideal
ferromagnetic film without pinning. The steady and precessional
linear flow regimes are separated by an intermediate regime
which begins at the Walker field, HW .

PRL 99, 217208 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 NOVEMBER 2007

0031-9007=07=99(21)=217208(4) 217208-1 © 2007 The American Physical Society
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Vortex dynamics
!37

The Lagrangian approach can be used to derive the equations of motion for a 
vortex


Parametrise with the core position in the film plane (X0), topological charge (q), 
and polarisation (p).

p = 1, q = 1 p = -1, q = 1

p = 1, q = -1 p = -1, q = 1

Vo
rte

x
An

tiv
or

te
x

10-20 nm

Vortex core

Collective coordinates
X0 = (X0, Y0)
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G =
Ms

�

Z
dV sin ✓ (r�⇥r✓)

G⇥ Ẋ0 + ↵D · Ẋ0 = � @U

@X0

Vortex dynamics
!38

Vortex Lagrangian with Gilbert damping leads to “Thiele” equation, which 
describes the dynamics of the vortex core position

where

D =
Ms

�

�
dV

�
�� � �� + sin2 � �� � ��

�

Gyrovector

Damping tensor

The gyrovector is 

G =
2⇡Msdpq

�
ẑ

p = 1, 
q = 1

p = -1, 
q = 1

p = 1, 
q = -1

p = -1, 
q = 1d: film thickness
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Vortex dynamics
!39

The natural motion for a magnetic vortex is gyrotropic. In fact, the motion is 
intrinsically non-Newtonian. Consider the conservative case without damping:

With the definition of the gyrovector:

For a Newtonian system, we have (for comparison) 

�GẎ0 = � �U

�X0

GẊ0 = � �U

�Y0

G =
2�Msdpq

�

G⇥ Ẋ0 = � @U

@X0

m
d2X0

dt2
= � @U

@X0

mass



European School on M
agnetism

 2018, Krakow
 – M

agnetisation Processes (M
P2) – Kim

,JV

Summary
!40

Landau-Lifshitz equation provides framework to 
describe damped precessional dynamics 
 

Spin waves  
Linear (small amplitude) excitations, useful probes 
 

Relaxation processes 
Gilbert, Bloch-Bloembergen; intrinsic and extrinsic 
processes 
 

Domain wall and vortex dynamics 
Lagrangian formulation, collective coordinates

An Introduction to Micromagnetics in the Dynamic Regime 5

in (19). In the words of Cohen-Tannoudji, Diu, and Laloë, “the classical
equation is obeyed exactly, whatever the time dependence of the magnetic
field.”

Assuming the magnetic field to be time independent, multiplying (19)
successively by M and H, leads to

d
dt

[M (t)]2 = 0 ,
d
dt

[M(t) · H] = 0 . (20)

Equation (20) states that the modulus of the magnetization remains un-
changed during motion and that the angle between the field and the mag-
netization also remains constant as a function of time. Equations (19) and
(20) therefore describe a precessional motion of the magnetization around
the applied field, as sketched in Fig. 2a. The angular frequency is a linear
function of the magnetic field,

ω0 = γ0H, (21)

i.e., ≈ 28 MHz/mT in units of µ0H for a free electron spin.

dM/dtdM/dt

M

H

M

H

M× dM/dt

(a) (b)

Fig. 2. Magnetization preces-
sion. (a) Without damping.
(b) With damping

1.3 Introducing Damping

Hysteresis curves usually tell us that beyond some value of an applied field,
any magnetic sample can be considered saturated. The magnetization is then
uniform and aligned with the field. Precession alone does not allow us to
reach that limit, in contradiction to experimental evidence. Therefore, the
precession equation has to include a damping term so that, after some finite
time, the magnetization may become aligned with the applied field.

By far, the simplest way of introducing a damping term in (19) consists of
replacing the field H by an effective field including an ohmic type dissipation
term,

Heff = H − α
1

γ0Ms

dM

dt
, (22)




