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Mean-field approximation: Weiss molecular field

wMHm 

H

J
Weiss molecular field 
- field  created by neighbor magnetic momentsμ

Alignment of a magnetic moment μ
in the total field H+wM ?
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A brief reminder: independent magnetic moments in external field

 cosHU 

kTUT Thermal energy:

At room temperature: 

H

J21101.4 

Potential energy of a magnetic moment 

μ

 cosHUH Potential energy of a magnetic moment 
in the field H:

J23102.1 In a field of 1MA/m: 

003.0~/ TH UU
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Probability for a magnetic moment to orient at the angle θ:
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cothNM

Full magnetization along the field:

kT
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Paramagnetism: independent magnetic moments in external field
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H

Full magnetization along the field:

kT

MH


At RT in the field of 1МА/м:

003.0













1

cothNM

Paramagnetism: independent magnetic moments in external field



003.0

Paramagnetic susceptibility:
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 Curie law
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H

 Quantization of the magnetic moment

zBz Jg 

Resulting magnetization along the field:

kT

HgJ B 
JJJJz  ....1,

Fe3+

Gd3+

Paramagnetism: independent magnetic moments in external field

  JBBNgJM 

Brillouin function

[Henry, PR 88, 559 (1952)]
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Ferromagnets: Weiss molecular field

H

JS

)(Sz SBS 
kT

HHSg mB )( 





zSNJ
H 

Weiss field due to exchange interactions J

)( SBz SBg

Averaged projected magnetic moment:
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Weiss field due to exchange interactions J
with N nearest neighbors:
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Self-consistent solution
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Back to ferromagnets: Weiss molecular field
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2 non-zero solutions: zS

=0
2 opposite orientations 
of the order parameter
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Ferromagnets (S=1/2): Curie temperature

T1

TC>T1

H=0

T2>TC

Variations of these curves with T:
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NJ
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NJS
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=0
Ordering temperature:

k

JN
TC 

2nd order phase transition

At T>TC 0zS
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Variations of these curves with T:

zS changes continuously with T
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Ferromagnets (S=1/2): Magnetization in a vicinity of TC
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T1

TC>T1

H=0

T2>TC
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At T→TC
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JS

Ferromagnets (S=1/2): Curie temperature

Ordering temperature:
k

JN
TC 

2nd order phase transition

Mean-field approximation Reality: 

1D case: 

2D case: 

3D case: 

Mean-field approximation 
predicts: 

02 
k

J
TC

k

J
TC 4

k

J
TC 6

No magnetic ordering

Reality: 

k

J
TC 269.2

k

J
TC 511.4

Agreement 
gets better 
for the 3D case

Reason:
fluctuations 
were neglected
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Ferromagnets (S=1/2): at low temperatures
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T1

TC>T1

H=0

T2>TC

)(Sz SBS 

At T→0
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Prediction:

Reality:
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Ferromagnets (S=1/2) in applied field

TC0H
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)(Sz SBS 

Non-zero magnetization above TC

Susceptibility

Above TC

in small fields )( C
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Weiss molecular field theory:

1
)0( TS
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M
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0HM

Ferromagnets

0
TCT
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TC 

2/1
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T

T
S C

z Critical 
exponent
β=1/2
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Curie-Weiss lawTemperature Curie
Critical 
exponent
γ=-1

Landau theory of phase transitions gives
the same values of critical exponents
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Weiss molecular field theory:

1
)0( TS

S

M
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Ferromagnets

0
TCT

0.5 1 0.5

 TTM CS 

  )( TTC

  )( TTC Landau theory 
and MF

Spin-spin correlations 16



Mean-field approximation: Bethe  mean-field theory

J
S0

From uncorrelated spins 
to uncorrelated clusters of spins

 S0 interaction with its 4 neighbors is treated exactly
(cluster)

 Sj are subject to effective (Weiss) fieldSj

))2/(ln(

2




NNk

J
TC

))2/(ln( NNk
C

1D case: 

2D case: 

3D case: 

k

J
TC 885.2

k

J
TC 993.4

No magnetic ordering

k

J
TC 269.2

k

J
TC 511.4

Agreement 
is improved

0CT

Approximation predicts: Reality: 
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Temperature dependence of magnetization

At T>0

At T=0

Thermal fluctuations

M(r)=M0

M(r)

Minimum of the exchange energy
SSz 
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Superposition of harmonic waves – thermal spin waves 
(introduced by Bloch)

Nonparallel Si Increase  of the exchange energy

M(r)

The magnitude of the gradient of M is important!



