What do we know so far?

$\Delta \mu = \mu^{+} - \mu^{-} \sim \Delta(\underline{\mathbf{P}} \cdot \underline{\mathbf{M}})$

 $\langle L_z \rangle = \frac{4}{3} \cdot \frac{4}{2 \cdot 1} \cdot (10 - n_{3d})$

- XMCD is element specific
 - Good for complex compounds like Nd₂Fe₁₄B
- Separates Spin S and Orbital L magnetizations in real "Bohr-Magnetons"
 - Very important to understand coercive fields and magnetic anisotropy
- Any X-ray related technique could be transferred into it's magnetic counterpart, by tuning the X-ray energy to a corresponding XMCD sensitive edge !

 Now we start with XRMR= X-ray Resonant Magnetic Reflectivity

XRMR

- Short introduction with optical analogue
- Thickness = Chemical Profile
- What happens with roughness?
- Real Example: Pt/Co → magnetic profile
- How to quantify this? → Simulation
- Another example showing XRMR capabilities!

Modern functional magnetic material

D.H. Allwood et al Science (2003)

Interference at thin layers? That's what we know!

Thickness variable! Reflection increases with the change In the optical constants → Fresnel-law

Reflection is proportional to the weighted difference of the index of refraction $\Delta n_{e\!f\!f}$

Fresnel-law:

$$t_{s} = \frac{E_{t}}{E_{e}} = \frac{2n_{1}\cos\alpha}{n_{1}\cos\alpha + n_{2}\cos\beta}; r_{s} = \frac{E_{r}}{E_{e}} = \frac{f_{1}\cos\alpha - n_{2}\cos\beta}{n_{1}\cos\alpha + n_{2}\cos\beta}$$
$$t_{p} = \frac{E_{t}}{E_{e}} = \frac{2n_{1}\cos\alpha}{n_{2}\cos\alpha + n_{1}\cos\beta}; r_{p} = \frac{E_{r}}{E_{e}} = \frac{n_{1}\cos\beta - n_{2}\cos\alpha}{n_{2}\cos\alpha + n_{1}\cos\beta}$$

We start with a simplified oil film!

The previous example was very simple:

- Both interfering partial waves had the same intensity
- No intensity change by the angle of incidence
- Just a single layer with two partial waves
- Perfect interfaces

➔ Next level: Co on Si

Review: S. Macke and E. Goering, J. Phys. Cond. Mat. 26 (2014) 363201

Waves at hard interfaces?

Reflection is strong at hard walls!➔ i.e. steep change in index of refraction

What happens at rough (smooth) interfaces?

No reflection at the beach!→ Continuous change in index of refraction

Well known optical phenomenon!

- Reflectivity reduction
 - A "beach" for light does not reflect! → moth-eyes

Quelle: http://www.hitechnatur.ch/bauen/4/motten.html

First real X-ray example: Non resonant

experimental setup

CoPt- System as a "real-world" example!

Cu K_{α}: Conventional "hard X-ray" non-resonant reflectivity

0

- Parratt- Algorithm solves the problem (conventional reflectometry)!
- Layer thickness and roughness can be extracted
- Non resonant → simple estimates for the index of refraction

Pt induced Ferromagnetism : X-ray Resonant Magnetic Reflectometry

experimental setup

Magnetic response: asymmetry-ratio

Extraction of magnetization depth profiles

- Magnetic Simulation
 - **Nearly perfect** representation of the data
 - Quantitative magnetization profiles
 - Magnetic roughness (domains)
 - Measurement at the Pt L₃-edge (hard X-rays)
 - Element specific (just Pt!)
- Ideal tool to analyze interface properties of magnetic coupled thin layer systems (GMR,TMR,MRAM etc.)

Resonance provides even more improvements

- Contrast at "hidden" interfaces
- Co and Cu have nearly the same number of electrons → nearly equal non resonant scattering length

Questions:

1: Determine the Fe thickness

2: Explain the difference between left and right → can we use this as an advantage?

How does this (XRMR) works?

