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Outline
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MP1 
Quasi-static processes, domain states, nontrivial spin textures 

MP2 
Precessional dynamics, dissipation processes, elementary and soliton 
excitations 

MP3 
Spin-transfer and spin-orbit torques, current topics in magnetization 
dynamics 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MP1: Quasi-static processes
!3

Overarching theme: Hysteresis loop  

Energy landscapes  
Which magnetisation configurations are possible, favourable?  

Reversal mechanisms 
How do we navigate this energy landscape? 

Time-dependent and thermal effects 
“Slow” dynamics and the limits of what we mean by “quasi-static”
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Length scales
!4

Magnetic 
nanostructures

Local moments

Exchange correlation

0.1

nm

1

10

100

103

Macroscopic domains

Magnetism Spin transport

Fermi wavelength

Electron mean free path

Spin diffusion length



European School on M
agnetism

 2018, Krakow
 – M

agnetisation Processes (M
P1) – Kim

,JV

Time scales
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Domain wall creepSpin glass relaxation

Domains in nanoparticle arrays

Data storage
Spin waves

Conduction spin relaxation

Ultrafast laser-induced 
thermalisation
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The hysteresis loop
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Common characterisation of a magnetic material


Captures physics across many length and time scales

M

Remanence

Coercivity

Saturation
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“Quasi-statics”: Navigating the energy landscape
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M

Remanence

Coercivity

Saturation

As field is varied, magnetic system may move through a variety of metastable 
energy states


“Quasi-static” processes dominated by energy considerations, rather than torques 
(i.e., precessional dynamics)


“Slow” dynamics, compared with ns-scale of fs-scale processes

Energy
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Energy terms - Brief overview
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Exchange

Anisotropy

Eex = A (rm)2Eex = �JijSi · Sj

EK = �K (m · ê)2

Atomistic Micromagnetic

Uniaxial form shown, 
higher orders are possible

J > 0: ferromagnetic

J < 0: antiferromagnetic

What contributes to the 
energy landscape?

J1, J2, J3, …

m = M/Ms

kmk = 1

E1

E2

E1 ≠ E2
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Ed = �1

2
µ0M ·Hd

Energy terms - Brief overview
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Dipolar

Zeeman

Ed = µ0

"
µi · µj

r3ij
� 3 (µi · rij) (µj · rij)

r5ij

#

Hd = �r�m

Magnetostatic 
potential

Demagnetising 
field

EZ = �µ0M ·H0

H0

Applied 
field

What contributes to the 
energy landscape?

rij

µ = gµBS
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Energy terms - Brief overview
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Dzyaloshinskii-Moriya

EDMI = Dij · Si ⇥ Sj

What contributes to the 
energy landscape?

E1

E2

E1 ≠ E2

Example of a chiral interaction

lemons oranges
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Energy terms - Brief overview
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Dzyaloshinskii-Moriya

Non-centrosymmetric crystals (e.g., B20) Interface-induced

NATURE NANOTECHNOLOGY | VOL 8 | MARCH 2013 | www.nature.com/naturenanotechnology 153

commentary

on the controlled motion of these particle-
like magnetic nanostructures.

Today’s hard-disk drives achieve very 
high densities of information storage, 
but the complexity and fragility of their 
mechanical parts motivate the need for 
solid-state devices with comparable or 
higher bit densities. The archetype of such 
devices is the so-called racetrack memory5 
in which the information is coded in a 
magnetic nanoribbon by a train of up or 
down magnetic domains separated by 
domain walls (DWs). The train of DWs can 
be moved electrically by spin torque to read 
or write the magnetic information. However, 
challenges such as reducing the critical 
currents for DW motion while keeping 
high velocities and avoiding the detrimental 
effects of defects must be addressed before 
this approach can be translated into a 
competitive technology. The intrinsic 
properties of magnetic skyrmions might 
help tackle most of these issues. 

The origin of skyrmions
The spin texture of a magnetic skyrmion6 

is a stable configuration (or metastable 
in some cases) that, in most systems 
investigated up to now, originates 
from chiral interactions, known as 
Dzyaloshinskii–Moriya interactions 
(DMIs)7–9. Such interactions are induced 
because of the lack or breaking of inversion 
symmetry in lattices or at the interface 
of magnetic films, respectively. The DMI 
between two atomic spins S1 and S2 can be 
expressed as: HDM = −D12 · (S1 × S2).

For ultrathin magnetic films, which 
are the main focus here, interfacial DMIs 
have been predicted10 from a 3-site indirect 
exchange mechanism11 between two atomic 
spins S1 and S2 with a neighbouring atom 
having a large SOC. The resulting DMI 
vector is perpendicular to the plane of the 
triangle (Fig. 1e). At the interface between 
a ferromagnetic thin layer and a metallic 
layer with a large SOC, this mechanism 
generates a DMI for the interface spins S1 
and S2 with the DMI vector D12 shown in 
Fig. 1f (ref. 10). The existence of such an 
interfacial DMI has also been derived from 
ab initio calculations for the Ir(111)/Fe 

interface12. The magnitude of the interfacial 
DMI can be very large, ~10–20% of 
the exchange interaction in analytical 
calculations10,11 and up to 30% in ab initio 
calculations12.

Starting from a ferromagnetic state 
with S1 parallel to S2, the DMI tilts S1 with 
respect to S2 by a rotation around D12. In 
a two-dimensional (2D) ferromagnet with 
uniaxial anisotropy and a non-negligible 
DMI compared with the exchange 
interaction, the energy is minimized by the 
skyrmion structure in Fig. 1a for D12 ^ R12 
and Fig. 1b for D12 || R12, where  R12 is the 
vector joining the site of S1 to the site of 
S2. The extension of this principle to a 3D 
lattice is straightforward, the skyrmion 
structure is obtained by a translation 
along the anisotropy axis and is made of 
skyrmion tubes.

A large value of the ratio between 
D = |D12| and the exchange coupling J 
favours a faster rotation of the spin, reducing 
the skyrmion size (at least in the absence 
of other interactions like edge effects). The 
smaller skyrmion size in skyrmion lattices 

HDM = −D12���(S1 × S2)

Large SOC

D12

S2

S1

Large SOC

D12

S2

S1

a

b

dc

90 nm

e f

Figure 1 | Spins in a skyrmion. a,b, Skyrmions in a 2D ferromagnet with uniaxial magnetic anisotropy along the vertical axis. The magnetization is pointing up on 
the edges and pointing down in the centre. Moving along a diameter, the magnetization rotates by 2π around an axis perpendicular to the diameter (a) and by 
2π around the diameter (b), which corresponds to different orientations of the Dzyaloshinskii–Moriya vector. c, Lorentz microscopy image13 of a skyrmion lattice 
(of the type shown in  Fig. 1b) in Fe1−xCoxSi. d, Sketch of a nano-skyrmion structure observed in Fe monolayers on Ir(111) (ref. 12). e, Schematic of a DMI generated 
by indirect exchange for the triangle composed of two atomic spins and an atom with a strong SOC11. f, Sketch of a DMI at the interface between a ferromagnetic 
metal (grey) and a metal with a strong SOC (blue). The DMI vector D12 related to the triangle composed of two magnetic sites and an atom with a large SOC 
is perpendicular to the plane of the triangle. Because a large SOC exists only in the bottom metal layer, this DMI is not compensated by a DMI coming from a 
symmetric triange10. Figure reproduced with permission from: a,b, ref. 24, © K. Everschor, Univ. of Köln; c, ref. 13, © 2010 NPG; d, ref. 12, © 2011 NPG.

© 2013 Macmillan Publishers Limited. All rights reserved

Co, Fe …

Pt, Ir …

EDM = D [mz (r ·m)� (m ·r)mz]EDM = Dm · (r⇥m)

What contributes to the 
energy landscape?

Si
Mn

Mn

Ge

Substrate with large 
spin-orbit coupling 

(SOC)

EDMI = Dij · Si ⇥ Sj

E1

E2

E1 ≠ E2
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Energy terms - Interlayer coupling
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σ = M⃗ · n⃗

surface magnetic charge 
density

fringing fields

M

Stray magnetic 
charges appear at 

surface of rough film

Upper interface

Lower interface

DSimilar phenomenon 
for rough interfaces in 

multilayer

E = µ0

∫

d2R

∫

d2R′
σU (R⃗)σL(R⃗′)

√

D2 + (R⃗ − R⃗′)2Upper 
interface

Lower 
interface

Néel “Orange Peel” coupling
Dipolar coupling due to induced magnetic charges at rough interfaces
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Energy terms - Interlayer coupling
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Fe/Cr, Co/Cr, Co/Ru,  
Co/Cu/, Fe/Cu, ...

Coupling oscillates with spacer layer thickness

RKKY Coupling
Indirect exchange coupling mediated by conduction electrons in spacer layer


Related to Ruderman-Kittel-Kasuya-Yosida interaction between two magnetic 
impurities in an electron gas

GMR 
signal

ERKKY = �J(d)mi ·mj
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Magnetic states
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Domains

On length scales of ~100 nm and above, magnetic order can be subdivided into 
different domains

Compromise between the short-range ferromagnetic exchange interaction and the 
long-range antiferromagnetic dipolar interaction

2 µm

+ + + + +

– – – – –

– – – – –

+ + + + +
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Magnetic states
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Domain walls

The boundary between two magnetic domains is called a domain wall.


Wall structure mainly determined by competition between the ferromagnetic 
exchange interaction (favours parallel alignment with neighbouring spins) and the 
uniaxial anisotropy (favours alignment along easy axis).


