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Overview

• Landau-Lifshitz-Bloch micromagnetics


• Applications of atomistic spin dynamics


• Simulations of ultrafast magnetisation processes
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Landau Lifshitz Bloch 
micromagnetics



Next generation micromagnetics: Landau Lifshitz Bloch equation

• Conventional micromagnetics ubiquitous but does a poor 
job of thermodynamics of magnetic materials


• Atomistic models in principle resolve this but 
horrendously computationally expensive


• Landau Lifshitz-Bloch micromagnetics is an advanced 
micromagnetic approach which attempts to correctly 
simulate the intrinsic thermodynamic properties of 
magnets


• Still only a partial solution -  crystal structure, interfaces, 
surfaces, local defects, finite size effects all still not really 
accessible to a micromagnetic model



Landau Lifshitz Bloch (LLB) equation

• An additional dynamic term compared to the LLG equation


• Derived from the thermodynamic behaviour of a collection of classical 
spins by D. Garanin [1]


• Longitudinal fluctuations (and damping) of the magnetization are now 
included in the dynamics, enabling simulations up to and above the Curie 
temperature


• Also quantum flavours of the LLB

[1] D. A. Garanin, Phys. Rev. B 55, 3050 (1997)

R. F. L. EVANS et al. PHYSICAL REVIEW B 85, 014433 (2012)

Garanin and Chubykalo-Fesenko21 have suggested treating
the LLB equation following Brown’s treatment of the LLG
equation. They derived a form of the stochastic LLB equation
where, similar to the LLG equation, the stochastic terms were
introduced as additional formal stochastic fields, different for
longitudinal and transverse fluctuations. They also introduced
the FP equation and showed that the longitudinal fluctuations
result in an additional decrease of the switching time of
magnetic nanoparticles at elevated temperatures. However, as
we show in the present paper, although near equilibrium the
resulting stochastic equation is consistent with the FDT, the
requirement of the Boltzmann distribution in equilibrium is
not fulfilled in the vicinity of the Curie temperature. This is in
contrast to the stochastic LLG equation where both approaches
are in complete agreement. In the present paper we introduce a
different form of the stochastic LLB equation, consistent with
the Boltzmann distribution at arbitrary temperature.

II. TWO FORMS OF THE STOCHASTIC LLB EQUATION

Applying a general statistical mechanics approach to
the LLG equation, Brown has suggested introducing the
stochastic terms into a deterministic equation of motion as
“formal concepts, introduced for convenience, to produce the
fluctuations δM”; see Ref. 2. Thus these terms are not based on
a kind of “first principles” approach, although some attempts
to justify their final form exist in the literature and show that
their properties (such as the absence of memory effects) are
valid with some special assumptions only.22,23

Since the fluctuating variables are formal, their choice is
multiple. For the LLG equations it is customary to introduce
three-component noise variable in the form of the fluctuating
field in the precessional or damping or both terms. Stochastic
variables can also be introduced as additive noise in the form
of fluctuating torques.19,25 This approach also coincides with
the fluctuating fields one if the linearization of the LLG
equation is performed.25 All these formulations lead to the
same FP equation but with different resulting strengths of
the fluctuating variables. For the LLB equation, however,
it has been shown21,25 that the naive introduction of the
same fluctuating field in all terms (precessional, longitudinal
relaxation, and transverse relaxation) and the application of the
FDT does not lead to convenient properties. The fluctuating
fields should have correlations, not only between different spin
sites but between different components (x,y,z) as well.

The stochastic LLB equations which we study in the present
paper have been designed to fulfill the properties of the sim-
plest noise variables to be isotropic and uncorrelated in sites
and components. The stochastic LLB equation, introduced in
Ref. 21 (called here sLLB-I) is written for each macrospin
(nanoparticle or discretization element) describing its average
spin polarization m = M/M0

s (M is the magnetization and M0
s

is the saturation magnetization value at T = 0) in the following
form:

ṁ = γ [m × Heff] + |γ |α||

m2
(m · (Heff + ζ ||))m

− |γ |α⊥

m2
[m × [m × (Heff + ζ⊥)]], (1)

where γ is the gyromagnetic ratio, α∥ and α⊥ are dimensionless
longitudinal and transverse damping parameters given by

α∥ = λ
2T

3Tc
, α⊥ = λ

[
1 − T

3Tc

]
, T < Tc, (2)

and Tc is the Curie temperature. For T > Tc, α⊥ equals α∥.
Here λ is the parameter describing the coupling of the spins to
the heat bath on an atomistic level. The effective field Heff is
given by

Heff = H + HA +

⎧
⎨

⎩

1
2χ̃∥

(
1 − m2

m2
e

)
m, T ! Tc,

− 1
χ̃∥

(
1 + 3

5
Tc

T −Tc
m2

)
m, T " Tc.

(3)

Here me is the zero-field equilibrium spin polarization for
a given temperature. H and HA are applied and anisotropy
fields, respectively; χ̃|| = (dm/dH )H→0 is the the longitudinal
susceptibility. Note that for simplicity we present the classical
version of the LLB equation; for a finite spin value see Ref. 26.

Perpendicular and longitudinal noise parameters have the
following properties:

⟨ζµ⟩ = 0,
〈
ζ

µ
i (0)ζ ν

j (t)
〉
= 2kBT

|γ |M0
s V αµ

δijδµνδ(t), (4)

where µ,ν = ||, ⊥ and indices i,j denote components x,y,z
and V is the particle volume.

In this equation the formal stochastic variables were
introduced as additional random fields. The noise is isotropic
and multiplicative and for an individual spin it has six
dimensions; i.e., the random fields acting on longitudinal and
transverse damping have different properties. No random field
was assumed in the precessional term. From the point of view
of the FDT, this avoids the presence of correlations between
different field components and different spins. This form of the
stochastic LLB has been used in previous publications.9,10,12,21

Here we demonstrate that this approach is not completely
satisfactory in that, at elevated temperatures, the Boltzmann
distribution is not correctly recovered. In order to explore this
inconsistency we propose an alternative approach, introducing
instead of an additional random field, an additional random
torque in the longitudinal direction in an additive manner, the
choice of which we justify in Sec. III. This leads to a different
stochastic differential equation, called here sLLB-II, which we
propose in this paper:

ṁ = γ [m × Heff] + |γ |α||

m2
(m · Heff)m

− |γ |α⊥

m2
[m × [m × (Heff + η⊥)]] + η||. (5)

In what follows we apply to this equation both the FDT and the
FP equation approaches. Both approaches give the following
properties of the fluctuating terms:

〈
η

µ
i

〉
= 0, ⟨η⊥

i (0)η⊥
j (t)⟩ = 2kBT (α⊥ − α||)

|γ |M0
s V α2

⊥
δijδ(t),

(6)
⟨η||

i (0)η||
j (t)⟩ = 2|γ |kBT α||

M0
s V

δijδ(t), ⟨η||
i η

⊥
j ⟩ = 0.
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Longitudinal term in the Landau Lifshitz Bloch (LLB) equation

• Longitudinal fluctuations of the 
magnetization have their own dynamics


• Different effects below and above the 
Curie temperature, Tc


• The effective magnetic field that 
constrains the magnetization length is 
given by

R. F. L. EVANS et al. PHYSICAL REVIEW B 85, 014433 (2012)

Garanin and Chubykalo-Fesenko21 have suggested treating
the LLB equation following Brown’s treatment of the LLG
equation. They derived a form of the stochastic LLB equation
where, similar to the LLG equation, the stochastic terms were
introduced as additional formal stochastic fields, different for
longitudinal and transverse fluctuations. They also introduced
the FP equation and showed that the longitudinal fluctuations
result in an additional decrease of the switching time of
magnetic nanoparticles at elevated temperatures. However, as
we show in the present paper, although near equilibrium the
resulting stochastic equation is consistent with the FDT, the
requirement of the Boltzmann distribution in equilibrium is
not fulfilled in the vicinity of the Curie temperature. This is in
contrast to the stochastic LLG equation where both approaches
are in complete agreement. In the present paper we introduce a
different form of the stochastic LLB equation, consistent with
the Boltzmann distribution at arbitrary temperature.