- 1) Magnetic scattering in dipole approximation
- 2) Resonant optical properties: from $\mu(E)$ to $n(E,\theta)$
- 3) Simulation of resonant optical profile: chemical and magnetic
- 4) Example: Pt roughness variation in Pt/Co

Absorption → Scattering amplitude → Dispersive part → complex index of refraction

Review: S. Macke and E. Goering, J. Phys. Cond. Mat. 26 (2014) 363201

2) From $\mu(E)$ to $n(E,\theta)$: Pt L₃ optical constants

- Absorptive part
 - Non magnetic β
 - Magnetic $\Delta\beta$
- Dispersive part via Kramers-Kronig-Relation
 - Non magnetic δ
 - Magnetic $\Delta \delta$
- Requires simultaneous measurement of the nonmagnetic (XAS) and magnetic (XMCD) absorption coefficients

 $n = 1 - \delta + i\beta - \Delta\delta + i\Delta\beta$

Reflectivity of multilayer systems

roughness

Optical approach

 $n = 1 - \delta + i\beta$

reflection at each interface described by Fresnel-law

multilayer \rightarrow L.G. Parratt formalism Phys. Rev 95, 1954, 359 $R_{F,i} = \frac{R_{o,i} + R_{u,i} exp(2i\varphi_i)}{1 + R_{o,i} \cdot R_{u,i} exp(2i\varphi_i)}$

interface roughness described by modified Fresnel coefficients

 \rightarrow vertical rms-roughness σ

L. Nevot, P. Croce, Rev. Phys. Appl.15, 1980, 761

$$R_{rough} = R_0 \cdot e^{-2\Delta k\sigma^2}$$

Parratt

Simulation of reflectivity...

Parratt algorithm = iteratively calculate R from bottom up (by L.G. Parratt 1954)

Advantages: Easy & fast calculation Roughness can be treated

Problem: σ and π -light are treated separately, ... not exact with magnetism!!

Matrix Formalism

Review: S. Macke and E. Goering, J. Phys. Cond. Mat. 26 (2014) 363201

NOW: XRMR- Software

- Two different algorithms for reflectivity calculation (Matrix/Parratt)
- Adaptive slicing/layer segmentation module
- Three different methods for optical density calculation
- Processes optical-constant database files for maximum flexibility
- Variable x-ray polarization

Dic. E-Scan

- Magnetism on a per-layer base or by introducing artificial moment
- Four different fit routines (Genetic Algorithm, Levenberg-Marquardt, Simplex, Simulated Annealing)
- Data import modul

XRMR – from Θ -2 Θ to a magnetic depth profile

Schematics of the measurement

And in reality...

- o full UHV
- o fast load lock
- o 20 450 K
- o up to 1.2 T
- o azimuthal rotation
- o high precision
- o encoder stage

XRMR² from top-down

Simulation of X-ray (Neutron) reflectivity: A brief historical overview

 L.G. Parrat 	Dynamic Theory (lin pol.; intensity)	1954
 L. Nevot et al. 	Roughness	1980
 J.P. Hannon et al. 	Magnetic resonant scattering	1988
 S.K. Sinha et al. 	Diffuse scattering (DWBA)	1988
 J. Zak et al. 	Magneto optics (Matrix formalism)	1990
 L. Seve et al. 	Ce/Fe and La/Fe (MF; no rough.)	1999
 S.A. Stepanov et al. 	Magnetic Multilayers (MF; no rough.)	2000
 J. Geisler et al. 	Pt/Co (Parratt, full magn. profiles)	2001
• D.R. Lee et al.	Magn. Matrix form. with transition layers	2003

Review: S. Macke and E. Goering, J. Phys. Cond. Mat. **26** (2014) 363201

Exchange Bias in MnPd/Fe

MgO(001)/MnPd(750Å)/Fe(70Å)/Pt(15Å) MnPd with a- axis growth → grown at 85°C and annealed at 250 degree °C for 1 hour

element selective hysteresis – Fe

Sample provided by K. Krishnan et al. University of Washington Seattle

Determination of optical constants

optical constants for MnPd around the Mn L-edges

XAS and XMCD experiment at Mn L_{2,3}-edge normalized to Henke tables

- \rightarrow Determination of charge and magnetic absorptive parts
- \rightarrow Dispersive parts via Kramers-Kronig-relation
- \rightarrow Absolute values from Henke tables for non resonant elements

B. L. Henke, Atomic data and nuclear data tables 54, 1993, 181 See http://cindy.lbl.gov/optical_constants

XRMR at the Mn L_3 edge

We rotate helicity and the field to separate pinned from rotatable magnetic moments!