Different wall types exist: Bloch, Néel, Vortex, Transverse ... 
Each minimises part of the dipolar energy

Transverse wall

Vortex wall
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Magnetic states
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Bloch walls

Profile obtained by minimising the energy functional for the 
exchange and uniaxial anisotropy energies 
 
Suppose m varies along x axis, with anisotropy axis along z 
 
We seek to minimise

E =

�
dx

�
A

�
��

�x

�2

+ Ku sin2 �

�

Using variational calculus, obtain Euler-Lagrange equation for 
function that minimises integral

2A
�2�

�x2
� Ku sin 2� = 0

Solution is example of a topological soliton

x

�

domain wall width

domain wall energy density
� = 4

p
AKu

� =
p
A/Ku

✓(x) = 2 tan�1 [exp (x/�)]
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Magnetic states
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Vortices

In thin circular submicron magnetic elements (“dots”), 
dipolar energy can be minimised by forming vortex states.


Magnetisation curls in the film plane and culminates 
perpendicular to the film plane at the vortex centre. Region 
with perpendicular component is called the vortex core.


Another example of topological solitons.
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H

M
/M

s

Annihilation

Vortex 
displacement

Nucleation

Fig. 4. Scheme of the vortex magnetization reversal in a cylindrical dot
applying an in-plane magnetic field (H ). The remanent state corresponds
to a centered vortex (courtesy of K. Buchanan).

annihilation (Han) and nucleation (Hn) fields have been
studied theoretically and experimentally for 2D arrays of
soft magnetic dots. Simple analytical approximations sug-
gested for the dot magnetization distributions (Section 2)
allow one to consider the transition from the vortex to
single-domain state under the influence of the field. Mag-
netostatic, exchange and Zeeman energies were taken into
account for the analysis. The magnetic state of each dot
in an applied field was treated in Refs. [4, 5] as an off-
centered rigid vortex structure. This rigid vortex model
yields analytical expressions for the size-dependent ini-
tial susceptibility, and the vortex nucleation and the anni-
hilation fields.4!5 The interdot magnetostatic interaction
plays an important role in the magnetization reversal for
arrays when the interdot distance is smaller than the dot
radius, where the initial susceptibility increases and both
the nucleation and annihilation fields decrease. The ana-
lytical predictions were compared to micromagnetic simu-
lations, and limitations of the model were discussed. The
calculations agree well with the experimental data within
the limit of weak inter-dot coupling.

3.1. Geometrical Stability of the Vortex State in
Magnetic Dots: Phase Diagram and
Energy Barriers

The calculations of the geometrical stability of the vortex
state were conducted in Refs. [11–14]. The vortex mag-
netic phase diagram was plotted in Ref. [11] on the base
of calculations of the vortex state energy9 and the ener-
gies of single-domain (in-plane and out-of-plane) states.16

The phase diagram is universal for soft magnetic dots if
the geometrical sizes (R, L) are normalized to the material
exchange length,12 see Figure 5.

The stability of a magnetic vortex with respect to dis-
placement of its center in a nano-scale circular cylinder
made of soft ferromagnetic material was calculated by
Metlov et al.11 using the “side charges free” model of the

3210
L/LE

R
/L

E

6

4

2

0

Fig. 5. Magnetic phase diagram of cylindrical dots with radius R and
thickness L. Three magnetization states are stable: vortex (upper part),
in-plane single domain (small thickness) and perpendicular single domain
(small radii). The energy equilibrium lines are shown as solid lines. The
dashed line in the left corrsponds to the border of stability of the vortex
state. The dot-dashed line corresponds to the equilibrium vortex core
radius. LE is the exchange length (LE ≈ 18 nm for permalloy).

shifted vortex. A mode of vortex displacement producing
no magnetic charges on the cylinder side was proposed
and the corresponding absolute single-domain radius of
the cylinder was calculated as a function of its thickness
and the exchange length of the material. In cylinders with
radii less than the single-domain radius, the vortex state is
unstable and is absolutely prohibited, so that the distribu-
tion of the magnetization vector in such cylinders in zero
applied field is uniform (or quasi-uniform). The line of
the vortex state stability is located essentially lower than
the energy equilibrium line vortex/(in-plane single domain
state). The phase diagram of nano-scale cylinders includ-
ing the stability line and the metastability region is calcu-
lated in Refs. [11 and 17] (see Fig. 5).

The equation for the vortex magnetization distribution
was analyzed taking exact account of the magnetostatic
field inside a dot.14 The limitations and applicability of
the “exchange-dominated” vortex ansatz9 were discussed
in detail in Ref. [14]. It is shown that for the transi-
tion from the vortex to perpendicular single-domain state,
the magnetization distribution changes continuously while
retaining axial symmetry. The equation for the vortex mag-
netization distribution was derived in Ref. [14], which
generalizes the “exchange-dominated” vortex ansatz.9 This
equation is applicable for the case of small dot radii of
about an exchange length, when the vortex core radius and
the dot radius are comparable. The critical line of the tran-
sition from a vortex to a perpendicular single-domain state
was calculated analytically as the border of the perpendic-
ular single-domain state stability. The analytical equations
derived in Refs. [4, 5, 11, 14] can be used as a benchmark
for consideration of the magnetization dynamics and mag-
netization reversal in soft magnetic nanodots possesing a
vortex ground state.

A simple analytical ansatz for the quasiuniform “leaf”
magnetization state in a thin circular nanocylinder made

J. Nanosci. Nanotechnol. 8, 2745–2760, 2008 2749

Phase diagram for existence of vortex state

LE ~ 10-20 nm

(exchange length)

MFM images of vortex cores
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saturation magnetization) that cannot be reduced to the
ground state (uniform m) by any finite deformation. The
Bloch domain wall is an example of a 1D topological soli-
ton. We can neglect the dependence on the z-coordinate
along the dot thickness for thin magnetic elements (dots)
and assume a 2D magnetization distribution m!!" t# =
M!!" t#/Ms. The vector m!x"y# maps the xOy plane of
the dot to the surface of a unit sphere: m2 = 1. We can
parameterize the vector m by the spherical angles $"%
and define a topological invariant quantity (topological
charge or degree of mapping) for a given magnetization
distribution:7

q = 1
4&

∫

sin$!!#d$!!#d%!!# (1)

where $!!# and %!!# are solutions of the Landau-
Lifshitz equation of motion, ' = !x"y#, and m =
!sin$ cos%" sin$ sin%" cos$#. For q ̸= 0 the vector
m(!) completely covers the unit sphere, and the value
of the vorticity q does not change under any continuous
deformation of the function m!x"y#. The soliton solutions
(point singularities) for a ferromagnet were first consid-
ered by Döring.8 Subsequently it is was shown by Belavin
and Polyakov8 that metastable states of the 2D infinite
isotropic ferromagnet can be written within the exchange
approximation in the simple form:

tan
(

$

2

)

=
(

'0

'

) "q"
(2)

where '0 is the radius of localization of the soliton.
This solution can be obtained from the ansatz: $!x"y#=
$!'#"%!x"y# = q(+%0, where '"( are polar coordi-
nates, and %0 is some constant phase.
Due to two-dimensionality of the problem under con-

sideration, it is convenient to introduce the dimen-
sionless complex variables ) = !x + iy#/R and #) =
!x − iy#/R, and the complex function w!)" #)# =
tan!$!x"y#/2# exp!i%!x"y##. Here R is in-plane dot size
(the radius for circular dots). The magnetization compo-
nents then can be expressed as:

mx + imy =
2w

1+ww
" mz =

1− ww

1+ww
" m2 = 1 (3)

The single Belavin-Polyakov soliton can be described
simply by the function w = )q with vorticity q > 0.
This complex representation allows one to calculate the
exchange energy of the soliton. It can be shown that
the exchange energy can be minimized using an arbi-
trary analytical function w!)# that satisfies the condition
*w/* #) = 0, and is proportional to "q". The zeros of the
complex function w!)# correspond to the centers of the
solitons. Usually the theory of 2D solitons is for the case
of infinite xy-plane and negligible magnetostatic energy,
which corresponds to a magnetization distribution m!x"y#.
But for a finite magnetic particle (dot) we also have the

additional magnetostatic energy contribution to the total
energy. This energy is of a principal importance to describe
the magnetization reversal and low-lying eigenfrequencies
of the spin excitations over the soliton (vortex) ground
state. For a thin cylindrical particle with radius R, in order
to describe the magnetic vortex and minimize the magne-
tostatic energy, Usov et al.9 suggested the analytical ansatz
for m= !m'"m("mz#:

m' = 0" m( = sin$!'#= 2b'
b2+'2

if '≤ b"

m( = 1 if '> b" mz =± cos$!'#

(4)

where the parameter b is the radius of the vortex core. The
value of b can be calculated by minimizing the total mag-
netic energy of the particle, which consists of the exchange
energy and energy of the face magnetic charges (due to
mz ̸= 0). The vortex consists of a core (' ≤ b) with mag-
netization deviating from being in the dot plane, and the
main part with an in-plane flux-closure magnetization dis-
tribution (no magnetic charges, see Fig. 2). Ansatz (4) is
indeed a half of the Belavin-Polyakov soliton at ' ≤ b
(vortex core) plus some in-plane magnetization distri-
bution. We will consider below magnetic vortices with
q =+1 (vortex) or q = − 1 (antivortex) only. A magnetic
vortex can also be characterized by its chirality C = ±1
(direction of rotation of in-pane static magnetization,
counter-clockwise or clockwise) and polarization of the
core p = mz(0), where p = ±1 (direction of the mz com-
ponent in the vortex center). We will use the ansatz (4)
as our basic model of the magnetic vortex centered in
cylindrical dot. In the equation % = q(+%0, the phase is
%0 = C&/2.
To describe properly the vortex magnetization evolution

and dynamics we need to introduce a reasonable descrip-
tion of the vortex shifted from the equilibrium position
(center of the dot, see Fig. 3). The main analytic models
of magnetic vortices in confined geometries were devel-
oped in Refs. [4–5] and [9–11]. We will consider below
the following models of the shifted vortex:
(1) rigid vortex,5 where the vortex shifts while preserving
its shape;

p, C

Fig. 2. Vortex magnetization state in cylindrical dot with thickness L
and radius R. The arrow in the center shows direction of the vortex core
polarization (p =+1). The vortex chirality is clockwise (C = − 1).