II. TWO FORMS OF THE STOCHASTIC LLB EQUATION

Applying a general statistical mechanics approach to
the LLG equation, Brown has suggested introducing the
stochastic terms into a deterministic equation of motion as
“formal concepts, introduced for convenience, to produce the
fluctuations δM”; see Ref. 2. Thus these terms are not based on
a kind of “first principles” approach, although some attempts
to justify their final form exist in the literature and show that
their properties (such as the absence of memory effects) are
valid with some special assumptions only.22,23

Since the fluctuating variables are formal, their choice is
multiple. For the LLG equations it is customary to introduce
three-component noise variable in the form of the fluctuating
field in the precessional or damping or both terms. Stochastic
variables can also be introduced as additive noise in the form
of fluctuating torques.19,25 This approach also coincides with
the fluctuating fields one if the linearization of the LLG
equation is performed.25 All these formulations lead to the
same FP equation but with different resulting strengths of
the fluctuating variables. For the LLB equation, however,
it has been shown21,25 that the naive introduction of the
same fluctuating field in all terms (precessional, longitudinal
relaxation, and transverse relaxation) and the application of the
FDT does not lead to convenient properties. The fluctuating
fields should have correlations, not only between different spin
sites but between different components (x,y,z) as well.

The stochastic LLB equations which we study in the present
paper have been designed to fulfill the properties of the sim-
plest noise variables to be isotropic and uncorrelated in sites
and components. The stochastic LLB equation, introduced in
Ref. 21 (called here sLLB-I) is written for each macrospin
(nanoparticle or discretization element) describing its average
spin polarization m = M/M0

s (M is the magnetization and M0
s

is the saturation magnetization value at T = 0) in the following
form:

ṁ = γ [m × Heff] + |γ |α||

m2
(m · (Heff + ζ ||))m

− |γ |α⊥
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[m × [m × (Heff + ζ⊥)]], (1)

where γ is the gyromagnetic ratio, α∥ and α⊥ are dimensionless
longitudinal and transverse damping parameters given by
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3Tc
, α⊥ = λ
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1 − T

3Tc

]
, T < Tc, (2)

and Tc is the Curie temperature. For T > Tc, α⊥ equals α∥.
Here λ is the parameter describing the coupling of the spins to
the heat bath on an atomistic level. The effective field Heff is
given by
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Here me is the zero-field equilibrium spin polarization for
a given temperature. H and HA are applied and anisotropy
fields, respectively; χ̃|| = (dm/dH )H→0 is the the longitudinal
susceptibility. Note that for simplicity we present the classical
version of the LLB equation; for a finite spin value see Ref. 26.

Perpendicular and longitudinal noise parameters have the
following properties:
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ζ
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where µ,ν = ||, ⊥ and indices i,j denote components x,y,z
and V is the particle volume.

In this equation the formal stochastic variables were
introduced as additional random fields. The noise is isotropic
and multiplicative and for an individual spin it has six
dimensions; i.e., the random fields acting on longitudinal and
transverse damping have different properties. No random field
was assumed in the precessional term. From the point of view
of the FDT, this avoids the presence of correlations between
different field components and different spins. This form of the
stochastic LLB has been used in previous publications.9,10,12,21

Here we demonstrate that this approach is not completely
satisfactory in that, at elevated temperatures, the Boltzmann
distribution is not correctly recovered. In order to explore this
inconsistency we propose an alternative approach, introducing
instead of an additional random field, an additional random
torque in the longitudinal direction in an additive manner, the
choice of which we justify in Sec. III. This leads to a different
stochastic differential equation, called here sLLB-II, which we
propose in this paper:
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Garanin and Chubykalo-Fesenko21 have suggested treating
the LLB equation following Brown’s treatment of the LLG
equation. They derived a form of the stochastic LLB equation
where, similar to the LLG equation, the stochastic terms were
introduced as additional formal stochastic fields, different for
longitudinal and transverse fluctuations. They also introduced
the FP equation and showed that the longitudinal fluctuations
result in an additional decrease of the switching time of
magnetic nanoparticles at elevated temperatures. However, as
we show in the present paper, although near equilibrium the
resulting stochastic equation is consistent with the FDT, the
requirement of the Boltzmann distribution in equilibrium is
not fulfilled in the vicinity of the Curie temperature. This is in
contrast to the stochastic LLG equation where both approaches
are in complete agreement. In the present paper we introduce a
different form of the stochastic LLB equation, consistent with
the Boltzmann distribution at arbitrary temperature.

II. TWO FORMS OF THE STOCHASTIC LLB EQUATION

Applying a general statistical mechanics approach to
the LLG equation, Brown has suggested introducing the
stochastic terms into a deterministic equation of motion as
“formal concepts, introduced for convenience, to produce the
fluctuations δM”; see Ref. 2. Thus these terms are not based on
a kind of “first principles” approach, although some attempts
to justify their final form exist in the literature and show that
their properties (such as the absence of memory effects) are
valid with some special assumptions only.22,23

Since the fluctuating variables are formal, their choice is
multiple. For the LLG equations it is customary to introduce
three-component noise variable in the form of the fluctuating
field in the precessional or damping or both terms. Stochastic
variables can also be introduced as additive noise in the form
of fluctuating torques.19,25 This approach also coincides with
the fluctuating fields one if the linearization of the LLG
equation is performed.25 All these formulations lead to the
same FP equation but with different resulting strengths of
the fluctuating variables. For the LLB equation, however,
it has been shown21,25 that the naive introduction of the
same fluctuating field in all terms (precessional, longitudinal
relaxation, and transverse relaxation) and the application of the
FDT does not lead to convenient properties. The fluctuating
fields should have correlations, not only between different spin
sites but between different components (x,y,z) as well.

The stochastic LLB equations which we study in the present
paper have been designed to fulfill the properties of the sim-
plest noise variables to be isotropic and uncorrelated in sites
and components. The stochastic LLB equation, introduced in
Ref. 21 (called here sLLB-I) is written for each macrospin
(nanoparticle or discretization element) describing its average
spin polarization m = M/M0

s (M is the magnetization and M0
s

is the saturation magnetization value at T = 0) in the following
form:

ṁ = γ [m × Heff] + |γ |α||

m2
(m · (Heff + ζ ||))m

− |γ |α⊥

m2
[m × [m × (Heff + ζ⊥)]], (1)

where γ is the gyromagnetic ratio, α∥ and α⊥ are dimensionless
longitudinal and transverse damping parameters given by

α∥ = λ
2T

3Tc
, α⊥ = λ

[
1 − T

3Tc

]
, T < Tc, (2)

and Tc is the Curie temperature. For T > Tc, α⊥ equals α∥.
Here λ is the parameter describing the coupling of the spins to
the heat bath on an atomistic level. The effective field Heff is
given by

Heff = H + HA +
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Here me is the zero-field equilibrium spin polarization for
a given temperature. H and HA are applied and anisotropy
fields, respectively; χ̃|| = (dm/dH )H→0 is the the longitudinal
susceptibility. Note that for simplicity we present the classical
version of the LLB equation; for a finite spin value see Ref. 26.