Some "own" examples

Induced magnetism in Pt

Hard x-rays: Pt L₃

S. Brück et al. *Applied Physics Letters* **100**, 081603 (2012)

orbital reflectometry

E. Benckiser et al., Nature Materials **10** (2011) 189-193.

Zafar et al. Phys. Rev. B 84 (2011) 134412

Summary of possibilities

Another X-ray technique used for magnetism

- Full field X-ray Microscopy
- Scanning X-ray Microscopy (STXM) STXM Examples

Magnetic transmission microscopy: MTXM

Fresnel Zonenplates

Optical element in a X-ray microscope

It is more or less a grating, where the distance is varied to get constructive interference only at one point. Not a parallel beam! For details see any optics book!

Magnetic Contrast Simple modulation of the intensity behind the sample

• XMCD changes dramatic the intensity of the transmitted light

How to measure magnetism? An example: Co/NiO

Linear dichroism due to antiferromagnetic domains Ni L edge

Linear dichroism due to crystal Orientation: O-K edge

H. Ohldag et al. PR B 79, 052403 (2009)

MTXM – hysteresis of "nanodots"

magnetization of a single 1µm x 1 µm Fe/Gd dot

STXM: Our soft X-ray UHV microscope at HZB-BESSY-Berlin

circular polarized undulator beamline UE46

BESSY - Berlin

Concept of Scanning Transmission X-Ray microscopy

Further reasons for an STXM

- Microspectroscopy (many contrast mechanisms)
- Flexibility in detector (photon, electrons, TEY,...)
- Time resolved imaging

Something exceptional (worldwide)

Zone Plate Scanning

- Works very fine
- 24µm usable field of view
- Interferometer-limited performance
- Becomes more and more standard

Real UHV microscope \rightarrow electron yield possible

- UHV mode
 - Microscope fully bakeable at 110C

 "Helium" mode incl. cryo pump: 12h after pumping down better than 10⁻⁷ mBar

Combined TEY (surface) and Transmission (bulk)

D. Nolle et al. , microscopy and microanalysis (2011) D. Nolle et al. , Rev. Sci. Inst (2012)

Aglumerated $FeO_x/FePt$ hybrid Nanoparticles at the Fe- L₃ edge

SiN membrane

Origin for the "3d-like" TEY edge enhancement

Spectroscopy for TEY and Transmission

optical microscope

Transmission: More FePt signal visible **TEY:** Dominated by Fe_2O_3 like spectra

Similar to conventional XAS as in D. Nolle et al. , New J. Phys. **11** (2009).

TRANSMISSION-SXM

Magnetic SXM \rightarrow in and out off plane

- 0° angle (NI) for out of plane sensitivity
- 30° angle for in plane sensitivity
- Using circular polarized X-rays for XMCD effect

Magnetic SXM → in- and out-off-plane

- out of plane:
 - FePt @NI
 - 40ms/Pixel
 - Out off plane Domains

- In plane
 - CoTb @30°
 - 40ms/Pixel
 - In planeDomains

magnetic hysteresis curves

-exemplarily shown for TEY-no further corrections to values of magnetic field

-different behavior in both branches

Recent developments

- 5GHz dynamics → operational since July. 2010
- Total electron yield (TEY) mode \rightarrow since July. 2010
- New blazed grating → 3-5x flux → since Oct. 2010
- 0.5T \rightarrow since November 2011
- Variable Temperature 80-400k → 2nd quarter 2012
- 360° Tomography Sample Holder -> 3rd quarter 2012
- L-He Temperature 15K \rightarrow 2016
- Ultrafast CCD camera for Ptychography → 2016
- 25GHz dynamics → in development

Using the time structure: Pump – probe experiments

STXM: Sine Excitation in Multi-Bunch Mode

Magnetic dynamic imaging of vortices

- Magnetic Vortex Core imaging
- Out of plane XMCD Contrast <1%

"Rotation" (gyromode) depends on the Vortex orientation \rightarrow here CCW

One can excite magnons and "see them" directly!