J. Nanosci. Nanotechnol. 8, 2745–2760, 2008 2747

L

R

LE =

s
2A

µ0M2
s
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Vortices

Suitable ansatz for vortex profile:
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saturation magnetization) that cannot be reduced to the
ground state (uniform m) by any finite deformation. The
Bloch domain wall is an example of a 1D topological soli-
ton. We can neglect the dependence on the z-coordinate
along the dot thickness for thin magnetic elements (dots)
and assume a 2D magnetization distribution m!!" t# =
M!!" t#/Ms. The vector m!x"y# maps the xOy plane of
the dot to the surface of a unit sphere: m2 = 1. We can
parameterize the vector m by the spherical angles $"%
and define a topological invariant quantity (topological
charge or degree of mapping) for a given magnetization
distribution:7

q = 1
4&

∫

sin$!!#d$!!#d%!!# (1)

where $!!# and %!!# are solutions of the Landau-
Lifshitz equation of motion, ' = !x"y#, and m =
!sin$ cos%" sin$ sin%" cos$#. For q ̸= 0 the vector
m(!) completely covers the unit sphere, and the value
of the vorticity q does not change under any continuous
deformation of the function m!x"y#. The soliton solutions
(point singularities) for a ferromagnet were first consid-
ered by Döring.8 Subsequently it is was shown by Belavin
and Polyakov8 that metastable states of the 2D infinite
isotropic ferromagnet can be written within the exchange
approximation in the simple form:

tan
(

$

2

)

=
(

'0

'

) "q"
(2)

where '0 is the radius of localization of the soliton.
This solution can be obtained from the ansatz: $!x"y#=
$!'#"%!x"y# = q(+%0, where '"( are polar coordi-
nates, and %0 is some constant phase.
Due to two-dimensionality of the problem under con-

sideration, it is convenient to introduce the dimen-
sionless complex variables ) = !x + iy#/R and #) =
!x − iy#/R, and the complex function w!)" #)# =
tan!$!x"y#/2# exp!i%!x"y##. Here R is in-plane dot size
(the radius for circular dots). The magnetization compo-
nents then can be expressed as:

mx + imy =
2w

1+ww
" mz =

1− ww

1+ww
" m2 = 1 (3)

The single Belavin-Polyakov soliton can be described
simply by the function w = )q with vorticity q > 0.
This complex representation allows one to calculate the
exchange energy of the soliton. It can be shown that
the exchange energy can be minimized using an arbi-
trary analytical function w!)# that satisfies the condition
*w/* #) = 0, and is proportional to "q". The zeros of the
complex function w!)# correspond to the centers of the
solitons. Usually the theory of 2D solitons is for the case
of infinite xy-plane and negligible magnetostatic energy,
which corresponds to a magnetization distribution m!x"y#.
But for a finite magnetic particle (dot) we also have the

additional magnetostatic energy contribution to the total
energy. This energy is of a principal importance to describe
the magnetization reversal and low-lying eigenfrequencies
of the spin excitations over the soliton (vortex) ground
state. For a thin cylindrical particle with radius R, in order
to describe the magnetic vortex and minimize the magne-
tostatic energy, Usov et al.9 suggested the analytical ansatz
for m= !m'"m("mz#:

m' = 0" m( = sin$!'#= 2b'
b2+'2

if '≤ b"

m( = 1 if '> b" mz =± cos$!'#

(4)

where the parameter b is the radius of the vortex core. The
value of b can be calculated by minimizing the total mag-
netic energy of the particle, which consists of the exchange
energy and energy of the face magnetic charges (due to
mz ̸= 0). The vortex consists of a core (' ≤ b) with mag-
netization deviating from being in the dot plane, and the
main part with an in-plane flux-closure magnetization dis-
tribution (no magnetic charges, see Fig. 2). Ansatz (4) is
indeed a half of the Belavin-Polyakov soliton at ' ≤ b
(vortex core) plus some in-plane magnetization distri-
bution. We will consider below magnetic vortices with
q =+1 (vortex) or q = − 1 (antivortex) only. A magnetic
vortex can also be characterized by its chirality C = ±1
(direction of rotation of in-pane static magnetization,
counter-clockwise or clockwise) and polarization of the
core p = mz(0), where p = ±1 (direction of the mz com-
ponent in the vortex center). We will use the ansatz (4)
as our basic model of the magnetic vortex centered in
cylindrical dot. In the equation % = q(+%0, the phase is
%0 = C&/2.
To describe properly the vortex magnetization evolution

and dynamics we need to introduce a reasonable descrip-
tion of the vortex shifted from the equilibrium position
(center of the dot, see Fig. 3). The main analytic models
of magnetic vortices in confined geometries were devel-
oped in Refs. [4–5] and [9–11]. We will consider below
the following models of the shifted vortex:
(1) rigid vortex,5 where the vortex shifts while preserving
its shape;

p, C

Fig. 2. Vortex magnetization state in cylindrical dot with thickness L
and radius R. The arrow in the center shows direction of the vortex core
polarization (p =+1). The vortex chirality is clockwise (C = − 1).

J. Nanosci. Nanotechnol. 8, 2745–2760, 2008 2747

Energy costs: Vortex core leads to surface magnetic charges at 
the top and bottom surfaces, curling configuration costs 
exchange energy.


The core profile results from a minimisation of these two 
energies.

Profile minimises volume charges and surface charges at edges

sign determines 
chirality

Volume charges vanish Edge surface charges vanish
Simulated core profile

�r ·m = 0 m · r̂ = 0

m = (cos� sin ✓, sin� sin ✓, cos ✓)

r = (r,')

✓ = ✓(r)

�(r) = '± ⇡

2
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Skyrmions

Skyrmions are like vortices but with mz varying from +1 to -1


Result from competition between exchange, anisotropy, and 
the chiral Dzyaloshinskii-Moriya interaction


Another example of topological solitons

Vortex

Skyrmion

The best fit for the size and field dependence of circular-shaped
domain configurations is obtained with DMIs that are small
but non-negligible. Indeed, it is known that the different
structures of the two interfaces in Pt|Co|Pt-like trilayers induce a
non-zero DMI27,29.

To confirm the large DM magnitude in Ir|Co|Pt multilayers, we
developed a second approach to estimate it from the analysis of the
STXM images at remanence. This method relies on the quantitat-
ive analysis of the mean width of the perpendicular magnetic
domains. From the images obtained at zero field after demagneti-
zation, shown as an inset in Fig. 3, we measured the average
domain width to be 106 ± 20 nm for the Ir|Co|Pt multilayers.
The same analysis of similar images for the symmetric Pt|Co|Pt
multilayers led to a mean domain width of 303 ± 30 nm. In
Fig. 3, these experimental values are compared with those obtained
in a series of micromagnetic simulations as a function of the DMI,
which allows an estimation of |D|. The material parameters used in
these simulations are the same as those that gave Fig. 2b. From this
second approach we find that the DMI is about 1.6 ± 0.2 mJ m–2

for the asymmetric Ir|Co|Pt multilayers or 0.2 ± 0.2 mJ m–2 for
the symmetric Pt|Co|Pt sample, and thus close to the values
derived from the field dependence of the skyrmion size. Once
again, we emphasize that the domain width found in Pt|Co|Ir, in
the 100 nm range at zero field, cannot be expected with only
dipolar interactions21.

As mentioned above, we also evaluated how our estimation of the
DMI is modified if we take into account the proximity-induced
magnetization of Ir and Pt (Supplementary Information). We find
that, in this case, the DM magnitude from the asymmetric
multilayers is about 1.4 ± 0.3 mJ m–2, the actual value probably
being between this latter value and 1.6 ± 0.2 mJ m–2 given above.
In consequence, all these results converge to a very large interfacial
DMI, which enables the observation of skyrmions in technologically
relevant systems of magnetic multilayers.

Room temperature isolated skyrmion in disks
As described in the previous section, we found from two indepen-
dent analyses of the magnetic configurations that very large DMI
and skyrmions exist at r.t. in asymmetric (Ir|Co|Pt)10 multilayered
films. Here we demonstrate that isolated nanoscale skyrmions can

be stabilized at r.t. in nanodisks and nanostrips patterned in our
multilayers by electron-beam lithography and ion-beam etching.
Figure 4a shows the field dependence of the diameter of an
approximately circular domain located close to the centre of a
500-nm-diameter disk, and this dependence is compared, as we
did in the first section, with that obtained in micromagnetic simu-
lations. Even though the agreement is not as good as that in the
extended films shown in Figs 1 and 2, especially in the low-field
region, again a major outcome of these simulations is that it is
not possible to stabilize any bubble-like domain in submicro-
metre-sized disks without introducing large DM values of at
least 1.5 mJ m–2. As the winding number of the simulated circular
domains is, after stabilization, always equal to one, we can con-
clude that the experimental images correspond to nanoscale sky-
rmions with a chirality fixed by the sign of D. Figure 4b shows
STXM images of 300 nm disks and tracks 200 nm wide with
even smaller skyrmions that are stable down to very small fields
(∼8 mT) of dimensions that range from 90 nm close to a zero
field to 50 nm in an applied field. That the observed skyrmion
diameter does not depend significantly on the disk diameter was
expected from our previous numerical study25 in which it
depends rather on the effective ratio between the DM and
exchange interactions, as long as the DM magnitude remains
smaller than the threshold value that corresponds to negative
domain-wall energy. During the submission of this work, and
also in multilayers, Woo et al.40 reported the r.t. observation of
multiple skyrmions of relatively large diameter (around 400 nm)
in disks of diameter 2 µm patterned in Pt|Co|Ta multilayers.