Perpendicular and longitudinal noise parameters have the
following properties:

⟨ζµ⟩ = 0,
〈
ζ

µ
i (0)ζ ν

j (t)
〉
= 2kBT

|γ |M0
s V αµ

δijδµνδ(t), (4)

where µ,ν = ||, ⊥ and indices i,j denote components x,y,z
and V is the particle volume.

In this equation the formal stochastic variables were
introduced as additional random fields. The noise is isotropic
and multiplicative and for an individual spin it has six
dimensions; i.e., the random fields acting on longitudinal and
transverse damping have different properties. No random field
was assumed in the precessional term. From the point of view
of the FDT, this avoids the presence of correlations between
different field components and different spins. This form of the
stochastic LLB has been used in previous publications.9,10,12,21

Here we demonstrate that this approach is not completely
satisfactory in that, at elevated temperatures, the Boltzmann
distribution is not correctly recovered. In order to explore this
inconsistency we propose an alternative approach, introducing
instead of an additional random field, an additional random
torque in the longitudinal direction in an additive manner, the
choice of which we justify in Sec. III. This leads to a different
stochastic differential equation, called here sLLB-II, which we
propose in this paper:

ṁ = γ [m × Heff] + |γ |α||

m2
(m · Heff)m

− |γ |α⊥

m2
[m × [m × (Heff + η⊥)]] + η||. (5)

In what follows we apply to this equation both the FDT and the
FP equation approaches. Both approaches give the following
properties of the fluctuating terms:

〈
η

µ
i

〉
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Energy terms in the Landau Lifshitz Bloch (LLB) equation

• Conventional energy terms used in micromagnetics cause numerical 
issues for the LLB, as any “applied” magnetic field will cause the moment 
length to grow


• Therefore need to treat internal fields in a special way so that in thermal 
equilibrium, the net magnetic field is zero

Evans et al, Phys. Rev. B 85, 014433 (2012)

R. F. L. EVANS et al. PHYSICAL REVIEW B 85, 014433 (2012)

Garanin and Chubykalo-Fesenko21 have suggested treating
the LLB equation following Brown’s treatment of the LLG
equation. They derived a form of the stochastic LLB equation
where, similar to the LLG equation, the stochastic terms were
introduced as additional formal stochastic fields, different for
longitudinal and transverse fluctuations. They also introduced
the FP equation and showed that the longitudinal fluctuations
result in an additional decrease of the switching time of
magnetic nanoparticles at elevated temperatures. However, as
we show in the present paper, although near equilibrium the
resulting stochastic equation is consistent with the FDT, the
requirement of the Boltzmann distribution in equilibrium is
not fulfilled in the vicinity of the Curie temperature. This is in
contrast to the stochastic LLG equation where both approaches
are in complete agreement. In the present paper we introduce a
different form of the stochastic LLB equation, consistent with
the Boltzmann distribution at arbitrary temperature.

II. TWO FORMS OF THE STOCHASTIC LLB EQUATION

Applying a general statistical mechanics approach to
the LLG equation, Brown has suggested introducing the
stochastic terms into a deterministic equation of motion as
“formal concepts, introduced for convenience, to produce the
fluctuations δM”; see Ref. 2. Thus these terms are not based on
a kind of “first principles” approach, although some attempts
to justify their final form exist in the literature and show that
their properties (such as the absence of memory effects) are
valid with some special assumptions only.22,23

Since the fluctuating variables are formal, their choice is
multiple. For the LLG equations it is customary to introduce
three-component noise variable in the form of the fluctuating
field in the precessional or damping or both terms. Stochastic
variables can also be introduced as additive noise in the form
of fluctuating torques.19,25 This approach also coincides with
the fluctuating fields one if the linearization of the LLG
equation is performed.25 All these formulations lead to the
same FP equation but with different resulting strengths of
the fluctuating variables. For the LLB equation, however,
it has been shown21,25 that the naive introduction of the
same fluctuating field in all terms (precessional, longitudinal
relaxation, and transverse relaxation) and the application of the
FDT does not lead to convenient properties. The fluctuating
fields should have correlations, not only between different spin
sites but between different components (x,y,z) as well.

The stochastic LLB equations which we study in the present
paper have been designed to fulfill the properties of the sim-
plest noise variables to be isotropic and uncorrelated in sites
and components. The stochastic LLB equation, introduced in
Ref. 21 (called here sLLB-I) is written for each macrospin
(nanoparticle or discretization element) describing its average
spin polarization m = M/M0

s (M is the magnetization and M0
s

is the saturation magnetization value at T = 0) in the following
form:

ṁ = γ [m × Heff] + |γ |α||

m2
(m · (Heff + ζ ||))m

− |γ |α⊥

m2
[m × [m × (Heff + ζ⊥)]], (1)

where γ is the gyromagnetic ratio, α∥ and α⊥ are dimensionless
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3Tc
, α⊥ = λ

[
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3Tc

]
, T < Tc, (2)

and Tc is the Curie temperature. For T > Tc, α⊥ equals α∥.
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the heat bath on an atomistic level. The effective field Heff is
given by
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Here me is the zero-field equilibrium spin polarization for
a given temperature. H and HA are applied and anisotropy
fields, respectively; χ̃|| = (dm/dH )H→0 is the the longitudinal
susceptibility. Note that for simplicity we present the classical
version of the LLB equation; for a finite spin value see Ref. 26.

Perpendicular and longitudinal noise parameters have the
following properties:
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where µ,ν = ||, ⊥ and indices i,j denote components x,y,z
and V is the particle volume.

In this equation the formal stochastic variables were
introduced as additional random fields. The noise is isotropic
and multiplicative and for an individual spin it has six
dimensions; i.e., the random fields acting on longitudinal and
transverse damping have different properties. No random field
was assumed in the precessional term. From the point of view
of the FDT, this avoids the presence of correlations between
different field components and different spins. This form of the
stochastic LLB has been used in previous publications.9,10,12,21

Here we demonstrate that this approach is not completely
satisfactory in that, at elevated temperatures, the Boltzmann
distribution is not correctly recovered. In order to explore this
inconsistency we propose an alternative approach, introducing
instead of an additional random field, an additional random
torque in the longitudinal direction in an additive manner, the
choice of which we justify in Sec. III. This leads to a different
stochastic differential equation, called here sLLB-II, which we
propose in this paper:

ṁ = γ [m × Heff] + |γ |α||

m2
(m · Heff)m

− |γ |α⊥
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[m × [m × (Heff + η⊥)]] + η||. (5)
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FP equation approaches. Both approaches give the following
properties of the fluctuating terms:
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the Boltzmann distribution function. After the substitution
f = f /m2, it is possible to show that in equilibrium the
function f is the Boltzmann distribution (13). This allows us to
calculate the magnitudes of the correlators (10) obtaining the
properties indicated in Eq. (4). Thus the equilibrium solution
of the FP equation (12) is not the Boltzmann distribution but

f = f̃0
1

m2
exp(−F/kBT ) (15)

(here f̃0 is a new normalization constant), as indeed we will
see in the numerical simulations in Sec. IV.

