

MP - Magnetisation Processes

Joo-Von Kim Centre for Nanoscience and Nanotechnology, Université Paris-Saclay 91120 Palaiseau, France

joo-von.kim@c2n.upsaclay.fr

• MP1

Quasi-static processes, domain states, nontrivial spin textures

• MP2

Precessional dynamics, dissipation processes, elementary and soliton excitations

• MP3

Spin-transfer and spin-orbit torques, current topics in magnetization dynamics

MP1: Quasi-static processes

- Overarching theme: Hysteresis loop
- Energy landscapes Which magnetisation configurations are possible, favourable?
- Reversal mechanisms
 How do we navigate this energy landscape?
- Time-dependent and thermal effects "Slow" dynamics and the limits of what we mean by "quasi-static"

Length scales

Time scales

Conduction spin relaxation

European School on Magnetism 2018, Krakow – Magnetisation Processes (MP1) – Kim, JV

The hysteresis loop

- Common characterisation of a magnetic material
- Captures physics across many length and time scales

"Quasi-statics": Navigating the energy landscape

- As field is varied, magnetic system may move through a variety of metastable energy states
- "Quasi-static" processes dominated by energy considerations, rather than torques (i.e., precessional dynamics)
- "Slow" dynamics, compared with ns-scale of fs-scale processes

Energy terms - Brief overview

Exchange

What contributes to the energy landscape?

Micromagnetic

 $E_{\rm ex} = A \left(\nabla \mathbf{m} \right)^2$

 $\mathbf{m} = \mathbf{M}/M_s$ $\|\mathbf{m}\| = 1$

$$E_K = -K \left(\mathbf{m} \cdot \hat{\mathbf{e}} \right)^2$$

Uniaxial form shown, higher orders are possible

Energy terms - Brief overview

Dipolar

What contributes to the energy landscape?

Zeeman

 $E_Z = -\mu_0 \mathbf{M} \cdot \mathbf{H}_0$

What contributes to the energy landscape?

 $E_{\rm DMI} = D_{ij} \cdot \mathbf{S}_i \times \mathbf{S}_j$

Example of a chiral interaction

 $E_{\rm DM} = D\mathbf{m} \cdot (\nabla \times \mathbf{m})$ $E_{\rm DM} = D[m_z (\nabla \cdot \mathbf{m}) - (\mathbf{m} \cdot \nabla) m_z]$

Energy terms - Interlayer coupling

Néel "Orange Peel" coupling

• Dipolar coupling due to induced magnetic charges at rough interfaces

Similar phenomenon for rough interfaces in multilayer

$$\begin{split} \mathcal{E} &= \mu_0 \int d^2 R \int d^2 R' \frac{\sigma_U(\vec{R}) \sigma_L(\vec{R'})}{\sqrt{D^2 + (\vec{R} - \vec{R'})^2}} \\ \text{Upper interface interface} \end{split}$$

Energy terms - Interlayer coupling

RKKY Coupling

- Indirect exchange coupling mediated by conduction electrons in spacer layer
- Related to Ruderman-Kittel-Kasuya-Yosida interaction between two magnetic impurities in an electron gas

Coupling oscillates with spacer layer thickness

$$E_{\rm RKKY} = -J(d)\mathbf{m}_i \cdot \mathbf{m}_j$$

Fe/Cr, Co/Cr, Co/Ru, Co/Cu/, Fe/Cu, ...

5µm

- On length scales of ~100 nm and above, magnetic order can be subdivided into different *domains*

Domains

2 µm

• Compromise between the short-range ferromagnetic exchange interaction and the long-range antiferromagnetic dipolar interaction

Domain walls

- The boundary between two magnetic domains is called a *domain wall*.
- Wall structure mainly determined by competition between the ferromagnetic exchange interaction (favours parallel alignment with neighbouring spins) and the uniaxial anisotropy (favours alignment along easy axis).
- Different wall types exist: Bloch, Néel, Vortex, Transverse ...
 Each minimises part of the dipolar energy

Vortex wall

Bloch walls

 Profile obtained by minimising the energy functional for the <u>exchange and uniaxial anisotropy</u> energies