Conclusion
Our r.t. observation of individual sub-100 nm skyrmions that are
produced in magnetic multilayers by a strong and additive inter-
facial chiral interaction represents the main achievement of this
work. Ten repetitions of the Pt|Co|Ir unit are enough to stabilize
firmly the skyrmions against thermal fluctuations at r.t. We
showed previously25 that the size of such interface-induced sky-
rmions (down to 30 nm in the present series) could be reduced
even more by tuning the magnetic anisotropy and described how
they could be nucleated by spin injection and displaced by the
spin Hall effect of the Pt layers. We believe that this experimental
breakthrough can be a robust basis for the development of sky-
rmion-based devices for memory and/or logic applications, as well
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Figure 3 | Micromagnetic simulations and experimental measurements of
mean domain-width evolution with DMI after demagnetization. Comparing
the simulations with the experimental domain-width value (dotted
horizontal line) allows us to estimate |D|(Ir|Co|Pt) = 1.8 ± 0.2 mJ m–2 and
|D|(Pt|Co|Pt) = 0.2 ± 0.2 mJ m–2. The box height represents the error
margins on the experimental domain-size evaluation; its width gives the
resulting error on |D| for the used simulation parameters. The inset shows a
simulated worm pattern for |D| = 1.6 mJ m–2 in Ir|Co|Pt (1.5 × 1.5 µm2) and a
corresponding experimental observation at the same scale (using the same
colour code as in Fig. 1).
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Figure 4 | Evolution of the skyrmion size in patterned nanoscale disks and
tracks. a, Magnetic field evolution of the skyrmion size derived from
micromagnetic simulations realized for A = 10 pJ m–1 (lines for different |D|
values) and sizes of the observed skyrmions (squares) for 500-nm-diameter
disks. b, R.t. out-of-plane magnetization map of an array of 300-nm-
diameter disks with an out-of-plane external field of μ0H⊥ = 8 mT, and two
200-nm-wide tracks at μ0H⊥ ≈ 55 mT that display several
isolated skyrmions.
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Figure 2: (a) to (c) Polar Kerr magnetic images of the electric field control of skyrmion bubbles density 

in the Pt/Co/oxide trilayer under a static 0.15 mT perpendicular magnetic field, recorded through the 

transparent ITO electrode near position 𝑝1 with different applied voltages. The sample is first saturated 

with a higher magnetic field, then the magnetic field is fixed to 0.15 mT and the electric field is varied 

from −5 V to +10 V.  (d) and (e) Differential images obtained from (b)-(a)=(d) and (c)-(b)=(e). The 

blue/red bubbles correspond to objects which appeared/disappeared during the few seconds separating 

the images acquisitions. (f) Number of skyrmion bubbles extracted from images with twice the size of 

(a),(b) and (c). (g) Analytical calculation of the energy difference between a saturated state and a single 

isolated magnetic bubble as function of the bubble diameter with the parameters 𝑡 = 0.468 nm,  𝜇0𝐻 =

0.15 mT,   𝑀𝑠 = 0.92+/-0.05 MA/m and 𝜎𝑤 = 1.33+/-0.16 mJ/m² corresponding to respectively 0 V, +5 V  

and −5 V. The nucleation 𝐸𝑛 and annihilation 𝐸𝑎 energies are indiczted for the +5 V  case. The 𝑡,  𝐻, 𝑀𝑠 

and 𝜎𝑤 parameters used for the simulation are determined experimentally (see supplementary S3, S8) 

  

Pt/Co/MgO film with a slightly thicker Co layer (1.08 nm) was used.
Figure 5a shows the XMCD-PEEM image of a magnetic skyrmion in
a 630 nm diameter circular dot. The larger skyrmion diameter (190
nm) can be explained by the larger Co thickness, as predicted by the
micromagnetic simulations (see Fig. 6b). Note that in this case, the
skyrmion is not located in the centre of the dot, probably because of
its pinning on a local defect. When applying a field μ0Hz = 4 mT
(Fig. 5b) in the direction opposite to the skyrmion core magnetiza-
tion, the diameter of the skyrmion decreases down to 70 nm. When
releasing the external magnetic field, the initial skyrmion structure
is recovered (Fig. 5c). This demonstrates that the skyrmion structure
is stable and reversible with respect to perturbations and that the
skyrmion diameter can be tuned using Hz. To confirm the chiral
structure of the skyrmion, we also imaged the skyrmion for an X-
ray beam direction rotated by 90° in-plane with respect to the
sample (Fig. 5d). As expected, the black/white contrast is now
rotated by 90° which confirms the full radial orientation of the in-
plane spins outward from the skyrmion centre and thus its chiral
Néel structure.

Numerical calculations
The observation of stable skyrmions at zero external magnetic field
raises the question of the physical mechanisms that govern the sky-
rmion stability and size in our experiments. To address this point,
we consider a simple model where the magnetization in the dot
θ(r) is described by a circular 360° Néel DW profile. The free
energy E in the circular dot-shaped nanostructure can be written
as the sum of two terms1,30,34,57: (1) the skyrmion energy Eσ[θ(r)]
due to the exchange, anisotropy and internal DW stray field ener-
gies; and (2) the energy due to the magnetostatic interactions
between the domains Emag. Assuming a radial symmetry, Eσ[θ(r)]
can be written as1,30,34,57:

Eσ[θ(r)] = 2πt
! R

0

{

A
dθ
dr

( )2

+
sin2 θ
r2

[ ]

− D
dθ
dr

+
cos θ sin θ

r

[ ]
+ (Keff + Es

DW) sin2 θ

}

rdr (1)

where Keff = K − μ0M
2
s (1 −NDW)/2 is the effective anisotropy54,58

(K is the magneto-crystalline anisotropy constant), t is the film
thickness, R the dot radius. The demagnetizing energy due to the
magnetic charges within the DWs Es

DW is described by a constant
demagnetizing factorNDW such that Es

DW =NDWμ0M
2
s /2. The ener-

gies Eσ and Emag
59 can be calculated as a function of the skyrmion

diameter d assuming a 360° DW profile and a 420-nm-diameter
circular dot (the magnetic parameters correspond to the experiment
of Fig. 3, see methods). More physical insight is obtained from the
effective forces Fσ(d) = −(∂Eσ/∂d) and Fmag(d) = −(∂Emag/∂d) which
are plotted in Fig. 6. A first interesting feature is that Fσ(d) cancels
out for d∼ 20 nm, which thus would be an equilibrium diameter for
the skyrmion in the absence of the domain magnetostatic energy.
This equilibrium is the result of a balance between the DW
energy cost which is proportional to d and tends to decrease the sky-
rmion diameter and the curvature energy cost due the exchange
energy which scales as 1/d (ref. 34). However, the magnetostatic
force Fmag is large enough at low diameter to destabilize this
balance and the final equilibrium position is obtained for a larger
value of d∼ 90 nm, where the two forces are equal. This underlines
that the magnetostatic energy plays an important role in the stability
and size of the skyrmion at zero external magnetic field. We also
carried out micromagnetic simulations for square nanostructures
with larger lateral dimensions. We observed that for sides larger
than 1.2 µm, the skyrmion structure is not stable and a stripe
domain structure appears. This may explain why we did not
observe any skyrmions but stripe domains for larger structures
with 1 µm sides (see Supplementary Information). Thus, the

−200 −100 0 100 200
−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

y

x

1.0a b c

 mz

m
z

 mx

M
ag

ne
tiz

at
io

n

x (nm)

X-ray

Figure 4 | Micromagnetic simulations. a,b, Distribution of magnetization (a) and simulated magnetic contrast (b) of the magnetic skyrmion in a 420 nm
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Figure 5 | Effect of an external perpendicular magnetic field. a, XMCD-
PEEM image of a magnetic skyrmion in a 630-nm-diameter circular dot.
b, XMCD-PEEM image of the same skyrmion during the application of an
external magnetic field perpendicular to the film plane μ0Hz = 4 mT. c, Image
taken after b for Hz = 0. d, XMCD-PEEM image of the skyrmion after
rotation of the sample by 90° with respect to the X-ray beam direction.
The white arrows indicate the direction of the X-ray beam.
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Skyrmions

Inexact but useful ansatz for skyrmion profile:

m = (cos� sin ✓, sin� sin ✓, cos ✓)

r = (r,')

cos ✓(r) =
4 cosh2 c

cosh 2c+ cosh(2r/�)
� 1 Double wall

�(r) = '+  

Helicity
Néel Bloch Néel

N Romming et al, Phys Rev Lett 117, 177203 (2015)
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Magnetization reversal involves navigating through an energy 
landscape


May involve intermediate states with nontrivial magnetization 
configurations


Intermediate states are metastable energy states


Minimizing energies allow us to guess/predict/describe intermediate 
states

Reversal mechanisms
!21

Energy
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E = �µ0HMs cos ✓ �Ku cos
2
✓

Coherent reversal
!22

The magnetic configuration at a given applied field represents the local energy 
minimum under that applied field.