The sLLB-II equation (5) was constructed in order to satisfy
the FP equation derived in Ref. 21 and to correct for the
additional drift term. Provided that ⟨ην(t)ην(0)⟩ = 2D̃νδ(t),
ν = ||, ⊥ , for this equation we have

b
||
kj =

√
2D̃||δkj (16)

and the same values for the perpendicular part as in Eq. (11)
(with D⊥ → D̃⊥ ). The corresponding FP equation reads

∂f

∂t
= − ∂

∂m

{
γ [m × Heff]f + α|||γ |

m2
(m · Heff)mf

− α⊥ |γ |
m2

[m × [m × Heff]]f
}

− ∂

∂m

{
D̃⊥ α2

⊥ |γ |2

m2

[
m ×

[
m × ∂f

∂m

]]
− D̃||

∂f

∂m

}
.

(17)

Using the relation (14), it is easy to check that in equilibrium
this equation has a solution of the Boltzmann distribution
function (13). This provides the following conditions for the
fluctuating strength properties:

α|| − α⊥ + D̃⊥ α2
⊥ |γ |V M0

s

kBT
= 0,

(18)

α⊥ − D̃⊥ α2
⊥ |γ |V M0

s

kBT
− D̃||V M0

s

kBT |γ |
= 0,

from which Eqs. (6) are deduced.
Using the relation

m2 ∂f

∂m
= −

[
m ×

[
m × ∂f

∂m

]]
+

(
m · ∂f

∂m

)
m, (19)

we can finally cast the FP equation (17) in a conventional form
which coincides with the one presented in Ref. 21:

∂f

∂t
+ ∂

∂m
J= 0, (20)

where the probability current Jis given by

J= γ [m × f Heff] + α|||γ | m
m2

[
m ·

(
f Heff − kBT

M0
s V

∂f

∂m

)]

− α⊥ |γ |
m2

[
m ×

[
m ×

(
f Heff − kBT

M0
s V

∂f

∂m

)]]
.

IV. NUMERICAL TESTS

In order to compare the properties of the two different forms
of the LLB equation, we have implemented the stochastic

equation in both forms, using the Stratonovich interpretation
and the Heun numerical scheme.18 Some useful properties of
the stochastic equations are summarized in Appendix B. The
Heun numerical scheme is of the predictor-corrector type and
is especially convenient since the correction to the drift due
to the influence of the predictor coincides exactly with the
Ito-Stratonovich drift. Thus in the Stratonovich interpretation
the scheme is the same as for the deterministic equation.

For the LLB equation, the free energy of the system is
conveniently defined as6,9

F

M0
s V

=

⎧
⎪⎨

⎪⎩

m2
x +m2

y

2χ̃⊥
+ (m2−m2

e)
2

8χ̃∥m2
e

, T ! Tc,

m2
x +m2

y

2χ̃⊥
+ 3

20χ̃∥

Tc
T −Tc

(
m2 + 5

3
T −Tc

Tc

)2
, T > Tc.

(21)

Here the longitudinal and the perpendicular susceptibilities χ̃∥,
χ̃⊥ and the equilibrium magnetization me are all temperature-
dependent values. The first term provides a uniaxial anisotropy,
while the second term controls the length of the magnetization.
At low temperatures the second term keeps the magnitude of
the vector m very close to me, due to the fact that χ̃∥ ≪ 1
for all temperatures not too close to Tc. In this case both
sLLB-II and sLLB-I trivially give the same result coinciding
with that of the LLG equation with temperature-dependent
parameters. The deviations from the LLG case are defined by
the parameter21 χ̃||/χ̃⊥ , i.e., are better seen close to Tc when
the parallel susceptibility is not small and for high-anisotropy
materials such as FePt, for which χ̃⊥ is also small.

As an input into the single-spin LLB equation we need
temperature-dependent macroscopic parameters: the magne-
tization me(T ) and perpendicular and parallel susceptibilities
χ̃⊥ (T ) and χ̃∥(T ), respectively. These can be taken either from
experiment or evaluated numerically. The easiest approximate
way is to evaluate these parameters from a mean-field approach
(MFA).10 In order to make the following results as realistic as
possible, we have performed all calculations with parameters
extracted from an atomistic Langevin dynamics model of FePt
parameterized with density functional theory calculations, a
comprehensive description of which can be found in Ref. 9.
This latter approach is more likely to form the basis of
future applications for the LLB, due to the specificity of
the parameters to the problem of interest, and the multiscale
approach to the problem enabling the incorporation of a
significant level of details into the macroscopic model.

The following calculations utilize the FePt input parameters
from Ref. 9, which in summary give magnetic characteristics
of Tc of 660 K and magnetocrystalline anisotropy energy
density of 7.7 × 106 J/m3. The high anisotropy accentuates
the differences between the sLLB-I and sLLB-II, and this is
especially true near Tc, where any deviations from the expected
Boltzmann distribution become obvious. For the integration
we use a time step with (t = 1 fs. The intrinsic damping is set
to λ = 1.0, since we are interested in equilibrium distributions.
The gyromagnetic ratio has the usual value of γ = 1.76 ×
1011 T−1 s−1.

The first case of interest is the distribution in the length of
magnetization, P (|m|). The presence of anisotropy results in
symmetry breaking and gives rise to a 3D free-energy surface.
Therefore for simplicity the following results are calculated
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netization close to the phase transition. However, since the
LLB equation implies true critical behavior, we fit our data
with a function that extrapolates down to a critical tempera-
ture of about 660 K !solid line", thereby parameterizing a
model of infinite system size. This is important since the
LLB equation demands a clear definition of the critical tem-
perature. The so parameterized function can then be used as
a me!T" function for the simulations of the LLB equation.

The susceptibilities shown in Fig. 2 are calculated from
the fluctuations of the magnetization30 given by

!̃l =
"sN

kBT
!#Sl

2$ − #Sl$2" , !13"

where N is the number of spins. They clearly exhibit stronger
fluctuations than the magnetization and in addition, !̃% shows
once again finite-size effects. As before, we fit our data with
functions that extrapolate to the critical behavior of an infi-
nite system, i.e., a divergence of !̃%. Well above TC, the two
susceptibilities collapse.

The calculation of the thermodynamic exchange stiffness
A!T" for the LLB equation is less straightforward. In the
following, we use a result derived from the temperature de-
pendent free energy of a domain wall and its corresponding
width. The free energy #F of a domain wall is gained from
numerical calculations of the internal domain wall energy
#E, which is the energy difference between a system with
and without a domain wall, by using the relation

#F!$" =
1
$
&

0

$

#E!$!"d$!, !14"

with $=1 /kBT. It was found that domain wall profiles are
well described by the usual hyperbolic functions,21 so that
we were able to fit the domain wall width %. Assuming that
the well-known equations for the domain wall width

%!T" = &'A!T"
K!T"

, !15"

and the free energy

#F!T" = 4'A!T"K!T" , !16"

temperature dependence holds even at finite temperature, we
estimate the micromagnetic exchange stiffness A!T" as well
as the anisotropy energy constant K!T". For a detailed de-
scription of the calculation, see Refs. 19 and 24. The corre-
sponding results for A!T" are shown in Fig. 3. Once again,
finite size effects can be observed and the fitted line extrapo-
lates down to zero at the Curie temperature.

