Magnetic ordering, magnetic anisotropy and the mean-field theory

Alexandra Kalashnikova

kalashnikova@mail.ioffe.ru

Ferromagnets

Mean-field approximation

Curie temperature and critical exponents

Magnetic susceptibility

Temperature dependence of magnetization and Bloch law

Antiferromagnets

Neel temperature

Susceptibility

Magnetic anisotropy

Magnetic-dipole contribution

Magneto-crystalline anisotropy and its temperature dependence

Ferro- and antiferromagnets in an external field

Magnetic ordering, magnetic anisotropy and the mean-field theory

Ferromagnets

- Mean-field approximation
- Curie temperature and critical exponents
- Magnetic susceptibility
- Temperature dependence of magnetization and Bloch law

Mean-field approximation: Weiss molecular field

 $H_m = wM$ Weiss molecular field - field created by neighbor magnetic moments

Alignment of a magnetic moment μ in the total field H+wM ?

A brief reminder: independent magnetic moments in external field

> Thermal energy: $U_T = kT$

At room temperature: $4.1 \cdot 10^{-21} J$

Potential energy of a magnetic moment in the field H: $U_{H} = -\mu H \cos \theta$

In a field of 1MA/m: $1.2 \cdot 10^{-23} J$

$$U_{H} / U_{T} \sim 0.003$$

Paramagnetism: independent magnetic moments in external field

Induced magnetization

Probability for a magnetic moment to orient at the angle θ :

$$\exp\!\left(-\frac{U_H}{U_T}\right) = \exp\!\left(\frac{\mu H}{kT}\cos\theta\right)$$

Full magnetization along the field:

5

Paramagnetism: independent magnetic moments in external field

Paramagnetism: independent magnetic moments in external field

Quantization of the magnetic moment

$$\mu_z = g\mu_B J_z$$
$$J_z = J, J - 1.... - J$$

$$\alpha = \frac{gJ\mu_B H}{kT}$$

Resulting magnetization along the field:

$$M = NgJ\mu_B B_J(\alpha)$$

Brillouin function

At small
$$\alpha$$
: $M = NgJ\mu_B\left(\frac{J+1}{3J}\alpha - ...\right)$

Curie law

$$\chi_{para} = \frac{Ng^2 J (J+1) \mu_B^2}{3kT}$$

Ferromagnets: Weiss molecular field

Weiss field due to exchange interactions *J* with N nearest neighbors:

$$H_m = \frac{NJ\langle S_z \rangle}{g\mu_B}$$

$$\langle S_z \rangle = SB_S \left(\frac{g\mu_B S \left(H + \frac{NJ \langle S_z \rangle}{g\mu_B} \right)}{kT} \right) \implies \text{Self-consistent solution}$$

Back to ferromagnets: Weiss molecular field

Ferromagnets (S=1/2): Curie temperature

Η

Variations of these curves with T:

$$\langle S_z \rangle = SB_S(\alpha)$$

$$\langle S_z \rangle = \frac{kT}{NJS} \alpha + \frac{g\mu_B}{NJ} H_{=0}$$

At T
$$\geq$$
T_c $\left< S_z \right> = 0$

2nd order phase transition

Ferromagnets (S=1/2): Magnetization in a vicinity of T_c

Ferromagnets (S=1/2): Curie temperature

Ordering temperature:
$$T_C = \frac{JN}{k}$$

2nd order phase transition

Mean-field approximation predicts:

Reality:

1D case:
$$T_C = 2\frac{J}{k} > 0$$

2D case: $T_C = 4\frac{J}{k}$
3D case: $T_C = 6\frac{J}{k}$

No magnetic ordering

$$T_C = 2.269 \frac{J}{k}$$
$$T_C = 4.511 \frac{J}{k}$$

Agreement gets better for the 3D case Reason: fluctuations

were neglected

Ferromagnets (S=1/2): at low temperatures

13

Ferromagnets (S=1/2) in applied field

14

Ferromagnets

Weiss molecular field theory:

 $\beta = 1/2$

Ferromagnets

Weiss molecular field theory:

$$M_S \propto (T_C - T)^{\beta}$$

$$\chi \propto (T_C - T)^{-\gamma}$$

 $\xi \propto (T_C - T)^{-\nu}$ Spin-spin correlations

System	β	γ	ν
2D Ising 2D XY system	0.125 0.231ª	1.75	1
2D Heisenberg 3D Ising 3D XY system 3D Heisenberg	0.325 0.345 0.365	1.241 1.316 1.386	0.630 0.669 0.705
Landau theory and MF	0.5	1	0.5

Mean-field approximation: Bethe mean-field theory

From uncorrelated spins to uncorrelated clusters of spins

- > S₀ interaction with its 4 neighbors is treated exactly (cluster)
- > S_i are subject to effective (Weiss) field

$$T_C = \frac{2J}{k\ln(N/(N-2))}$$

Approximation predicts:

Reality:

1D case: $T_{C} = 0$ No magnetic ordering **2D case:** $T_{C} = 2.885 \frac{J}{k}$ **3D case:** $T_{C} = 4.993 \frac{J}{k}$

$$T_C = 2.269 \frac{J}{k}$$
$$T_C = 4.511 \frac{J}{k}$$

Agreement is improved

Temperature dependence of magnetization

Characteristic period of magnetization variation λ

- $\lambda >>$ a (inter-atomic distance)
- $\lambda << L$ (sample size)

 $M(r) = M_0 + \Delta M(r)$

 $|\Delta \mathbf{M}(\mathbf{r})| << \mathbf{M}_{0}$

Small deviation of **M** from **M**₀

 $(\mathbf{M}(\mathbf{r}))^2 = \mathbf{M}_0^2 = const$ Length of **M** is conserved

Plane waves in a continuous medium (some analogy with sound waves)

Energy of a ferromagnet as a function of the spatial distribution of magnetization?

Increase of the Zeeman energy:

(NJ(r) NJ)L

Increase of the exchange energy:

Exchange constant

$$\Big| \Big(\nabla M_x \big)^2 + \big(\nabla M_y \big)^2 + \big(\nabla M_z \big)^2 \\ ^{19}$$

Energy of a ferromagnet as a function of the spatial distribution of magnetization:

$$E = \int \left[\left(\frac{A}{M_0^2} \right) \left[(\nabla M_x)^2 + \left(\nabla M_y \right)^2 + (\nabla M_z)^2 \right] - (M - M_0) H_0 \right] dr$$

Increase of the Zeeman energy

 $-(\mathbf{M}(\mathbf{r})-\mathbf{M}_0)\mathbf{H}$

Increase of the exchange energy

$$\left(\frac{A}{M_0^2}\right) \left[(\nabla M_x)^2 + \left(\nabla M_y\right)^2 + (\nabla M_z)^2 \right]$$

$$E = \int \left[\left(\frac{A}{M_0^2} \right) \left[(\nabla M_x)^2 + \left(\nabla M_y \right)^2 + (\nabla M_z)^2 \right] - (M - M_0) H_0 \right] dr$$

Small deviations of **M**:

$$\begin{split} M_{x'} & M_{y} << M_{0} \\ M_{z} \approx \left(1 - \frac{M_{x}^{2} + M_{y}^{2}}{2M_{0}^{2}}\right) M_{0} \end{split}$$

$$E = \int \left[\left(\frac{A}{M_0^2} \right) \left[(\nabla M_x)^2 + \left(\nabla M_y \right)^2 \right] + \frac{H_0 \left(M_x^2 + M_y^2 \right)}{2M_0} \right] dr$$

$$E = \int \left[\left(\frac{A}{M_0^2} \right) \left[(\nabla M_x)^2 + \left(\nabla M_y \right)^2 \right] + \frac{H_0 \left(M_x^2 + M_y^2 \right)}{2M_0} \right] dr$$

Introduce complex combinations:

$$M^{\pm} = M_x \pm iM_y$$

$$E = \int \left[\left(\frac{A}{M_0^2} \right) (\nabla M^+ \nabla M^-) + \left(\frac{H_0}{2M_0} \right) M^+ M^- \right] d\mathbf{r}$$

Magnetization at T>0: Exchange waves

$$E = \sum_{k} \left(\frac{2\mu A}{M_0} k^2 + \mu H_0 \right) b_k^* b_k$$

A sum of the energies of plane waves – **spin waves**

Magnetization at T>0: magnons

Energy of a ferromagnet:

$$E = \sum_{k} \left(\frac{2\mu A}{M_0} k^2 + \mu H_0 \right) b_k^* b_k$$

 $n_k = b_k^* b_k$ number of quasiparticles - magnons in the state with an energy: $\varepsilon_k = \frac{2}{n}$

$$\varepsilon_k = \frac{2\mu A}{M_0} k^2 + \mu H_0$$

Quasi-momentum of magnon P =

Effective mass of a magnon

$$P = \hbar k$$

$$m^* = \frac{M_0 \hbar^2}{4\mu A} = \frac{M_0 \hbar}{4\gamma A}$$
$$n_k = \frac{1}{e^{\varepsilon_k / k_B T} - 1}$$

Bose-Einstein distribution of thermal magnons

Magnetization at T>0: magnons

$$\sum_{k} n_{k} = \frac{1}{\mu} \Big(V M_{0} - \int M_{z} dr \Big)$$

Each magnon reduces the total magnetic moment of the sample by μ

Quadratic dispersion Bose-Einstein distribution

$$M(T) = M_0 - \frac{5.157 \cdot 10^{-5}}{(\gamma A M_0)^{3/2}} T^{3/2}$$

Bloch (3/2-) law: correct temperature dependence of magnetization at low T

Magnetic ordering, magnetic anisotropy and the mean-field theory

Antiferromagnets

Neel temperature

Susceptibility

Antiferromagnets

Equivalent magnetic sublattices

- same type of magnetic ions in the same crystallographic positions

Number of magnetic sublattices is equivalent to the number of magnetic ions in the <u>magnetic</u> unit cell

Antiferromagnets: Neél temperature

Molecular (Weiss) fields for the case of two sublattices:

 $H_A = w_{AA}M_A + w_{AB}M_B$ $H_B = w_{BB}M_B + w_{BA}M_A$

Equivalent sublattices:

H=0

$$w_{AA} = w_{BB} = w_1$$
$$w_{AB} = w_{BA} = w_2$$

$$M_A = -M_B$$

Magnetization of a sublattice in the presence of the molecular fields:

$$M_{A(B)} = \frac{N\mu}{2} L(\frac{\mu(w_1 - w_2)M_{A(B)}}{kT})$$

Neél temperature:

$$T_N = \frac{N\mu^2}{6k} (w_1 - w_2)$$

Antiferromagnets: susceptibility

$$\chi_{afm} \leq \chi_{par}$$

Equivalent sublattices:

Compound	Crystal structure	Paramagnetic lattice structure	No. of sublat- tices	T _N
MnF2	Rutile	Body-centered rectangular	2	72°
FeF2	Rutile	Body-centered rectangular	2	79°
MnO	NaCl	f.c.c.	4	122°
FeO	NaCl	f.c.c.	4	198°
MnS	NaCl	f.c.c.	4	165°
MnSe ^a	NaCl	f.c.c.	4	$\sim 150^{\circ}$
FeCl2	CdCl₂	Hexagonal layer structure	3	23.5°
$CoCl_2$	CdCl₂	Hexagonal layer structure	3	24.9°
NiCl_2	CdCl₂	Hexagonal layer structure	3	49.6°

[P. W. Anderson, Phys. Rev. 79, 705 (1950)]

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic anisotropy

Magnetic-dipole contribution

Magneto-crystalline anisotropy and its temperature dependence

Magnetic anisotropy

Magnetic anisotropy energy – energy required to rotate magnetization from an "easy" to a "hard" direction

Without anisotropy net magnetization of 3D solids would be weak; in 2D systems it would be absent [Mermin and Wagner, PRL 17, 1133 (1966)]

Magnetization – axial vector

Sources of anisotropy:

DeformationIntrinsic electrical fieldsShape etc....

- polar impacts

Magnetic anisotropy sets an axis, not a direction

Magnetic anisotropy: phenomenological consideration

Magnetic anisotropy

Compound	k_1 , erg cm ⁻³	k_2 , erg cm ⁻³
Fe	4,6 · 10 ⁵	1,5 · 10 ⁵
Ni	-5 · 10 ⁴	$2,3 \cdot 10^4$
Co	$4,1 \cdot 10^{6}$	1,0 · 10 ⁶
Y3Fe5O12	$6,5 \cdot 10^{3}$	
NiFe ₂ O ₄	-6,2 · 10 ⁴	
BaFe ₁₂ O ₁₉	3,3 · 10 ⁶	

Origins of magnetic anisotropy

- •Single-ion anisotropy
- •Anisotropic exchange
- •Magnetic-dipolar interactions
- Spin-orbit interaction

Interactions between pairs of magnetic ions

Magnetic-dipolar contribution to the anisotropy

Cubic crystal

Magnetic-dipolar contribution to the anisotropy

$$E(\phi) = l\left(\alpha_1^2 - \frac{1}{3}\right) + q\left(\alpha_1^4 - \frac{6}{7}\alpha_1^2 + \frac{3}{35}\right) + \dots$$

$$\cos \phi = \alpha$$

Cubic crystal

$$E_{a} = K_{1} \left(\alpha_{1}^{2} \alpha_{2}^{2} + \alpha_{2}^{2} \alpha_{3}^{2} + \alpha_{1}^{2} \alpha_{3}^{2} \right) + \dots$$

Hexagonal crystal

$$E_a = K_{u1} \sin^2 \theta + K_{u2} \sin^4 \theta + \dots$$

 $K_{u1} \sim l > q$

Contributes to the shape anisotropy

This films demonstrate in-plane anisotropy₃₇

40

Classical theory gives:

$$E_a = K_n \alpha^n$$

$$\frac{K_n(T)}{K_n(0)} = \left(\frac{M_S(T)}{M_S(0)}\right)^{\frac{n(n+1)}{2}}$$

Cubic anisotropy

$$\frac{K_n(T)}{K_n(0)} = \left(\frac{M_s(T)}{M_s(0)}\right)^{10}$$

Uniaxial anisotropy

$$\frac{K_n(T)}{K_n(0)} = \left(\frac{M_s(T)}{M_s(0)}\right)^3$$

[Zener, Phys. Rev. 96, 1335 (1954)]

Competition between different anisotropies gives rise to spin-reorinetation transitions

Magnetic ordering, magnetic anisotropy and the mean-field theory

Ferro- and antiferromagnets in an external field

Ferromagnets in applied magnetic field: domain walls displacement

Cubic anisotropy (K₁>0)

Ferromagnets in applied magnetic field: rotation of magnetization

Magnetization process in a multisublattice medium: spin-flop and spin-flip transitions in an antiferromagnet

46

Magnetization process in a multisublattice medium: spin-flop and spin-flip transitions in an antiferromagnet