Simplest example that contains essential physics: magnetic nanoparticle with 
uniaxial anisotropy

H

M

E

� � = 0� = �
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E = �µ0HMs cos (✓ � ✓H)�Ku cos
2
✓

Coherent reversal: Stoner-Wohlfarth astroid
!23

Metastable states: Minimize Zeeman and anisotropy energy (in macrospin 
approximation) for arbitrary field angles

Hy

Hx

Astroid 
(critical curve)Inside astroid, 

system is bistable

Outside astroid, 
M aligned along 

field
HK =

2Ku

µ0Ms
Critical field

Hsw

HK

=
h
sin2/3 ✓H + cos2/3 ✓H

i�3/2



European School on M
agnetism

 2018, Krakow
 – M

agnetisation Processes (M
P1) – Kim

,JV

Stoner-Wohlfarth Astroid

Hysteresis loops for various angles D
Switching behavior

Hysteresis loops for various angles D

For arbitrary angles one obtains a mixture of both cases. The coercive fields 
(HC) for switching into the stable minimum for arbitrary directions show a 
minimum. The switching fields for coherent rotation can be summarized in 
the switching asteroid.

32

Stoner-Wohlfarth: Hysteresis loops
!24
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Examples of astroids
!25

At low bias !Fig. 1"b#$, the astroid shape is consistent
with the elongated shape of the device. Note however that
the hard axis apex of the astroid is near 4 mT, i.e., smaller
than the easy axis apex "coercivity, 5 mT#, which would be
impossible for a sample behaving like a thermally stable
uniaxial macrospin.

The effect of moderate voltage "200 to 300 mV# is in
line with expectations; it primarily reduces the coercivity of
the transition favored by the voltage polarity. However, this
coercivity is reduced for all values of hard axis field, in stark
contrast to what happens in metallic spin-valves, where the
spin torque is efficient only for fields oriented near the easy
axis.10

At high voltages "400 and 500 mV#, the positive voltage
and negative voltage astroids are sufficiently separated that
there exists two direct overwrite "DOW# zones, where the
free layer is bistable in zero bias but writable and monostable
in positive and negative voltages. The free layer can be ef-
fectively used as a memory when at least one of these region
reaches zero field. Two unexpected points are worth noticing
at !500 mV. First, all coercivities are now reduced by the
voltage whatever its polarity. Second, increasing the voltage
does not systematically increase the surface of the DOW
regions !compare the top DOW windows in Figs. 1"e# and
1"f#$. In all the devices we studied, the overlap between posi-
tive and negative voltage astroids ceases to exist for voltages
scattered between !450 and !550 mV.

To understand this, we have extracted the material pa-
rameters of the free layer, starting by the shape anisotropy.
Because of thermal fluctuations and departures from mac-
rospin behavior, Hk can neither be extracted from the coer-
civity, nor from the hard axis apex of the astroids, which
both significantly underestimate Hk. The misleading charac-
ter of quasistatic astroids can be seen when recording time-
resolved resistance traces in hard axis field conditions out-
side of the quasistatic astroid, i.e., for Hy "4 mT and with
near compensated easy axis applied fields. Under these con-
ditions there are two degenerate stable states 1, 2 that exist
and follow: my1,2=Hy /Hk with mz1,2=0, mx1"0, and mx2
#0. The two states have distinguishable resistances linearly
linked to mx1 and mx2 with

"mx2 − mx1#2 = 4!1 − "Hy/Hk#2$ . "2#

The two states are separated by an energy barrier of $E
=$E0% !1−2"Hy /Hk#+ "Hy /Hk#2$ adjustable by the hard
axis field. When $E& 21kBT, the states are stable at a 1 s
time scale and seen in our astroids. When the barrier is
smaller, telegraph noise occurs and the system switches be-
tween mx1 and mx2 on a faster timescale, as evidenced in Fig.
2. Using Arrhenius modeling "not shown# the dwell times in
Fig. 2 are consistent with "$E0 /kBT#=44.5!2.5, ensuring
nonvolatility.

A reliable way to obtain Hk is to plot the resistance dif-
ference at remanence in both the quasistatic loops and the
telegraph noise data versus hard axis field. Linear fits
through the Eq. "2# versus Hy

2 !Fig. 2"d#$ yield the anisotropy
field. At small and moderate voltage bias the fit yields
'0Hk=8.9!0.7 mT, almost twice greater than the hard axis
apex of the astroid. At higher bias "400 mV# we get a smaller
value 8.4!0.7 mT, indicating either that the Oersted field
distorts the remanent states or that there is a heating driven
reduction in the magnetization. Taking the measured $E0
and Hk, the magnetization of the free layer is estimated to be
1.28!0.15 T, 20% less than the value measured before pro-
cessing.

To measure Meff and (, we have spectrally analyzed11

the current noise passing through the MTJ at 100 mV. Sev-
eral eigenmodes are sufficiently thermally populated to be
detected as peaks in the spectra "Fig. 3#. Modes of the
synthetic antiferrimagnet reference layers, whose fre-
quencies exhibit a minimum at the spin-flop transition near
Hx=+150 mT, are not analyzed hereafter. Eigenmodes of
the free layer appear as V-shape modes, with minima at the
!Hk. Following Bayer et al.,12 the eigenmode frequencies
can be accounted for by assuming quantized wave vectors in
the dispersion relations of spinwaves in the thin film limit
with appropriate corrections for the dynamic demagnetizing
tensors.13 The overall slope of the modes’ squared frequency
versus field is a measure of Meff while the mode-to-mode
frequency spacing reflects the dynamic exchange field
"2A /'0MS#!"nL) /L2#+ "nw) /w#2$, where nL, nw are the
number of nodes in the free layer length and width. From
fits of the lowest modes assumed to correspond to quasiuni-
form precessions, we get '0Meff=0.43!0.02 T and '0Hk
=10!2 mT.

FIG. 1. "Color online# Quasistatic properties vs bias voltages. "a# Resistance
vs easy axis field curves when a vanishing "black curve# or finite hard axis
field is applied. !"b#– "f#$ switching field astroids in constant positive "rect-
angles# or negative "circles# applied voltage. The gray astroids recall the 100
mV astroid. DOW stands for direct overwrite region.

FIG. 2. "Color online# Resistance fluctuations under 400 mV for hard axis
fields of "a# 5.2 mT, "b# 6.1 mT, and "c# 6.8 mT. Note that the timescale is
reduced by 100 from panel "a# to "c#. Panel "d# plot of the square of the
difference of the voltages of the two metastable states vs the square of the
hard axis field, and linear fits using Eq. "2# for various voltages.

162502-2 Devolder et al. Appl. Phys. Lett. 98, 162502 !2011"

Downloaded 26 Apr 2011 to 129.175.97.14. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions
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W Wernsdorfer et al, Phys Rev Lett 78, 1791 (1997)

First experimental observation (2D 
system)


25 nm Co cluster

T Devolder et al, Appl Phys Lett 98, 162502 (2011)

Experimental astroid for magnetic 
nanopillar (200 x 100 x 2 nm)


Magnetic tunnel junction, typical 
MRAM device
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Domain wall nucleation and propagation
!26

In some circumstances it is more favourable to nucleate a domain wall, rather 
than rotate all moments coherently across sample

10 μm

H0
Kerr microscopy image 

of domain growth

Need to balance energy cost in creating a domain wall 
with energy gain from Zeeman interaction

E(r) = (2⇡rd)� � (⇡r2d)(2µ0MsH0)
Zeeman energyWall 
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Domain wall nucleation and propagation
!27

Reversal through domain walls generally leads to lower coercivities than coherent 
reversal

RAPID COMMUNICATIONS

MAGNETIC DROPLET NUCLEATION WITH A HOMOCHIRAL . . . PHYSICAL REVIEW B 95, 220402(R) (2017)

TABLE I. Physical parameters of the Co/Ni microstrip obtained in this work and Ref. [20].

MS ! σ0 KD µ0HDMI D

Method (A/m) (nm) (mJ/m2) (104 J/m3) (mT) (mJ/m2)

Nucleation (this work) 0.837 × 106 2.4 ± 0.2 10.7 ± 1.0 3.6 ± 1.6 228 ± 60 0.45 ± 0.15
DW velocity [20] 3.4 11.9 2.1 213 ± 55 0.60 ± 0.15

in the MOKE images [Figs. 3(a)–3(f)], the nucleation occurs
not at the edge but in the device. Though the device size was
in the mm scale [see the scale bar in Fig. 3(a)], we could not
observe any other nucleation spots in the device. The observed
nucleation fields are independent with Hx as plotted in
Fig. 3(g), which is consistent with the previous study reported
by Pizzini et al. [25], i.e., the nucleation field does not depend
on the Hx . If the nucleation occurs at the edge, the nucleation
field should show a strong Hx dependence even with the small
Hx as reported. Therefore, our result is based on the nucleation
inside the device. In addition, it was confirmed that there was
no multidomain state during the reversal process [31].