With me!T", A!T", !̃%!T", and !̃!!T", we have all the func-
tions that are necessary as input for the LLB equation. By
using these functions, we circumvent further mean-field ap-
proximations in the LLB equation and are able to use the
microscopic information from the spin Hamiltonian, includ-
ing the special form of the anisotropy and the long-range
exchange interaction of our FePt model. Since the form of
the Hamiltonian and all its parameters are derived from
SDFT calculations, this approach builds a bridge between
electronic degrees of freedom, atomistic spin models, and a
macrospin model. In the next section, we will test the mac-
rospin approach versus the original atomistic spin model.

IV. COMPARING ATOMISTIC AND MACROSPIN
MODELS

In the following, the goal is to compare a full atomistic
simulation of an FePt nanoparticle by using the Hamiltonian
(Eq. !8") and the numerical methods (Eq. !12") described
above with a much less computation time demanding simu-
lation of a single macrospin by using the LLB equation (Eq.
!1").

We begin the comparison to a longitudinal relaxation
shown in Fig. 4. Here, our simulations start with a fully
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FIG. 1. !Color online" Spontaneous equilibrium magnetization
vs temperature for the atomistic FePt model. The solid line is a fit to
the data extrapolating to TC as for an infinite system.
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FIG. 2. !Color online" Equilibrium parallel and transverse sus-
ceptibility vs temperature for our atomistic FePt model. The solid
lines are fits extrapolating the critical behavior.
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FIG. 3. !Color online" Exchange stiffness vs temperature for the
atomistic FePt model. The solid line is a fit extrapolating the critical
behavior.
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netization close to the phase transition. However, since the
LLB equation implies true critical behavior, we fit our data
with a function that extrapolates down to a critical tempera-
ture of about 660 K !solid line", thereby parameterizing a
model of infinite system size. This is important since the
LLB equation demands a clear definition of the critical tem-
perature. The so parameterized function can then be used as
a me!T" function for the simulations of the LLB equation.

The susceptibilities shown in Fig. 2 are calculated from
the fluctuations of the magnetization30 given by

!̃l =
"sN

kBT
!#Sl

2$ − #Sl$2" , !13"

where N is the number of spins. They clearly exhibit stronger
fluctuations than the magnetization and in addition, !̃% shows
once again finite-size effects. As before, we fit our data with
functions that extrapolate to the critical behavior of an infi-
nite system, i.e., a divergence of !̃%. Well above TC, the two
susceptibilities collapse.

The calculation of the thermodynamic exchange stiffness
A!T" for the LLB equation is less straightforward. In the
following, we use a result derived from the temperature de-
pendent free energy of a domain wall and its corresponding
width. The free energy #F of a domain wall is gained from
numerical calculations of the internal domain wall energy
#E, which is the energy difference between a system with
and without a domain wall, by using the relation

#F!$" =
1
$
&

0

$

#E!$!"d$!, !14"

with $=1 /kBT. It was found that domain wall profiles are
well described by the usual hyperbolic functions,21 so that
we were able to fit the domain wall width %. Assuming that
the well-known equations for the domain wall width

%!T" = &'A!T"
K!T"

, !15"

and the free energy

#F!T" = 4'A!T"K!T" , !16"

temperature dependence holds even at finite temperature, we
estimate the micromagnetic exchange stiffness A!T" as well
as the anisotropy energy constant K!T". For a detailed de-
scription of the calculation, see Refs. 19 and 24. The corre-
sponding results for A!T" are shown in Fig. 3. Once again,
finite size effects can be observed and the fitted line extrapo-
lates down to zero at the Curie temperature.

With me!T", A!T", !̃%!T", and !̃!!T", we have all the func-
tions that are necessary as input for the LLB equation. By
using these functions, we circumvent further mean-field ap-
proximations in the LLB equation and are able to use the
microscopic information from the spin Hamiltonian, includ-
ing the special form of the anisotropy and the long-range
exchange interaction of our FePt model. Since the form of
the Hamiltonian and all its parameters are derived from
SDFT calculations, this approach builds a bridge between
electronic degrees of freedom, atomistic spin models, and a
macrospin model. In the next section, we will test the mac-
rospin approach versus the original atomistic spin model.

IV. COMPARING ATOMISTIC AND MACROSPIN
MODELS

In the following, the goal is to compare a full atomistic
simulation of an FePt nanoparticle by using the Hamiltonian
(Eq. !8") and the numerical methods (Eq. !12") described
above with a much less computation time demanding simu-
lation of a single macrospin by using the LLB equation (Eq.
!1").

We begin the comparison to a longitudinal relaxation
shown in Fig. 4. Here, our simulations start with a fully
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FIG. 1. !Color online" Spontaneous equilibrium magnetization
vs temperature for the atomistic FePt model. The solid line is a fit to
the data extrapolating to TC as for an infinite system.
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netization close to the phase transition. However, since the
LLB equation implies true critical behavior, we fit our data
with a function that extrapolates down to a critical tempera-
ture of about 660 K !solid line", thereby parameterizing a
model of infinite system size. This is important since the
LLB equation demands a clear definition of the critical tem-
perature. The so parameterized function can then be used as
a me!T" function for the simulations of the LLB equation.

The susceptibilities shown in Fig. 2 are calculated from
the fluctuations of the magnetization30 given by

!̃l =
"sN

kBT
!#Sl

2$ − #Sl$2" , !13"

where N is the number of spins. They clearly exhibit stronger
fluctuations than the magnetization and in addition, !̃% shows
once again finite-size effects. As before, we fit our data with
functions that extrapolate to the critical behavior of an infi-
nite system, i.e., a divergence of !̃%. Well above TC, the two
susceptibilities collapse.

The calculation of the thermodynamic exchange stiffness
A!T" for the LLB equation is less straightforward. In the
following, we use a result derived from the temperature de-
pendent free energy of a domain wall and its corresponding
width. The free energy #F of a domain wall is gained from
numerical calculations of the internal domain wall energy
#E, which is the energy difference between a system with
and without a domain wall, by using the relation

#F!$" =
1
$
&

0

$

#E!$!"d$!, !14"

with $=1 /kBT. It was found that domain wall profiles are
well described by the usual hyperbolic functions,21 so that
we were able to fit the domain wall width %. Assuming that
the well-known equations for the domain wall width

%!T" = &'A!T"
K!T"

, !15"

and the free energy

#F!T" = 4'A!T"K!T" , !16"

temperature dependence holds even at finite temperature, we
estimate the micromagnetic exchange stiffness A!T" as well
as the anisotropy energy constant K!T". For a detailed de-
scription of the calculation, see Refs. 19 and 24. The corre-
sponding results for A!T" are shown in Fig. 3. Once again,
finite size effects can be observed and the fitted line extrapo-
lates down to zero at the Curie temperature.

With me!T", A!T", !̃%!T", and !̃!!T", we have all the func-
tions that are necessary as input for the LLB equation. By
using these functions, we circumvent further mean-field ap-
proximations in the LLB equation and are able to use the
microscopic information from the spin Hamiltonian, includ-
ing the special form of the anisotropy and the long-range
exchange interaction of our FePt model. Since the form of
the Hamiltonian and all its parameters are derived from
SDFT calculations, this approach builds a bridge between
electronic degrees of freedom, atomistic spin models, and a
macrospin model. In the next section, we will test the mac-
rospin approach versus the original atomistic spin model.

