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MP2: Precessional dynamics

e Qverarching theme: Landau-Lifshitz equation

e [inear excitations — spin waves
Dispersion relations, applications in information processing

e Dissipation processes
Intrinsic and extrinsic contributions, Gilbert damping

e Dynamics of topological solitons
[ agrangian formulation, domain wall motion, vortex gyration
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Magnetisation dynamics

e In MP1, we saw how magnetic moments couple to each other and to their
environment (e.g., exchange, dipole-dipole interactions).

e But how do they evolve in time? Consider Heisenberg picture in quantum
mechanics,

. d
in=(S(8)) = ([S,H])

e (Consider a single spin in an applied magnetic field H. The Zeeman Hamiltonian is

H = —guopnpS-H

e To see how this works, expand out the Sx term:

Sy, H| = —guopn|Se, SeHy + Sy H,, + S, H.,|
= —guopp (Hy|Sz, Sy| + H.[S:, S:])



Magnetisation dynamics

e By applying the usual commutation rules for the spin operators

Sz, S, =18, S,,5.] = iS, S, S,] =iS, tH
we obtain 1S/ d1
[SxaH] = —guoMBY (HySz — HzSy)
e Combining with the other spin components, we find A)

d(S(t))  guops
= (S) x H

e This describes the precession of a spin in a magnetic field. With the definition of
the gyromagnetic constant

e B
=fe _IB g 4= Mogm - —po7y 28 GHZ/T
2m  h h




Magnetisation dynamics

e By averaging over the spins in the Bloch equation,

d(S(t } H
(S(t)) _ grops S) x H
dt h
we can express the torque equation for a general magnetisation field M as dMyd
M
dM
— =M x H

M = gupN(S)/V

e The micromagnetics approach allows for a classical description of the
magnetisation dynamics by treating the magnetisation as a continuous field M
subject to torques applied by magnetic fields H.



Precessional dynamics

e (Generalise torque equation to any magnetic energy by replacing H with the
effective field He

\H

eff
dM
Tar oM Hen -
where
M
1 oF
Heff —
po 0M

The energy density accounts for all relevant contributions to the magnetic
Hamiltonian (see MP1)

e Magnetisation precesses about its local effective field

Note that this torque equation conserves the norm of the magnetisation vector
and describes dynamics at constant energy

d d
CIMIZ=0 (M- Heg) =0



Linear excitations - Spin waves

e Small amplitude (linear) excitations of magnetisation are described by spin
waves

e (Consider a chain of spins uniformly aligned along an applied field Ho

T T T T T ?HO E = —N(gupS)Ho = Ey

e What is the smallest excitation possible? One spin reversal. There are two ways
to accomplish this:

1) Flip one spin along the chain

AR

2) Distribute the spin reversal by canting all spins

A A T f f E—Ey=lw < 2J



Spin waves
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e Spin waves are elementary excitations of a magnetic system

g
=
=

e Quantised spin-wave: magnon (cf phonons for elastic waves)

e [t is more favourable energetically to distribute flipped spin over all lattice sites,
rather than to have it localised to one lattice site.

(NB. Such excitations do exist - Stoner excitations - and these are important at
high energies)



Spin wave dispersion relations

e Consider a uniformly magnetised system along the positive z axis. Suppose there
is an applied external field Ho along the positive z direction:

[

M = M;m |m|| =1

o |et

e |If we allow for spatial variations in m, we need to also include exchange,
2
E=Ey+ Eo = —poMyHom, + A [(Vimg)? + - }

e From this expression, we can derive an expression for the effective field

1 OF 2A
H. o = — Hyz A \V&
& /L()MS om 0% o




Linearising the equations of motion

e Study small amplitude fluctuations of the magnetisation by linearising the
equations of motion

e Write the magnetisation in terms of static and dynamic components. Assume the
ground state consists of uniform magnetic state along +z:

m(r,t) = mg + dm(r,t) = (0,0,1) + (my(r,t), m,(r,1),0)

static dynamic

e Similarly, decompose the effective field into static and dynamic components:

Heff — Heff,O + heﬁ(ra t)

e ™~

Terms that Terms that
(depend on mOJ (depend on 5mJ




Linearising the equations of motion

e Rewrite the precession term in the Landau-Lifshitz equation in terms of static and
dynamic parts, retain only linear terms in the dynamic components:

dm
dm
—— = 7 (0m x Heg o + mo X heg)

dynamic dynamic

e Assume plane wave solutions for the dynamic part

mx,y(ra t) _ Coei(k-r—wt)

e | eft-hand side of the torque equation becomes

om = (my, my, 0)

dynamic magnetisation



Linearising the equations of motion

e |n a similar way, the terms on the right-hand side (RHS) of the equation become

d
d—rzl = —Y0 (5m X Heff70 + mg X heff)
e
- 2A
i | Sm x Ho3 A %0
R {my} m X Hyz Z X (MOMSV m)

. mge | | 0 —wg My Yy — 7
o my | | wg 0 My, k=70 | HO




Spin wave dispersion relation

e Condition of vanishing determinant of the 2x2 matrix gives the dispersion
relation for the spin waves:

W
A
— w4 w; =0
—= W = Wk :’}/()H()—FD]C2
where we have defined a spin-wave stiffness |
D — 2vA YoHo I
M,

e Spin waves in ferromagnets are dispersive with a “band gap” due to applied and
anisotropy fields

w 0w

k* Ok

e Other energy contributions will bring supplementary terms to the dispersion
relation



Brillouin light scattering spectroscopy

e Probe spin wave spectra by scattering light off surfaces

e Reflected photons give information about spin waves that
are created (Stokes) or annihilated (anti-Stokes)
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log spectral density

Mode confinement in nanostructures

e Translational invariance is broken in nanostructured magnetic elements

e Boundary conditions determine the quantisation conditions LR
..
Boundary condition oM o M
for magnetisation 8 — — R
s

Micromagnetics R D McMichael & M D Stiles, J Appl Phys 97, 10J901 (2005)
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Mode confinement in nanostructures  [FETEITE LS

e PBrillouin light scattering with nano-sized apertures and near-field imaging allows
confined modes to be probed

Microfocus BLS setup Edge modes in a ferromagnetic ellipse

f ’ Incident & scattered
- light

ip apex
with a
nano-size aperture

J Jersch et al, Appl Phys Lett 97, 152502 (2010)



Spin waves as probes of magnetic properties

e Example: Determine exchange constant A from frequencies of perpendicular
standing spin waves (PSSW)
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Information technologies with spin waves

Spin wave majority gates
S Klingler et al, Appl Phys Lett 106, 212406 (2015)
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A A Serga et al, Nat Commun 5, 4700 (2014)
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Magnetic relaxation

e How does magnetisation reach equilibrium?

dM
dt

Relaxation times TA

— —VOM X Hog = 0 at equilibrium

T+ longitudinal A
T2: transverse

Two possibilities:
() Two-step process (T2 << T1)

(i) Viscous damping (2T2 = T+)

M)|| is not conserved

MI|| is conserved

Overall result:

M spirals to
equilibrium



Phenomenology

(i) Two-step processes: Bloch-Bloembergen terms - ||M|| is not conserved

dM M, — M A
‘¢ = — M x H. ? > T T
dt Yo ( H)Z Ty J R 2
dM, ., M
k. — — ]_\/_[ X He T,y
1

(i) Viscous damping: Gilbert term — ||M|| is conserved Mx dM/dt

dM dM = dM/dt

84
—— = —voM X H.g - M x —

Only the Gilbert term is compatible with the basic assumption of
micromagnetics



Gilbert vs Landau-Lifshitz

The Gilbert term can be rewritten in the following way to make the physics more

transparent
dM o
(1+02) = = —oM x Hog — ~1°M x (M x Heg)
dt M,
directed along directed towards
precession instantaneous
trajectory effective field

This is referred to as the Landau-Lifshitz equation.

Note that a — the damping constant — determines the rate at which energy dissipation
can occur:

— Governs magnetisation reversal times
— Governs switching fields, currents

The Landau-Lifshitz equation gives a good description of the damped magnetisation
dynamics in strong ferromagnets (on the ~ns time scale).



Spin wave damping

e With the inclusion of Gilbert damping, linearised equations give

el b= la

e This leads to the complex frequencies

s (w — iaw)
W = TWE — 1O0WE
mxy 1 —|— 042
‘ w R~ twg — il o <€ 1 Weak damping

e Spin waves represent damped oscillations
In the magnetisation




Spin wave susceptibilities

e From linear response theory, it can be shown that the frequency-dependent
magnetic susceptibility can be written as

1
X(w)_zk:w—wk—FiFk

e The susceptibility is a complex-valued Green’s function and describes the
magnetic response to a driving field

m(w) = x(w)h(w)

Re(x) Im(x)

Linewidth measure
of damping




Relaxation processes

Q dM

M dt
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I Relaxation processes (intrinsic)

Magnon-magnon Magnon-electron

4-magnon process L
ks ky | q—k
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Also 2-, 3-magnon
processes

— (2dIN) sessao0.

a7 Exchange, anisotropy, ... a7 sd coupling, spin-orbit

AP Uy

Magnon-phonon Similar to pictures above



Relaxation processes (extrinsic)

e Uniform (FMR) mode is damped by scattering to finite k spin wave

e Note that linear momentum is not conserved in
this process

Question: How might this occur?



Relaxation processes (extrinsic)

e Example of non-local damping. Spin flips occur in neighbouring films.
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Dynamics of solitons

e \We’ve seen that domain walls, vortices and skyrmions are nonuniform, nontrivial
spin configurations — topological solitons

e By knowing their static profiles, how can we describe their motion (at velocity v)?