To confirm the validity of the extended droplet model for the
estimation of the DMI strength, we calculate an energy barrier
(EB) as a function of Hx and an out-of-plane field (Hz), based
on the string method [32]. The energy barrier is calculated
by initially setting a transition path between two minima
(approximately all up or down spins). From the initial path,

we obtain discrete images (image number i = 0, . . . ,100),
which start from the nucleation of a droplet followed by the
propagation of the reversed domain. Then, we update the
initial path, which is not the minimum energy path (MEP),
via the damping term of the Landau-Lifshitz-Gilbert equation
m̂i(t + !t) = m̂i(t) −

∫ t+!t

t
γµ0α m̂ × (m̂ × H)dt , until it

reaches the MEP. Here, γ is the gyromagnetic ratio, α (= 1,
i.e., overdamping) is the damping constant, and H is the
effective field including exchange, anisotropy, magnetostatic,
DMI, and external fields. For the simulation, the following
parameters are selected from those listed in Table I: an
exchange stiffness constant of A = 6.4 pJ/m, a perpendicular
anisotropy energy density of Ku = 1.55 × 106 J/m3, and a
saturation magnetization Ms of 837 kA/m. We varied the DMI
constant D from 0.3 to 0.75 mJ/m2. The total cell (mesh) size
of micromagnetic modeling along the x, y, and z direction
is 50(1)/50(1)/1.2(1.2) nm, respectively, assuming a periodic
boundary condition. We perform the reparametrization step
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FIG. 2. AHE curves when magnetization switches (a) from up to down, and (b) from down to up as a function of the magnetic field angle
(θ ) with respect to the film normal [see the inset of (c)]. (c) Hsw plots in terms of θ . The inset illustrates the field angle and film normal. The
yellow line shows the Hsw(θ ) = Hsw(0)/ cos θ curve, which is known as the Kondorsky model. (d) Hn plots in terms of Hx with up and down
magnetized states. The black solid lines show the fitting result obtained using the extended droplet model. The inset shows the zoomed-in
image of the curve in a field range 0–300 mT.
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TABLE I. Physical parameters of the Co/Ni microstrip obtained in this work and Ref. [20].

MS ! σ0 KD µ0HDMI D

Method (A/m) (nm) (mJ/m2) (104 J/m3) (mT) (mJ/m2)

Nucleation (this work) 0.837 × 106 2.4 ± 0.2 10.7 ± 1.0 3.6 ± 1.6 228 ± 60 0.45 ± 0.15
DW velocity [20] 3.4 11.9 2.1 213 ± 55 0.60 ± 0.15

in the MOKE images [Figs. 3(a)–3(f)], the nucleation occurs
not at the edge but in the device. Though the device size was
in the mm scale [see the scale bar in Fig. 3(a)], we could not
observe any other nucleation spots in the device. The observed
nucleation fields are independent with Hx as plotted in
Fig. 3(g), which is consistent with the previous study reported
by Pizzini et al. [25], i.e., the nucleation field does not depend
on the Hx . If the nucleation occurs at the edge, the nucleation
field should show a strong Hx dependence even with the small
Hx as reported. Therefore, our result is based on the nucleation
inside the device. In addition, it was confirmed that there was
no multidomain state during the reversal process [31].

To confirm the validity of the extended droplet model for the
estimation of the DMI strength, we calculate an energy barrier
(EB) as a function of Hx and an out-of-plane field (Hz), based
on the string method [32]. The energy barrier is calculated
by initially setting a transition path between two minima
(approximately all up or down spins). From the initial path,

we obtain discrete images (image number i = 0, . . . ,100),
which start from the nucleation of a droplet followed by the
propagation of the reversed domain. Then, we update the
initial path, which is not the minimum energy path (MEP),
via the damping term of the Landau-Lifshitz-Gilbert equation
m̂i(t + !t) = m̂i(t) −

∫ t+!t

t
γµ0α m̂ × (m̂ × H)dt , until it

reaches the MEP. Here, γ is the gyromagnetic ratio, α (= 1,
i.e., overdamping) is the damping constant, and H is the
effective field including exchange, anisotropy, magnetostatic,
DMI, and external fields. For the simulation, the following
parameters are selected from those listed in Table I: an
exchange stiffness constant of A = 6.4 pJ/m, a perpendicular
anisotropy energy density of Ku = 1.55 × 106 J/m3, and a
saturation magnetization Ms of 837 kA/m. We varied the DMI
constant D from 0.3 to 0.75 mJ/m2. The total cell (mesh) size
of micromagnetic modeling along the x, y, and z direction
is 50(1)/50(1)/1.2(1.2) nm, respectively, assuming a periodic
boundary condition. We perform the reparametrization step

-0.4

-0.2

0.0

0.2

0.4

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

 0°
 20°
 40°
 60°

1.00.80.60.40.20.0

 MUP
 MDW
 Fitted

θ
Hex

z

(d)(c)

(b)(a)

-0.4

-0.2

0.0

0.2

0.4

0.60.50.40.30.20.10.0

 0°
 20°
 40°
 60°

down→up
up→down

1.2

1.0

0.8

0.6

0.4

0.2

0.0
100806040200

θ (°)

 MUP→MDW
 MDW→MUP
 1/cos θ

R
AH

E (
Ω

)

R
AH

E (
Ω

)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

1.0

0.20.0

μ 0
H

n (
T)

μ0Hx (T)

μ0Hex (T)μ0Hex (T)

μ 0
H

SW
 (T

)

FIG. 2. AHE curves when magnetization switches (a) from up to down, and (b) from down to up as a function of the magnetic field angle
(θ ) with respect to the film normal [see the inset of (c)]. (c) Hsw plots in terms of θ . The inset illustrates the field angle and film normal. The
yellow line shows the Hsw(θ ) = Hsw(0)/ cos θ curve, which is known as the Kondorsky model. (d) Hn plots in terms of Hx with up and down
magnetized states. The black solid lines show the fitting result obtained using the extended droplet model. The inset shows the zoomed-in
image of the curve in a field range 0–300 mT.
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FIG. III.7. Hysteresis loops measured using polar Kerr rotation for the Pt/Co(0.5 nm)/Pt and Pt/Co

(0.8 nm)/Pt films. Courtesy of J. Ferré, Laboratoire de Physique des Solides, Université Paris-Sud 11,

Orsay, France.

v
v

H H

FIG. III.8. Variation of experimentally obtained domain wall velocity, v with applied field, H, for
four ultrathin Pt/Co/Pt films. The lines correspond to v¼mH fits for the high field flow data and a fit of

Eq. (3.1) with m¼1/4 for the low field data. Adapted with permission fromMetaxas et al.36 Copyright
by the American Physical Society.
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Courtesy of J Ferré, Laboratoire de 
Physique des Solides, Orsay
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In circular dots where vortices are metastable states, 
magnetisation reversal occurs through the nucleation and 
annihilation of vortices
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Guslienko Magnetic Vortex State Stability, Reversal and Dynamics in Restricted Geometries

saturation magnetization) that cannot be reduced to the
ground state (uniform m) by any finite deformation. The
Bloch domain wall is an example of a 1D topological soli-
ton. We can neglect the dependence on the z-coordinate
along the dot thickness for thin magnetic elements (dots)
and assume a 2D magnetization distribution m!!" t# =
M!!" t#/Ms. The vector m!x"y# maps the xOy plane of
the dot to the surface of a unit sphere: m2 = 1. We can
parameterize the vector m by the spherical angles $"%
and define a topological invariant quantity (topological
charge or degree of mapping) for a given magnetization
distribution:7

q = 1
4&

∫

sin$!!#d$!!#d%!!# (1)

where $!!# and %!!# are solutions of the Landau-
Lifshitz equation of motion, ' = !x"y#, and m =
!sin$ cos%" sin$ sin%" cos$#. For q ̸= 0 the vector
m(!) completely covers the unit sphere, and the value
of the vorticity q does not change under any continuous
deformation of the function m!x"y#. The soliton solutions
(point singularities) for a ferromagnet were first consid-
ered by Döring.8 Subsequently it is was shown by Belavin
and Polyakov8 that metastable states of the 2D infinite
isotropic ferromagnet can be written within the exchange
approximation in the simple form:

tan
(

$

2

)

=
(

'0

'

) "q"
(2)

where '0 is the radius of localization of the soliton.
This solution can be obtained from the ansatz: $!x"y#=
$!'#"%!x"y# = q(+%0, where '"( are polar coordi-
nates, and %0 is some constant phase.
Due to two-dimensionality of the problem under con-

sideration, it is convenient to introduce the dimen-
sionless complex variables ) = !x + iy#/R and #) =
!x − iy#/R, and the complex function w!)" #)# =
tan!$!x"y#/2# exp!i%!x"y##. Here R is in-plane dot size
(the radius for circular dots). The magnetization compo-
nents then can be expressed as:

mx + imy =
2w

1+ww
" mz =

1− ww

1+ww
" m2 = 1 (3)