IV. COMPARING ATOMISTIC AND MACROSPIN
MODELS

In the following, the goal is to compare a full atomistic
simulation of an FePt nanoparticle by using the Hamiltonian
(Eq. !8") and the numerical methods (Eq. !12") described
above with a much less computation time demanding simu-
lation of a single macrospin by using the LLB equation (Eq.
!1").

We begin the comparison to a longitudinal relaxation
shown in Fig. 4. Here, our simulations start with a fully
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Comparative dynamics for LLB and atomistic simulations

polarized system !Sz=1". Then, the relaxation to its thermal
equilibrium value is monitored.

Note that in our simulations, we use a value of !=0.1,
which is reasonable for a high coercivity medium. It was
recently shown31 that high values of damping in magnetic
media arise from defect-induced magnon-magnon scattering;
an effect not included in the current model. Here, we repre-
sent the strong dissipation by a large effective !.

The agreement between the atomistic model !data points"
and the single macrospin !solid lines" model is remarkable,
even for 800 K that is above TC. The deviations for 650 K
are due to the fact that here we are close to the Curie tem-
perature. Here, the atomistic simulations show finite size ef-
fects leading to shorter !less divergent" relaxation time while
for the macrospin following the LLB equation, we used pa-
rameterized functions describing the infinite system. Never-
theless, when assuming the same finite volume for the mac-
rospin, even the fluctuations that are due to the finite system
size are comparable. Note that this kind of longitudinal re-
laxation could not at all be described by a macrospin model
following the LLG equation of motion, which would keep
the length of the magnetization vector constant. Hence, this
first test is already far beyond the abilities of conventional
micromagnetics.

As a next test, we focus on transverse relaxation. Here,
we first equilibrate the system and then we tilt it by an angle
of 30° away from the easy axis. Then we monitor the trans-
verse relaxation shown in Fig. 5. Once again, the agreement
between atomistic !data points" and single macrospin !solid
lines" model is remarkable. The deviations at the highest

temperature shown are due to the fact that thermal fluctua-
tions contribute to a stochastic motion so that the two curves
cannot be directly compared on longer time scales.

As mentioned before, the tests we showed before are far
beyond the abilities of conventional micromagnetism. In Sec.
V, we focus on LLB simulation of fast heating dynamics to
show the capability of our approach and to reveal its limits.

V. FAST HEATING DYNAMICS

In the following, we compare a full atomistic simulation
of fast heating dynamics of an FePt nanoparticle to a simu-
lation of a single macrospin by using the LLB equation. We
start our simulation at 300 K and after a waiting time of
some picoseconds, a temperature pulse is applied. Later on,
the system is cooled down to 423 K. This rectangular shaped
temperature pulse is a simplification of electron temperature
profiles as they occur in pump-probe experiments.32

Figure 6 shows the response of the magnetization to this
step heat pulse for two different peak temperatures and du-
rations, calculated with the atomistic as well as a single mac-
rospin LLB model. The results for the single macrospin
model are in good agreement with the atomistic one as long
as the heat pulse temperature stays below TC #see the ma-
genta line !LLB" and circles !LLG" in Fig. 6$. In the case
wherein the temperature rises above TC, the models still
show agreement during the demagnetization but deviations
occur during recovery #see the blue line !LLB" and squares
!LLG" in Fig. 6$. In this temperature range, the atomistic
dynamics shows a slower recovery due to multiple nucle-
ation events temporarily leading to a nonuniform magnetiza-
tion with a much slower reordering dynamics !for details see
Ref. 32". This kind of dynamics cannot be described with a
single macrospin model.

However, these effects can be taken into account by using
a multimacrospin approach. Therefore, we simulate a system
of 16" 16" 24 macrospins with a cell size # of 3 nm. The
exchange between the single grains is taken into account via
the exchange stiffness A!T". In the following, we show only
results for multimacrospin simulations and not the corre-
sponding atomistic ones, since the considered system size of
48" 48" 72 nm3 is far beyond the abilities of the full ato-
mistic simulations of an FePt nanoparticle.
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FIG. 4. !Color online" Relaxation of the z component of the
magnetization for different temperatures. The data are from an ato-
mistic simulation; the solid lines from a macrospin LLB model !!
=0.1".
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FIG. 5. !Color online" Relaxation of one of the transverse com-
ponents of the magnetization for different temperatures. The data
are from an atomistic simulation; the solid lines from a macrospin
LLB model !!=0.1".
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FIG. 6. !Color online" z component of the magnetization vs time
for two different pulse heights !750 and 550 K" with different pulse
durations !1 and 3 ps" for atomistic !symbols" and single macrospin
simulations !lines". In one case, the pulse height is below TC
!circles" and in the other one !squares", well above TC !!=0.1".
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Acta Materialia 77, 111-124 (2014)

The purpose of this study is to investigate magnetization
reversal taking into account the interactions between many
grains. A uniform fine grid or to a graded mesh that becomes
smaller near the grain boundaries will lead to billions of
unknowns, system sizes that are too large for available com-
putational resources. We use the above findings to construct
a micromagnetic algorithm that allows a uniform computa-
tional grid size which is orders of magnitude larger than d.
We solve the Landau-Lifhsitz Gilbert equation whereby the
external field is a given function of time, in order to compute
the loops and the reversal curves.

1þ a2

cj j
@M

@t
¼ #M$Heff #

a
Ms

M$M$Heff ;with

Heff ¼ HextðtÞ þHex þHd þHa:

(1)

Ms is the spontaneous magnetization. M is the magnetization
and Heff is the effective field. We apply a weak formulation
for the computation of the exchange field, Hex, and the ani-
sotropy field, Ha, at the nodes of a tetrahedral grid.7 The
demagnetizing field at the integration points of the finite ele-
ments is computed from surface charges at the grain bounda-
ries. We use the nodes of the grid as integration points
except for nodes that are on grain boundaries. For these
points the fields are evaluated at a distance of [1/2]d from
the grain boundaries. The field evaluation is accelerated
using hierarchical matrices to evaluate the surface
intergrals.11

A key feature that considerably influences the magnet-
ization reversal process in sintered Nd2Fe14B magnets are
magnetically soft defects. Near the grain boundary the
N2F14B crystal lattice is distorted12 and the magnetocrystal-
line anisotropy is close to zero. Thus magnetization reversal
is very similar as in exchange-spring systems.13 Reversal
starts in the soft magnetic region. Because of the difference
between the grain size and the thickness of the defect layer,
we are not able to resolve the defects with the finite element
mesh. Instead we add an additional torque to the nodes at the
grain boundaries. The nucleation field of a hard magnet with
a soft magnetic defect is given by14

Hn ¼ b
A

t2l0Ms
; (2)

where b depends on the geometry and t is the thickness of
the defect. If the local field, HdþHext, exceeds Hn the mag-
netization will reverse. Then we modify the effective field
for nodes near soft magnetic defects by

H0eff ¼ Heff þ b
A

t2Ms

ðHext þHdÞ
Hext þHdj j

: (3)

The newly developed boundary integration method has been
tested for a cubic Nd2Fe14B particle. First the coercive field
as function of particle size was calculated with conventional
finite element micromagnetics. In order to account for the
mesh size requirements8 and the thin soft magnetic defects2

we use a geometrically graded mesh that becomes finer to-
ward the surface of the cube. Then the simulation was

repeated using a uniform mesh and boundary integration
method. Figure 1(a) compares the computed coercive field of
the different methods. The thickness of the distorted layer
with K¼ 0 is 0.8 nm. For a particle size of 300 nm the num-
ber of finite elements is 500 000 for the graded mesh and fi-
nite element method. For the uniform mesh and the
boundary integration technique the number of elements is
only 500. Thus we can model large scale multigrain struc-
tures with the new method.