Magnetization at T>0

Characteristic period 
of magnetization variation λλ

λλ>> a (inter-atomic distance)

… … ……

Plane waves in a continuous medium

M(r)=M0+ΔM(r)

|ΔM(r)|<<M0

Small deviation of M from M0

(M(r))2 =M0
2=const

Length of M is conserved

H
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λλ<< L (sample size)
Plane waves in a continuous medium
(some analogy with sound waves)

Energy of a ferromagnet as a function 
of the spatial distribution of magnetization?

-(M(r)-M0)HIncrease of the Zeeman energy:

Increase of the exchange energy:

Exchange constant



Magnetization at T>0

… … ……

Energy of a ferromagnet as a function 
of the spatial distribution of magnetization:

H
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-(M(r)-M0)HIncrease of the Zeeman energy

Increase of the exchange energy



Magnetization at T>0

… … ……

H

M , M << M

z
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Mx, My<< M0
Small deviations of M:

M0



Magnetization at T>0

… … ……
H z
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Introduce complex combinations:



Magnetization at T>0: Exchange waves

… … ……

H z
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A sum of the energies 
of plane waves –
spin waves



Energy of a ferromagnet:

number of quasiparticles - magnons
in the state with an energy:

Magnetization at T>0: magnons
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Quasi-momentum of magnon

Effective mass of a magnon

Bose-Einstein distribution 
of thermal magnons



Each magnon reduces 
the total magnetic moment 
of the sample by μ

Quadratic dispersion
Bose-Einstein distribution

Magnetization at T>0: magnons
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Bloch (3/2-) law: correct temperature dependence 
of magnetization at low T
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Neel temperature 

Susceptibility
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Antiferromagnets

Magnetic sublattices:

μ1i μ2i

M1=Σμ1i/V M2=Σμ2i/V

M=M1+M2
Magnetization
(ferromagnetic vector)

Number of magnetic sublattices is equivalent to the number of magnetic ions 
in the magnetic unit cell

Equivalent magnetic sublattices 
– same type of magnetic ions in the same crystallographic positions

L=M1-M2 Antiferromagnetic vector)
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Antiferromagnets: Neél temperature

Molecular (Weiss) fields
for the case of two sublattices:

HA=wAAMA+wABMB

HB=wBBMB+wBAMA

wAA=wBB=w1
Equivalent sublattices:

wAB=wBA=w2

MA=-MB

H=0

Magnetization of a sublattice 

A B

T1H=0

B
S
(

)



Neél temperature:

Magnetization of a sublattice 
in the presence of the molecular fields:

T1

TN>T1

H=0

T2>TC

For each sublattice:
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Antiferromagnets: susceptibility

H
parafm  

1

wAA=wBB=w1>0
Equivalent sublattices:

wAB=wBA=w2<0
MA=-MB

Asymptotic Curie temperature:

HA=wAAMA+wABMB+H

HB=wBBMB+wBAMA+H

kT
para

1


)(

1

A

afm
TTk 





1

TCTAT TN

Asymptotic Curie temperature:

Susceptibility above TN: )(

1

C

ferro
TTk 



kT)( ATTk 

29



Antiferromagnets: susceptibility

TN

H
parafm  

Susceptibility in the Neél point:

Equivalent sublattices: MA=-MB

wAA=wBB=w1>0

wAB=wBA=w2<0

TN

Susceptibility at T=0: χ=0
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Antiferromagnets: some examples

TN
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[P. W. Anderson, Phys. Rev. 79, 705 (1950)]



Magnetic ordering, magnetic anisotropy
and the mean-field theory
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Magnetic anisotropy

Magnetic-dipole contribution

Magneto-crystalline anisotropy and its temperature dependence



Magnetic anisotropy

Magnetic anisotropy energy – energy required to rotate magnetization
from an “easy” to a “hard” direction

Magnetization – axial vector

Without anisotropy net magnetization of 3D solids would be weak;
in 2D systems it would be absent

[Mermin and Wagner, PRL 17, 1133 (1966)]

M

Sources of anisotropy:
•Deformation
•Intrinsic electrical fields
•Shape etc….