The single Belavin-Polyakov soliton can be described
simply by the function w = )q with vorticity q > 0.
This complex representation allows one to calculate the
exchange energy of the soliton. It can be shown that
the exchange energy can be minimized using an arbi-
trary analytical function w!)# that satisfies the condition
*w/* #) = 0, and is proportional to "q". The zeros of the
complex function w!)# correspond to the centers of the
solitons. Usually the theory of 2D solitons is for the case
of infinite xy-plane and negligible magnetostatic energy,
which corresponds to a magnetization distribution m!x"y#.
But for a finite magnetic particle (dot) we also have the

additional magnetostatic energy contribution to the total
energy. This energy is of a principal importance to describe
the magnetization reversal and low-lying eigenfrequencies
of the spin excitations over the soliton (vortex) ground
state. For a thin cylindrical particle with radius R, in order
to describe the magnetic vortex and minimize the magne-
tostatic energy, Usov et al.9 suggested the analytical ansatz
for m= !m'"m("mz#:

m' = 0" m( = sin$!'#= 2b'
b2+'2

if '≤ b"

m( = 1 if '> b" mz =± cos$!'#

(4)

where the parameter b is the radius of the vortex core. The
value of b can be calculated by minimizing the total mag-
netic energy of the particle, which consists of the exchange
energy and energy of the face magnetic charges (due to
mz ̸= 0). The vortex consists of a core (' ≤ b) with mag-
netization deviating from being in the dot plane, and the
main part with an in-plane flux-closure magnetization dis-
tribution (no magnetic charges, see Fig. 2). Ansatz (4) is
indeed a half of the Belavin-Polyakov soliton at ' ≤ b
(vortex core) plus some in-plane magnetization distri-
bution. We will consider below magnetic vortices with
q =+1 (vortex) or q = − 1 (antivortex) only. A magnetic
vortex can also be characterized by its chirality C = ±1
(direction of rotation of in-pane static magnetization,
counter-clockwise or clockwise) and polarization of the
core p = mz(0), where p = ±1 (direction of the mz com-
ponent in the vortex center). We will use the ansatz (4)
as our basic model of the magnetic vortex centered in
cylindrical dot. In the equation % = q(+%0, the phase is
%0 = C&/2.
To describe properly the vortex magnetization evolution

and dynamics we need to introduce a reasonable descrip-
tion of the vortex shifted from the equilibrium position
(center of the dot, see Fig. 3). The main analytic models
of magnetic vortices in confined geometries were devel-
oped in Refs. [4–5] and [9–11]. We will consider below
the following models of the shifted vortex:
(1) rigid vortex,5 where the vortex shifts while preserving
its shape;

p, C

Fig. 2. Vortex magnetization state in cylindrical dot with thickness L
and radius R. The arrow in the center shows direction of the vortex core
polarization (p =+1). The vortex chirality is clockwise (C = − 1).

J. Nanosci. Nanotechnol. 8, 2745–2760, 2008 2747

K Guslienko et al, Phys Rev B 65, 024414 (2001) A Fernández & C Cerjan, 
J Appl Phys 87, 1395 (2000)

Reversal in Co dots
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1 µm diameter dots

K Zeissler et al, Sci Rep 7, 15125 (2017)

In perpendicularly-magnetised dots with DMI, reversal can take 
place through skrymion nucleation and annihilation

www.nature.com/scientificreports/

4SCIENTIFIC REPORTS | 7: 15125  | DOI:10.1038/s41598-017-15262-3

have also shown similar trends11,13. The hysteretic behaviour is not captured by these models. This comes as no 
surprise, as disorder changes the local energy landscape that the skyrmion encounters, disrupting the predicted 
reversibility.

Micromagnetic Simulations. In order to overcome these shortcomings of the above analytical models, 
we have carried out micromagnetic simulations that reveal that a dependence of the skyrmion diameter on the 
field history experienced by the disc can only be observed when one introduces disorder. The disorder was intro-
duced in form of a spatial fluctuation in the saturation magnetisation. The disc, comprising 10 layers each of 
0.7 nm thickness of ferromagnetic material, was subdivided into grains of average lateral size of 10 nm (using a 

Figure 2. Compression and expansion of a skyrmion in a [Co (0.7 nm)/Ir (0.5 nm)/Pt (2.3 nm)]×10 multilayer 
1000 nm disc imaged using STXM. (a) –(f) show snapshots taken at −10 mT, −20 mT, −52 mT, 0 mT, −20mT 
and −10 mT, respectively. Light and dark contrast shows antiparallel out-of-plane magnetized domains. (g) 
Skyrmion diameter versus applied field with respect to sweep direction. A clear hysteresis can be observed. 
Letters indicate the points in the hysteresis loop at which the images shown in the earlier panels were acquired.

- 10 mT - 20 mT - 52 mT
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anisotropy (PMA) and saturation magnetization. The parameters of
skyrmions can be controlled in geometrically confined low-dimensional
structures such as nanodisks [7,29]. In contrast to iDMI, the para-
meters of these systems can be controlled throughout a wide range of
values. Consequently, here we aimed to determine the optimal
magnetic and geometrical parameters of nanodisks for stabilization
of skyrmions without any external excitation by spin current or pulsed
magnetic field.

2. Conditions for micromagnetic simulations

Concurrent theoretical studies heavily utilize micromagnetic simu-
lations, which allow the analysis and prediction of the behavior of
magnetic nanostructures and devices by offering insights into magne-
tization reversal mechanisms in situations for which the analytical
approach does not yield satisfactory results. By performing micromag-
netic simulations in MuMax3 [30], we delineated conditions for
nucleation of various topological spin configurations, including sky-
rmions, in nanodisks of different diameters and layer thicknesses,
during magnetization reversal. The calculated state diagrams of spin
configurations allow to fabricate nanostructures with stable skyrmions,
which is likely to be important for designing magnetic random access
memory (MRAM) and spintronic devices such as racetrack memory,
logic gates, and transistors [7,31,32].

Micromagnetic simulations were conducted for the series of ex-
perimentally fabricated Pt/FM/Ta and Pt/FM/Ru/Ta nanodisks, where
FM is the amorphous ferromagnetic layer Co70.5Fe4.5Si15B10 [33], with
the diameter (D) and thickness of the ferromagnetic layer (tFM) ranging
from 200 nm to 600 nm and from 0.9nm to 2.5 nm, correspondingly.
We have chosen CoFeSiB as a ferromagnetic layer because it offers
strong PMA on a Pt layer and it has much smaller saturation
magnetization (Ms~560×10

3 A/m), if to compare with widely used
Co40Fe40B20 alloy (1190×103 A/m) and Co (1422×103 A/m). For STT-
and SOT-MRAM applications the low Ms materials with zero magne-

tocrystalline anisotropy, small coercivity and strong PMA are desirable
owing to the sub-ns magnetization switching at low current density
since it is proportional to the Ms value. Magnetic properties of
nanodisks were defined from hysteresis loops measured by a vibrating
sample magnetometer. The Pt/FM/Ta and Pt/FM/Ru/Ta nanodisks
with tFM in the 0.9–2.5 nm range exhibit PMA. The effective anisotropy
field (Heff) was measured in an external in-plane magnetic field (H).
This configuration corresponded to the case in which H was applied in
parallel to the hard magnetization axis of nanodisks. For the Pt/FM/Ta
and Pt/FM/Ru/Ta nanodisks the values of Heff were ~600 mT and ~50
mT, correspondingly. The PMA energy was calculated as KPMA = Keff +
Ems = Ms(Heff +4πMs)/2, where the saturation magnetization was Ms

=550×103 A/m. As a result, Heff =2.1×105 and 1.9×105 J/m3 for the
Pt/FM/Ta and Pt/FM/Ru/Ta nanodisks, respectively. The existence of
an interface between a heavy metal and ferromagnet favors the iDMI
appearance in the magnetic layer. An asymmetry between the lower
and upper interfaces can underlie the additive interfacial effect of the
iDMI owing to the different signs of the iDMI: negative for Ta and Ru
and positive for Pt [34,35]. In order to define the iDMI value, we
measured it in our films using the Brillouin light scattering (BLS)
spectroscopy based on the DMI-driven asymmetric dispersion shift of
long-wavelength thermal spin waves in the Damon-Eshbach surface
mode [25]. For the Pt/FM/Ta and Pt/FM/Ru/Ta films the found iDMI
is 0.16 and 0.31 mJ/m2, respectively.

Since in an experiment one can vary two magnetic parameters –
saturation magnetization and PMA, for instance, by thermal annealing
[36] or by varying a buffer or a capping nonmagnetic layer thickness
[37,38], in our micromagnetic simulations the values of Ms and KPMA

ranged from 400×103 A/m to 570×103 A/m and from 0.8×105 J/m3 to
2.1×105 J/m3, correspondingly; these ranges are close to the ranges of
experimental parameters. The exchange constant was A =1×10–11 J/m
[33]. The cell size in our simulations was 4×4× tFM nm3. To derive the
conditions for a stable skyrmion formation, we studied quasi-static
magnetization reversal of nanodisks in the presence of an out-of-plane

Fig. 1. Spin textures and magnetic hysteresis loops obtained from simulations in the external out-of-plane field, for a nanodisk with D =300 nm, tFM =1.5 nm, and DMI =0.31 mJ/m2,
using different magnetic parameters: (a) Ms =570×10

3 A/m, KPMA =0.8×105 J/m3; (b) Ms =450×10
3 A/m, KPMA =1.0×105 J/m3; (c) Ms =450×10

3 A/m, KPMA =1.2×105 J/m3. The
magnetization configurations that were realized in the nanodisk and matched by numbers, are shown under the corresponding hysteresis loops.

A.G. Kolesnikov et al. Journal of Magnetism and Magnetic Materials 429 (2017) 221–226

222

Simulations show that intermediate states can depend strongly on magnetic parameters

A G Kolesnikov, J Magn Magn Mater 429, 221 (2017)

Lower Ms,

Higher Ku

Higher Ku



European School on M
agnetism

 2018, Krakow
 – M

agnetisation Processes (M
P1) – Kim

,JV

Hysteresis: sweep rate
!31

M

Remanence

Coercivity

Saturation

Does it matter how fast we sweep the field?


What does “quasi-statics” mean in this context?


Slow dynamics … but slow compared to what?