The three-dimensional grain structure follows from a
Voronoi-construction.3 First a cube is divided into n3 regular
sub-cells. Within each cell we place a seed point for grain
growth at a random position. Additional seed points that are
mirrored at the magnets outer surface are added. Grain
growth with an isotropic growth velocity leads to the grain
structure. For the final finite element model only the grains
inside the cubes are meshed into tetrahedral finite elements.
The grains are separated by a 2 nm thin non-magnetic phase.
Figure 1(b) shows the resulting grain structure and the finite
element mesh.

III. RESULTS AND DISCUSSION

A set of first-order reversal curves measured on a sin-
tered Nd2Fe14B magnet of cubic shape is shown in Fig. 2(a).
The corresponding FORC diagram of Fig. 2(b) exhibits a
complex peak structure. To identify the inherent physics a
deshearing is performed with a demagnetizing factor of
N¼ 0.33 to create the FORC diagram that corresponds to a

FIG. 1. (Color online) (a) Comparison of finite element micromagnetics on
a graded mesh (solid line) with the boundary integration method (dots) for
computing hysteresis properties. The plot gives the coercive field of a
Nd2Fe14B cubic sample as function of size. (b) Grain structure and finite
element mesh of computer model of a sintered Nd2Fe14B magnet.
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Atomistic spin Hamiltonian for Nd2Fe14B

2

Nd Fe B

FIG. 1. (Color online) Visualization of the Nd2Fe14B unit cell. The
unit cell contains 68 atoms (8 Nd, 56 Fe and 4 B) with dimensions
8.8⇥8.8⇥12.2 Å.

crystal. The space group of the crystal is P42/mnm and full
details of the atomic positions within the unit cell are given in
Appendix . The atomic positions were determined using the
Bilbao crystal server[13–15].

For both the Fe and Nd atoms, the magnetic moments in
the crystal vary slightly depending on the atomic site [12].
However, the variations are small and so for simplicity we
assume uniform magnetic moments for Fe and Nd sites of 2.2
µB and 3.2 µB at 0 K respectively, giving a total magnetization
per formula unit of 37.2 µB.

ATOMISTIC SPIN MODEL

Given the crystal structure of the Nd2Fe14B crystal, we now
formulate a Heisenberg spin Hamiltonian H which describes
the energetics of the system describing energy contributions

[16] for the Nd and Fe sublattices:

H = HNd +HFe (1)
HNd =�Â

i,d
JNdFeSi ·Sd

�Â
i

Ek,Nd
i �µNd Â

i
Happ ·Si (2)

HFe =�Â
n ,d

JFe(r)Sn ·Sd �Â
n , j

JNdFeSn ·S j

�Â
n

Ek,Fe
n �µFe Â

n
Happ ·Sn (3)

where S are unit vectors describing the direction of the mag-
netic moments at each atomic site, i, j label Nd sites with mo-
ment µNd, n ,d label Fe sites with moment µFe and Happ is the
externally applied magnetic field vector. JNdFe is the Fe-Nd
nearest neighbor exchange energy and JFe(r) is the Fe-Fe ex-
change between Fe sites separated by interatomic distance r.
Ek,Nd

i and Ek,Fe
n describe the local anisotropy on the Nd and Fe

sites respectively, but due to the complexity of these functions
their details are presented later. Full details of the final model
parameters are detailed in Tab. I. The calculations have been
carried out using the VAMPIRE software package[16, 17]. The
equilibrium temperature dependent properties of the system
are calculated using a Monte Carlo metropolis algorithm [16]
using the Hinzke-Nowak combinational algorithm [18]. The
simulated system consists of 10⇥ 10⇥ 7 unit cells (approxi-
mately 8 nm3) with periodic boundary conditions applied to
eliminate surface effects.

The equilibrium properties of the system are obtained by
performing 10,000 Monte Carlo steps at each temperature be-
fore calculating average magnetic properties over a further
20,000 steps. When calculating temperature dependent prop-
erties the final spin configuration from the previous temper-
ature calculation is used to reduce the number of time steps
required to reach thermal equilibrium at the new temperature.

EXCHANGE INTERACTIONS

The exchange interactions in rare-earth transition-metal in-
termetallic compounds are primarily responsible of the mag-
netic ordering of the system, being 2-3 orders of magnitude
larger than the magnetocrystalline anisotropy. Given the large
Fe content of R2Fe14B alloys, one would expect a compara-
tively high Curie point, but in reality Curie temperatures are
much reduced compared to bulk Fe. Givord et al [19] sug-
gested that this may be due to a sign change in the near-
est neighbor Fe-Fe exchange interaction, although recent ab-
initio calculations [20] have suggested that reduced density
is primarily responsible for the reduction in the exchange in-
teractions due to less overlap of the atomic orbitals. With-
out more detailed ab-initio information about the exchange
interactions in Nd2Fe14B it is difficult to make definitive state-
ments about the exchange interactions between atomic sites.
In general it is known that exchange interactions are relatively
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long ranged and depend strongly on interatomic separation.
Given that the Fe is the dominant atomic species in Nd2Fe14B,
it is expected that the magnetization is dominated by the Fe
sublattice.

Fe exchange interactions

Typically the first approach in parameterizing the classi-
cal spin models is to calculate an effective pairwise nearest
neighbor exchange interaction, derived from the Curie tem-
perature of the system using a molecular field approximation
[16]. For Nd2Fe14B this approach is complicated by the com-
plex crystal structure which makes a global nearest neighbor
distance a poorly defined quantity, leading to different num-
bers of interactions for different atomic sites within the same
interatomic radius [12]. As a first approximation we therefore
utilize the results of ab-initio calculations of exchange inter-
actions in BCC Fe [21]. The range dependence of the calcu-
lated exchange interactions conveniently fit to an exponential
function for the first five coordination shells, and so the fitted
function gives JFe(r) is given by

JFe(r) = J0 + Jr exp(�r/r0) (4)

where r is the interatomic separation, r0 is a characteristic
distance, and J0 and Jr are fitting constants. The exchange
interactions are truncated to zero for interatomic separations
greater than 5Å. The fitted function is shown in Fig. 2. Ap-
plying the fitted exchange interactions to the Nd2Fe14B sys-
tem yields a simulated Curie temperature of around 800K. The
greater interatomic separation already reduces the Curie tem-
perature compared to bulk BCC Fe [21], but this value is still
higher than the experimental value for Nd2Fe14B of 585K.
Given the significantly lower density of the Fe sublattice com-
pared with BCC Fe, it is not unreasonable to expect reduced
overlap of atomic orbitals of the Fe sites, with a correspond-
ing reduction in the exchange interactions. To approximate
this effect we treat the reduction in the pairwise exchange in-
teractions by straightforward scaling of the ab-initio values so
that the calculated Curie temperature agrees better with exper-
iment. The scaling of the Fe exchange interaction is calibrated
to the case for Y2Fe14B, where the rare earth sites in the lattice
are non magnetic and make no contribution to the overall Tc of
the system. The scaled curve and values are shown in Fig. 2,
and the values used for the scaled fitted function are presented
in Tab. I. This crude scaling is not particularly satisfactory,
but has the advantage of at least maintaining the long range
nature and distance dependence of the exchange interactions
and is at least as good as the nearest neighbor approximation
commonly employed in the spin model approach.