Suppose m varies along x axis, with anisotropy axis along z

We seek to minimise

$$\mathcal{E} = \int dx \left[A \left(\frac{\partial \theta}{\partial x} \right)^2 + K_u \sin^2 \theta \right]$$

 Using variational calculus, obtain Euler-Lagrange equation for function that minimises integral

$$2A\frac{\partial^2\theta}{\partial x^2} - K_u \sin 2\theta = 0$$

• Solution is example of a *topological soliton*

$$\theta(x) = 2 \tan^{-1} \left[\exp\left(x/\Delta \right) \right]$$

domain wall width

 $\sigma = 4\gamma$

Filmmean School on Magnetism 2018, Krakow

Magnetisation Processes (MP1) - Kim, JV

Vortices

- In thin circular submicron magnetic elements ("*dots*"), dipolar energy can be minimised by forming **vortex states.**
- Magnetisation curls in the film plane and culminates perpendicular to the film plane at the vortex centre. Region with perpendicular component is called the vortex core.
- Another example of *topological solitons*.

MFM images of vortex cores

• Suitable ansatz for vortex profile:

 $\theta = \theta(\mathbf{r})$ $\phi(\mathbf{r}) = \varphi \pm \frac{\pi}{2}$

sign determines chirality **Vortices**

• Profile minimises volume charges and surface charges at edges

$$-
abla\cdot \mathbf{m}=0$$
 $\mathbf{m}\cdot \hat{\mathbf{r}}=0$
Volume charges vanish Edge surface charges vanish

- <u>Energy costs</u>: Vortex core leads to surface magnetic charges at the top and bottom surfaces, curling configuration costs exchange energy.
- The core profile results from a minimisation of these two energies.

Skyrmions

Magnetic states

- Skyrmions are like vortices but with m_z varying from +1 to -1
- Result from competition between exchange, anisotropy, and the chiral Dzyaloshinskii-Moriya interaction
- Another example of topological solitons

[lr/Co (0.6 nm)/Pt]n C Moreau-Luchaire et al, Nat Nanotechnol (2016)

Pt/Co/Ox

M Schott et al, Nano Lett (2017)

Pt/Co (1 nm)/Mg0 O Boulle et al, Nat Mater (2016)

- Skyrmions
- Inexact but useful *ansatz* for skyrmion profile:

$$\cos\theta(r) = \frac{4\cosh^2 c}{\cosh 2c + \cosh(2r/\Delta)} - 1$$
 Double wall

 $\mathbf{m} = (\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta)$

 $\mathbf{r} = (r, \varphi)$

Reversal mechanisms

- Magnetization reversal involves navigating through an energy landscape
- May involve intermediate states with nontrivial magnetization configurations
- Intermediate states are metastable energy states
- Minimizing energies allow us to guess/predict/describe intermediate states

Coherent reversal

- The magnetic configuration at a given applied field represents the local energy minimum under that applied field.
- Simplest example that contains essential physics: magnetic nanoparticle with <u>uniaxial anisotropy</u>

Coherent reversal: Stoner-Wohlfarth astroid

 Metastable states: Minimize Zeeman and anisotropy energy (in macrospin approximation) for arbitrary field angles

$$E = -\mu_0 H M_s \cos\left(\theta - \theta_H\right) - K_u \cos^2\theta$$

Stoner-Wohlfarth: Hysteresis loops

Examples of astroids

- First experimental observation (2D system)
- 25 nm Co cluster

W Wernsdorfer et al, Phys Rev Lett 78, 1791 (1997)

- Experimental astroid for magnetic nanopillar (200 x 100 x 2 nm)
- Magnetic tunnel junction, typical MRAM device

T Devolder et al, Appl Phys Lett 98, 162502 (2011)

Domain wall nucleation and propagation

• In some circumstances it is more favourable to nucleate a domain wall, rather than rotate all moments coherently across sample

 H_0

 Need to balance energy cost in creating a domain wall with energy gain from Zeeman interaction

$$E(r) = (2\pi rd)\sigma - (\pi r^2 d)(2\mu_0 M_s H_0)$$

Zeeman energy

European School on Magnetism 2018, Krakow – Magnetisation Processes (MP1) – Kim, J

Domain wall nucleation and propagation

Reversal through domain walls generally leads to lower coercivities than coherent reversal