This is a thin platelett of permalloy (Fe20% Ni80% → soft magnetic) excited by a rotating high frequency field (5.9 Ghz)!

magnetic x-ray microscopy movie

5.9 GHz 200 ps @ 6.5 mT Matthias Kammerer

Source: M. Kammerer et al. Nature Com. **2** (2011) 279 Abt. Sc MPI-IS at "Maxymus STXM Berlin" Magnon Propagation in a "Magnonic Lattice"

a=500nm d=50nm propagation could be switched on an off by external field

GHz excitations \rightarrow 50ps time and less than 20nm spatial resolution

• Unpublished so far •Possible application: high quality tunable microwave filtering device

Injection and control of Skyrmions

• Visible Light

- From the Group of Axel Hofmann
 - in Ta/CoFeB
 - Ta provides Spin-Orbit-Torque :=)

polar MOKE microscope

W. Jiang et al, Science, 349 (2015) 283-286

XMCD microscope

Kai Lizius et al., Nature Physics 13 (2017)

MAXYMUS MPI-IS

New ways: Ptychography

- Coherent Imaging + SXM → Going beyond resolution
 limit
- Phase approximation problem:
 - Time consuming and complicated!

Recording Sample Transmission

28 September 2018

Abteilungsseminar

Ptychography @ MAXYMUS

- In principle its is very close to the procedure shown before
- The main constrictions are related to the phase match of adjacent pictures performed by "oversampling"
- The resulting dataset is completely redundant and error robust → one is able to also extract the illumination function!

The Ptychographic Principle

(using "sharp camera"- D.A. Shapiro, et. al. Nature Photonics 8, 765 (2014))

Classical STXM

Ptychography

Abteilungsseminar

85 cm

2004	2015
Earth Simulator	MAXYMUS Ptychography Server
Fastest Supercomputer in the world	Just a computer with 8 GPUs
60 billion yen	affordable
35.86 Tflops	48 Tflops peak

Double Floor for Cables

48 cm

50m 55yd

Power Supply System

Picture: www.jamstec.go.jp

Ptychography Tests at MAXYMUS

Ca 6 nm half-pitch Resolution with 100nm FZP

William Chueh Group Materials Science and Engineering Stanford University

Benefits from rapid development of x-RAY cameras for FELs and upcoming high brilliance sources

Towards single nm chemical microscopy!

200 nm Illuminating spot size

28 September 2018

Abteilungsseminar

Ptychography @ MAXYMUS

- In principle its is very close to the procedure shown before
- We already have the reconstruction algorithm from David Schapiro
- The resulting dataset is completely redundant and error robust → one is able to also extract the illumination function!

Key Parameter:

Active Area	1-3 cm ²
Pixel Size	36 x 36 μm ² up to 150 x 150 μm ²
CCD Geometry	frame store and image area or image area only e.g. 256 x 256 pixels or 64 x 200 pixels
Operating Modes	full frame, frame-store, window modes, continuous readout
Read Out Speed	400 Hz f. 256 x 256 pixels (up to 1 MHz)
Elec. Noise	down to 2.5e- per pixel @190K, t _{int} = 50ms
Energy Resolution	130 eV FWHM @MnK, 190K, , tint = 50ms
Sensitivity	> 90% f.200eV -15KeV > 90% in the optical range supported by antireflective coatings (ARC) on the detector surface

Detector: pnSensor CCD 256x256 Pixel 32bit/pixel → about 260.000 Byte/frame

Maxymus Image has 100x100 up to 500x500 pixel (typical 200x200)

- Thats it!
- Thanks for your attention!