Plane wave

ezkx N ez(k::r;—fut)

e Unlike plane waves, in general it is not possible to translate static solution to
obtain moving solution. Need to satisfy Landau-Lifshitz!

e Need to use method of collective coordinates, Lagrangian formulation



Lagrangian formulation

e In order to describe domain wall motion, it is convenient to use a slight different
approach to describe the magnetisation dynamics

e [nstead of trying to solve the Landau-Lifshitz equation, we can use another
formulation in terms of the Lagrangian

M, -

,C = ¢(1 — COS (9) — g Lagrangian density
8

L = /dV L Lagrangian

e The idea is that if we can describe the domain wall in terms of its position X and
conjugate momentum P, then we can derive its dynamics directly from the

Lagrangian:
d oL 0oL _
dtox 0X
d OL 0L 0

dtop OP



Dissipation - Gilbert damping

e To describe the full dynamics, we need to include the dissipation term

Gilbert damping can be accounted for through a Rayleigh dissipation function of
the form:

 laM;

F=5-

<é2 + sin” 6 ¢2>

which appears in the equations of motion as

d 8[1 8L | 8 F —0 Equations of motion with
dt 0¢g Oq )

| aq dissipation
e / AV F

and the g’s are generalised coordinates.

where



Domain wall dynamics

e How does a domain wall move in response to applied fields and currents?

Recall Landau-Lifshitz equation

dM QYo
— = —yoM x H,
It Yo ff M.

M x (M x Heg)

e At equilibrium, the magnetisation is aligned along the direction of Het.

e Consider torques due to an applied field, Ho, along +z direction (i.e., left domain)

Z, Ho

1 4% | 5 M x H,
"u | —> —oM x (M x Hy)

f%;;




Domain wall dynamics

e Motion of the domain wall can be described by a one-dimensional model with

two variables:
X 0 (t) position of domain wall centre \
Collective

tt e } 119 /

0 “tilt” angle, measured from xz plane

e Xo(t) translates wall profile along x (direction of propagation),
¢o(t) ensures that Landau-Lifshitz is satisfied (not Galilean
invariant):

0(z,t) = 2 tan"! {exp ( z —Zfo(t)ﬂ

¢(QZ, t) = ¢ (t)

X
m = (cos ¢ sin 6, sin ¢ sin 6, cos 6)



Domain wall Lagrangian

e Take energy terms from MP1 (exchange, anisotropy, dipolar, Zeeman ...) and
integrate out the spatial degrees of freedom using trial solution to obtain Lagrangian

( )
— X
O(x,t) = 2tan™* [exp (_a: Ao(t))] o(x,t) = Po(t)
. m = (cos ¢ sin @, sin ¢ sin 0, cos 6) Trial solution
~
Berry phase (“Kinetic energy”) (Potential) Energy Eex = A (Vm)2
+
M : Ex = —K (m- &)
Lp=—" [ dV¢(1l—cosb) U(Xo,¢0) = | dV + |
Y Eq = —5,&01\/[ -Hy
+
Integrate out spatial variables £z = —#oM - Ho

g

(Domain wall) Lagrangian ]




Domain wall equations of motion

e From the Lagrangian and the dissipation function, derive the equations of motion
for the domain wall:

d 0L 9L  OF _
dt (9X() aAX'O | @XO B

--------------------

| — 0
dta% Do Do
X, 1.~ aU
=0 i~ oM, sin?
A + ag YoM s sin 2¢g AN

------------------------------------------------

Generalised forces



Domain wall motion under applied field

v A
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Walker field

e More complicated things can occur in realistic systems

Steady state (Animation)

Walker breakdown showing vortex nucleation at edges



Vortex dynamics

e The Lagrangian approach can be used to derive the equations of motion for a
vortex

e Parametrise with the core position in the film plane (Xo), topological charge (q),
and polarisation (p).

Collective coordinates

p=1,q=1 XO:(X())YO)
2, - RN
E ¢ eEt X\
¢ ~ st
\ ’ g Vortex core
N
p=1,q=—1
EOANZ
g F/f bﬁ 6&' ‘ ‘
.E f,-»- -C::/ \
= 7 < 10-20 nm
<=




Vortex dynamics

e \ortex Lagrangian with Gilbert damping leads to “Thiele” equation, which
describes the dynamics of the vortex core position

G x X D-Xg=
0T« 0 X,
where
M, _
G = / dV sinf (Vo x V) Gyrovector
Y
MS . 2
D = S dV (V@ ® VO +sin“0 Vo ® V¢) Damping tensor
* The gyrovector is e -
p=1, ¢¢ aEr\\ \»I:\\ p=-1,

~

d: film thickness



Vortex dynamics

e The natural motion for a magnetic vortex is gyrotropic. In fact, the motion is
intrinsically non-Newtonian. Consider the conservative case without damping:

: oU
G X X =
YT X,
With the definition of the gyrovector:
: oU
—GYy =
YT X,
: oU
GXy =
' 9Y,
For a Newtonian system, we have (for comparison)
d*X oU
144 p—
/ dtZ 8XO

mass

_ 2mMdpq




Summary

e |andau-Lifshitz equation provides framework to
describe damped precessional dynamics

e Spin waves
Linear (small amplitude) excitations, useful probes

e Relaxation processes
Gilbert, Bloch-Bloembergen, intrinsic and extrinsic
processes

e Domain wall and vortex dynamics
[ agrangian formulation, collective coordinates

A H
Mx dM/dt

dM/dt
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