- polar impacts

Magnetization – axial vector

Magnetic anisotropy sets an axis, not a direction
33



Magnetic anisotropy: phenomenological consideration

Uniaxial anisotropy
...sinsin 4

2
2

1   uua KKE

01 uK

01 uK [001] – easy axis

(001) – easy plane

2 KE

Effective anisotropy field

M


Cubic anisotropy

  ...2
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2
2

2
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2
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2
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2
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2
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2
11   KKwa

01 K

01 K

easy axes- {100}

easy axes- {111}

...cos
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M
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Magnetic anisotropy

Compound erg cm-3  erg cm-3  

Origins of magnetic anisotropy

Interactions between pairs
of magnetic ions

•Magnetic-dipolar interactions

•Anisotropic exchange

•Single-ion anisotropy

Spin-orbit interaction

35



Magnetic-dipolar contribution to the anisotropy

cos ϕ=α1 ...
35
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Dipolar interaction

Cubic crystal

M

For a pair of neighboring ions:

...
357
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 qx
Quadrupolar interaction

  const2 2
3

2
1

2
3

2
2

2
2

2
1  NqEa

N – number of atoms per volume unit

NqK 21 
– cubic anisotropy constant

fcc: vcc:
NqK 9/161  NqK 1 36



Hexagonal crystal

θ
...sinsin 4
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1   uua KKE

Cubic crystal
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cos ϕ=α

Magnetic-dipolar contribution to the anisotropy

θ
21 uua

qlKu ~1

Contributes to the shape anisotropy

This films demonstrate in-plane anisotropy
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Single-ion anisotropy (crystal-field theory)

Splitting of the 3d shell
In the ligand field:

[001]

[100]

[111]

Spinel CoFe2O4

Co2+ in the octahedral coordination
+ trigonal distortion along [111]

O2-

In the ligand field:[100]

x2-y2 ; z2

xy; xz; yz

3d7

Co2+
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Splitting of the 3d shell

[001]

[100]

[111]
Co2+ in the octahedral coordination

+ trigonal distortion along [111]

Single-ion anisotropy (crystal-field theory)

Splitting of the 3d shell
In the ligand field + trigonal distortion

Maxima of electronic density
– along the axis [111]

Maxima of electronic density
– in the plane (111)

x2-y2 ; z2

xy; xz; yz

3d7
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[001]

[100]

[111]

x2-y2 ; z2

Co2+ in the octahedral coordination
+ trigonal distortion along [111]

Splitting of the 3d shell
In the ligand field + trigonal distortion

Single-ion anisotropy (crystal-field theory)

xy; xz; yz

3d7
Orbital moment 
L||[111]

Spin-orbit interaction  cosLSwSO  SL  -angle between 
S и [111]

0Co2+ (3d7)3rd Hunds rule:
40



[001]

[100]

[111]

 cosLSwSO  SL
 -angle between S и [111]

Co2+ (3d7) 0

Co2+ in the octahedral coordination
+ trigonal distortion along [111]

Single-ion anisotropy (crystal-field theory)

)( 222222
xzzyyxa LSNw  

Averaging over 4 types of Co2+ positions
with distortions along different {111} axes:

[Slonczewski, JAP 32, S253 (1961) ]

0

01 K
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Temperature dependence of magneto-crystalline anisotropy

Classical theory gives:
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Cubic anisotropy
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 Sn TMTK
[Zener, Phys. Rev. 96, 1335 (1954)]
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Uniaxial anisotropy
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Exp:
Theory:

Competition between different anisotropies 
gives rise to spin-reorinetation transitions 
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Ferromagnets in applied magnetic field: 
domain walls displacement

[100]

Cubic anisotropy (K1>0)

H

[100]
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Technical magnetization processes:
magnetization rotation

Reversible rotation towards the field Irreversible rotation towards the field

H H

M
Me.a. e.a.

Ferromagnets in applied magnetic field: 
rotation of magnetization
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Magnetization process in a multisublattice medium:
spin-flop and spin-flip transitions in an antiferromagnet

H

H

Χmax=-1/w2

H

H

M

H

H

HS=-w2MS 46



H

If the anisotropy is weak:

Magnetization process in a multisublattice medium:
spin-flop and spin-flip transitions in an antiferromagnet

H

M

H

H

H

HC

HS
Condition for the spin-flop 
(spin-reorienetation transition)
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Magnetization process in a multisublattice medium:
spin-flop and spin-flip transitions in an antiferromagnet

H

If the anisotropy is weak: If the anisotropy is strong:

H

M

If the anisotropy is weak:

H

H

H

If the anisotropy is strong:

H

M

H

H

Spin-flip

HC

HS HC
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