European School on Magnetism 2018, Krakow – Magnetisation Processes (MP1) – Kim, JV

Reversal in dots

 In circular dots where vortices are metastable states, magnetisation reversal occurs through the nucleation and annihilation of vortices

K Guslienko et al, *Phys Rev B* **65**, 024414 (2001)

Reversal in dots

• In perpendicularly-magnetised dots with DMI, reversal can take place through skrymion nucleation and annihilation

1 µm diameter dots

Reversal in dots

- A G Kolesnikov, J Magn Magn Mater 429, 221 (2017)
- Simulations show that intermediate states can depend strongly on magnetic parameters

Hysteresis: sweep rate

- Does it matter how *fast* we sweep the field?
- What does "quasi-statics" mean in this context?
- Slow dynamics ... but slow compared to what?
- Fluctuations and energy barriers are the key

Sweep rates matter

• How fast you navigate the energy landscape matters

Courtesy of J Vogel, Institut Néel, Grenoble

Thermal fluctuations

Particle (red) experiences random collisions (forces) due to thermal environment (blue)

Precessing magnetic moment experiences random fields due to thermal environment

Thermal activation

Thermal fluctuations give you a finite probability of escaping a metastable state. How patient are you?

Magnetic aftereffect

- Thermal effects necessarily introduce the notion of time into a measurement
- What happens when a field is suddenly applied? Thermal fluctuations eventually drive system into lower energy state

Domain wall hopping

 Thermally-activated domain wall hopping between two metastable states can be revealed using scanning probe techniques

Example:

Nitrogen-vacancy centre magnetometry on 1-nm thick CoFeB films

Domain wall

Stray field measurement

37

Domain wall hopping

J-P Tetienne et al, Science 334, 1366 (2014)

• Laser-induced heating can control hopping rates between two pinning sites

 Modelling with two-state system accounts for experimental results

$$\Gamma \equiv \frac{1}{\tau} = \frac{1}{\tau_0} \exp\left(-\frac{E_a}{k_B T}\right)$$

U (eV)

Transition state theory

- Connection to (higher-frequency) modes through the Arrhenius prefactor (attempt frequency)
- Example: Langer's theory of transition rates

$$\Gamma \equiv \frac{1}{\tau} = \frac{\lambda_+}{2\pi} \Omega_0 \exp\left(-\frac{E_a}{k_B T}\right)$$

S

J S Langer, Ann Phys 54, 258 (1969)

Dynamical prefactor

Linearised dynamics at S, rate of growth of unstable mode

Ratio of curvatures

$$H = \left\{ \frac{\partial^2 E}{\partial \eta_i \partial \eta_j} \right\}$$

Hessian matrix

$$\Omega_0 = \sqrt{\frac{\det H^A}{|\det H^S|}} = \sqrt{\frac{\Pi_i \lambda_i^A}{\Pi_j |\lambda_j^S|}}$$

Ratio of products of eigenvalues of H

Summary

Hysteresis loop as theme for quasi-statics

• Energy landscapes (Meta)stable magnetisation configurations Domain walls, vortices, skyrmions, ...

- Reversal mechanisms Navigate energy landscape through nontrivial states Rotation; nucleation, propagation, annihilation
- Time-dependent and thermal effects Measurement times matter Fluctuations drive transitions out of metastable states

Domain wall depinning

- Fluctuations can drive domain walls out of a local potential well
- Probability distribution of residence (depinning) times used to determine energy barriers

42

Domain wall creep

- In disordered films, motion is more complicated under low fields
- Competition between domain wall energy and disorder potential
- Creep motion occurs, involving thermally-activated avalanches
- Useful analogy: Elastic band moving across rough surface

43

V Jeudy et al, *Phys Rev Lett* **117**, 057201 (2016)

S Ferroro et al, *Phys Rev Lett* **118**, 147208 (2016)

Domain wall creep: Energetics

S Lemerle et al, Phys Rev Lett 80, 849 (1998)

• Balance between increase in elastic energy and decrease in pinning energy

Domain wall creep: barriers and motion

- Energy barrier has power law dependence ($\mu = 1/4$ for 2D systems)
- Avalanches critical phenomena

1.0

1.0

V Jeudy et al, *Phys Rev Lett* **117**, 057201 (2016)