Fluctuations and energy barriers are the key

Energy
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How fast you navigate the energy landscape matters

Hysteresis loop for a Pt/Co/Pt thin film

Courtesy of J Vogel, Institut Néel, Grenoble
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H > 0
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Brownian motion Magnetisation precession

Particle (red) experiences random collisions 
(forces) due to thermal environment (blue)

Precessing magnetic moment experiences 
random fields due to thermal environment  

W F Brown, Phys Rev 130, 1677 (1963)R Brown, Phil Mag 4, 161 (1828)
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Thermal effects necessarily introduce the notion of 
time into a measurement


What happens when a field is suddenly applied? 
Thermal fluctuations eventually drive system into 
lower energy state

J-P Jamet et al, Phys Rev B 57, 14320 (1998)
Magnetic aftereffect in ultrathin Co film
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J-P Tetienne et al, Science 334, 1366 (2014)

Thermally-activated domain wall 
hopping between two metastable 
states can be revealed using scanning 
probe techniques 
 
Example:  
Nitrogen-vacancy centre magnetometry 
on 1-nm thick CoFeB films

Stray field measurement

Domain 
wall

AFM
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Connection to (higher-frequency) modes through the 
Arrhenius prefactor (attempt frequency)


Example: Langer’s theory of transition rates

� ⌘ 1

⌧
=

�+

2⇡
⌦0 exp

✓
� Ea

kBT

◆
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An Introduction to Micromagnetics in the Dynamic Regime 5

in (19). In the words of Cohen-Tannoudji, Diu, and Laloë, “the classical
equation is obeyed exactly, whatever the time dependence of the magnetic
field.”

Assuming the magnetic field to be time independent, multiplying (19)
successively by M and H, leads to

d
dt

[M (t)]2 = 0 ,
d
dt

[M(t) · H] = 0 . (20)

Equation (20) states that the modulus of the magnetization remains un-
changed during motion and that the angle between the field and the mag-
netization also remains constant as a function of time. Equations (19) and
(20) therefore describe a precessional motion of the magnetization around
the applied field, as sketched in Fig. 2a. The angular frequency is a linear
function of the magnetic field,

ω0 = γ0H, (21)

i.e., ≈ 28 MHz/mT in units of µ0H for a free electron spin.

dM/dtdM/dt

M

H

M

H

M× dM/dt

(a) (b)

Fig. 2. Magnetization preces-
sion. (a) Without damping.
(b) With damping

1.3 Introducing Damping

Hysteresis curves usually tell us that beyond some value of an applied field,
any magnetic sample can be considered saturated. The magnetization is then
uniform and aligned with the field. Precession alone does not allow us to
reach that limit, in contradiction to experimental evidence. Therefore, the
precession equation has to include a damping term so that, after some finite
time, the magnetization may become aligned with the applied field.

By far, the simplest way of introducing a damping term in (19) consists of
replacing the field H by an effective field including an ohmic type dissipation
term,

Heff = H − α
1

γ0Ms

dM

dt
, (22)
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time, the magnetization may become aligned with the applied field.

By far, the simplest way of introducing a damping term in (19) consists of
replacing the field H by an effective field including an ohmic type dissipation
term,

Heff = H − α
1

γ0Ms

dM

dt
, (22)

Linearised dynamics at S,  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FIG. III.7. Hysteresis loops measured using polar Kerr rotation for the Pt/Co(0.5 nm)/Pt and Pt/Co

(0.8 nm)/Pt films. Courtesy of J. Ferré, Laboratoire de Physique des Solides, Université Paris-Sud 11,

Orsay, France.

v
v

H H

FIG. III.8. Variation of experimentally obtained domain wall velocity, v with applied field, H, for
four ultrathin Pt/Co/Pt films. The lines correspond to v¼mH fits for the high field flow data and a fit of

Eq. (3.1) with m¼1/4 for the low field data. Adapted with permission fromMetaxas et al.36 Copyright
by the American Physical Society.
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Domain wall depinning
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C Burrowes et al, Nat Phys 6, 17 (2010)

Fluctuations can drive domain walls out of a local potential well


Probability distribution of residence (depinning) times used to 
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Domain wall creep
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In disordered films, motion is more complicated under low fields


Competition between domain wall energy and disorder potential


Creep motion occurs, involving thermally-activated avalanches


Useful analogy: Elastic band moving across rough surface

[28], and CoFeB [17]) which have polycrystalline or
amorphous structures. All these materials present specific
structural and magnetic properties which results in different
domain wall elastic energies and random pinning proper-
ties. Regardless of those differences, our comparative study
shows that the creep domain wall dynamics presents
universal behavior.
The ðGa0.95;Mn0.05ÞðAs0.9; P0.1Þ film is a 12 nm thick

semiconducting ferromagnetic single crystal [29]. It was
grown by low-temperature (T ¼ 250 °C) molecular beam
epitaxy on a GaAs (001) substrate and was then annealed
at T ¼ 200 °C, for 4 h in air. Its Curie temperature
is 74$ 1 K. The multilayer film Si3N4ð11 nmÞ=
½Tbð0.8 nmÞ=Feð1 nmÞ& × 5=Si3N4ð11 nmÞ have been
deposited on floated glass substrate using a reactive diode
rf sputtering system. Pure Tb, Fe, and Si targets were used
and the pressure of 8 mTorr was regulated in the chamber.
The Si3N4 layer was obtained by pulsing a nitrogen partial
pressure flux maintained at 2 mTorr near the samples
during the silicon deposition. The Curie temperature is
around 340 K and no compensation is observed in the
270–340 K temperature range. In order reach different
temperatures, we used an open cycle He cryostat for the
(Ga,Mn)(As,P) film and a homemade variable temperature
system for the TbFe film. The motion of domain walls was
observed in a magneto-optical Kerr effect (MOKE) micro-
scope. Their displacement was produced by magnetic field
pulses of adjustable amplitude and duration (1 μs − 1 s)
applied perpendicularly to the films. The domain wall
velocity is calculated by the ratio between the displacement
and the pulse duration. Velocity-field characteristics
observed for the (Ga,Mn)(As,P) and the TbFe films,
reported in Fig. 2, are good illustrations of typical results
reported in the literature for the creep, depinning, and flow
regimes [5,13–15,19,24].

At low drives (H ≤ Hd, the depinning threshold Hd is
indicated by black stars in Fig. 2), domain walls follow
the creep motion [see Figs. 2(a) and 2(c)]. The velocity
presents a strong dependency on magnetic field, varying
over several orders of magnitude for a relatively narrow
applied magnetic field range. Increasing temperature is
found to shift the curves towards low field values, thus
reflecting the strong contribution of thermal activation. The
flow regime is characterized by a linear variation of the
velocity which is seen at sufficient large drive (H ≫ Hd)
for the (Ga,Mn)(As,P) film [see Fig. 2(b)]. This nonuni-
versal regime is controlled by material dependent micro-
scopic dynamical structure of domain walls [24]. The flow
regime is only encountered in materials presenting a
sufficiently low depinning threshold, like Pt=Co=Pt
[14,19], (Ga,Mn)As [13,24], FeNi [30], Pt=Co=AlOx
[31]. For other materials as TbFe [see Fig. 2(d)] and
Au=Co=Au [28], the flow regime was never observed
experimentally. The depinning transition is manifested at
intermediate drive (H ≳Hd). The crossover between creep
and depinning is found to occur for an Hd value 2 orders of
magnitude higher for TbFe than for (Ga,Mn,)(As,P) [see
Figs. 2(b) and 2(d)], thus reflecting strongly different
material dependent pinning properties.
To go beyond this qualitative presentation, we propose to

describe empirically the whole creep regime, 0 < H <
HdðTÞ, by a velocity given by

vðH; TÞ ¼ vðHd; TÞ exp
!
−
ΔE
kBT

"
ð1Þ

with

ΔE ¼ kBTd

#!
H
Hd

"−μ
− 1

$
; ð2Þ

FIG. 1. Motion of pinned elastic interfaces. (a) Velocity-force characteristics for zero (blue curve) and finite (black curve) temperature
showing the different dynamical regimes, the depinning threshold fd and the upper boundary (black star) of the thermally activated
creep regime. (b) (Top view) The out-of-plane magnetic field H favors the growth of up magnetization regions thus driving the domain
wall (represented by the yellow spaghetti) in the right direction. (Bottom view) Theoretically, the creep domain wall dynamics in a thin
film can be modeled by the displacement of a one-dimensional elastic line coupled to an effective two-dimensional random pinning
energy landscape Vðx; zÞ.
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Domain wall creep: Energetics
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Domain wall creep: barriers and motion
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demonstrates that the creep regime can be very well
described by a unique (reduced) barrier function of the
(reduced) temperature and field. Furthermore, it compares
fairly well with the results obtained by using numerical
simulations [21] of a minimal model for a one-dimensional
elastic line in a two-dimensional disordered medium (see
Fig. 3). As this model does not take into account the
properties of a specific system, the barrier function of the
creep regime is expected to be relevant for a larger variety
of systems other than ferromagnets.
In conclusion, we provide evidence of the universal

character of the whole thermally activated subthreshold
creep motion in magnetic thin films. In this dynamical
regime, the magnetic domain wall motion is shown to be
controlled by a unique universal reduced energy barrier
function. The compatibility of this universal law with the
predictions of a minimal model strongly suggests our results
to be relevant to understand the creep dynamics in other
systems thanmagnetic thin filmswhose emergent properties
are also controlled by the competition between quenched
disorder and the elasticity of a driven fluctuating string.
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FIG. 3. Universal energy barrier of the creep regime. The
variation of the reduced energy barrier height ΔE=Ed, with
Ed ¼ kBTd, is reported as a function of the reduced force H=Hd,
for five different magnetic materials and for temperatures ranging
from 10 to 315 K (25 curves are superimposed). The solid line is a
plot of Eq. (2). The black circles correspond the predictions of
Ref. [21] whose energy scale was adjusted to experimental data
(see Ref. [34]). The dashed line corresponds to the linear
variation of the energy barrier close to the depinning field
ðH ¼ HdÞ. Inset: Universal barrier presented in semi-log scale
showing a good quantitative agreement with Eq. (2) over more
than 3 orders of magnitude.
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