Nd exchange interactions

The Nd sublattice is known to couple ferromagnetically to
the Fe sublattice, and experimental measurements [22] show
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FIG. 2. (Color online) Range dependence of the exchange interac-
tions from ab-initio calculations [21]. Scaled data arising from re-
duced overlap of atomic orbitals is used to calculate the Fe-Fe inter-
actions in the Nd crystal.

a high degree of ordering of the Nd sublattice at room tem-
perature. This ordering at significant fractions of the Curie
temperature necessitates a relatively strong exchange coupling
between the Fe and Nd sites, at least compared with bulk Nd.
Previous analyses give a range of values for the Nd-Fe ex-
change field between 300 T [10] and 412 T [23], though most
estimates converge to values around 370T [12].

Here we aim to develop a self consistent atomistic descrip-
tion of Nd2Fe14B, and we therefore treat the Fe-Nd exchange
as a variable parameter in the model in order to best fit the
available experimental data. The nearest neighbor distance is
better defined for the Fe-Nd interactions, and so a cut off dis-
tance of 4Åis chosen in the nearest neighbor approach, where
all interactions have the same strength and are each coordi-
nated with 16 neighboring Fe sites. The Nd-Nd interactions
are assumed to be negligible due to the large interatomic sep-
aration of neighboring ions and the 4 f origin of the magnetic
moment, and are consequently ignored in the model [23].

Temperature dependent magnetization

Using the derived exchange parameters described previ-
ously, we now present atomistic calculations of the temper-
ature dependent magnetization of the Fe sublattice using the
Monte Carlo method and shown in Fig. 3(a). By empirical
interpolation of the Bloch law and critical behavior [24], the
reduced temperature dependent magnetization is given by the
expression:

m(T ) =


1�
✓

T
Tc

◆a�b
(5)

where T is the temperature, Tc is the Curie temperature, a is
an empirical constant and b is the critical exponent. Since
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FIG. 6. (Color online) Temperature dependence of the reduced Fe
sublattice anisotropy constant kFe

2 (eT )/kFe
2 (0) (a). Expected analyt-

ical temperature dependence of the Fe sublattice anisotropy field
(b), showing a slow increase with increasing temperature reaching
a broad peak around eT ⇠ 350 K in good agreement with experimen-
tal data for Y2Fe14B [32].

the variation of the c/a ratio and not its absolute value, we
utilize a reduced expression for s , s̃ , and given by

es (et) = etns , et  1 (11)

where ns = 2.193 is the exponent fitted from the experimental
data. Combining Eqs. 8, 10, and 11 then gives the functional
form of the reduced temperature variation of the anisotropy,
as plotted in Fig. 6(a). Using the simple Callen-Callen rela-
tions it is also easy to estimate the expected temperature de-
pendence of the anisotropy field. Given the calculated tem-
perature dependence of the reduced Fe sublattice magneti-
zation mFe and the temperature dependence of the uniaxial
anisotropy ⇠ m3

Fe, it follows that

HFe
k (eT )⇠

2kFe
2 (eT )

h
mFe(eT )

i3

µFemFe(eT )
=

2kFe
2 (eT )
µFe

mFe(eT )2. (12)

Given a zero temperature anisotropy field of 18kOe, the
temperature dependence of the anisotropy field follows di-
rectly from Eq. 12, as shown in Fig. 6(b), which agrees well
with the available experimental data. Finally, the actual value
of the magnetic anisotropy constant at zero temperature can
be taken directly from the usual relation kFe

2 = µFeHFe
k /2 =

1.836⇥10�23 J/atom. The calculated value for the anisotropy
of the Fe atoms in Y2Fe14B is assumed to be the same as in
the Nd2Fe14B alloy.

Nd sublattice anisotropy

At the atomic level the local Neodymium ion anisotropy is
described by

Ek,Nd
i =�kNd

2
eP2 �kNd

4
eP4 (13)

where kNd
2 and kNd

4 are the microscopic second and fourth
order anisotropy coefficients of the respective renormalized
Legendre polynomials eP2 and eP4 defined by [8]

eP2 =� 1
3 (3S2

z �1) (14)
eP4 =� 1

12 (35S4
z �30S2

z +3) (15)

where Sz is a unit vector describing the z-component of the
Nd spin i, where z is along the c-axis of the crystal. Note
that here we incorporate a renormalizing factor � 2

3 into the
usual Legendre polynomials to maintain parity with a pure
second order uniaxial anisotropy K1 expressed in the usual
macroscopic form (EK = K1 sin2 q ). We note the use of Leg-
endre polynomials as opposed to a straightforward cartesian
expansion of Eq. 7 commonly used for atomistic simulations
[16]. Such a cartesian expansion suffers from cross-pollution
of terms due to their non-orthogonality, therefore causing a
different temperature dependence of the anisotropy depend-
ing on which terms are included in the model. Conversely the
Legendre polynomials are orthogonal functions and so follow
the well known temperature dependencies from Akulov [31]
and Callen and Callen [29].

The determination of the anisotropy coefficients kNd
2 and

kNd
4 is not entirely straight forward, but phenomenologically

their origin is guided by two key experimental observations.
The first is the presence of the spin-reorientation transition
(SRT), where at low temperatures the Nd sublattice is oriented
away from the c-axis with an easy-cone anisotropy and at high
temperatures the Nd is oriented along the c-axis. The second
important observation is the significantly enhanced anisotropy
of Nd2Fe14B over Y2Fe14B, its sister compound with a non-
magnetic rare-earth (where the anisotropy arises due to the Fe
sublattice only). These observations mean that the Nd sublat-
tice still possesses uniaxial anisotropy above the SRT, and that
the anisotropy term giving rise to a high canting angle has a
stronger temperature dependence than the c-axis term.

From the Callen-Callen theory [29, 30] one expects
that the temperature dependence of the effective anisotropy
coefficients keff

2 (T ) ⇠ mNd(T )3 and keff
4 (T ) ⇠ mNd(T )10,

where mNd(T ) is the reduced Nd sublattice magnetization
MNd(T )/M0

Nd. The significantly stronger temperature depen-
dence of the fourth order anisotropy coefficient makes it ap-
parent that this term is responsible for the canted preferential
orientation of the Nd spins at low temperatures, and so is a
negative constant. The fact that the Nd contributes signifi-
cantly to the the effective anisotropy at elevated temperatures
means that kNd

2 is non-zero and positive. Conveniently, the
canting angle of 30� at T = 0 gives the relationship between
the second and fourth order components k2 and k4, where
k2 =�15k4/8, as detailed in Appendix . The temperature de-
pendence of the canting angle then follows the balance of the
kNd

2 and kNd
4 terms as a function of the spin fluctuations from

the Callen-Callen relations. Since the Nd anisotropy is much
larger than the Fe anisotropy, the ratio of the Nd anisotropy
coefficients is approximately given by kNd

2 /kNd
4 ⇠ k2/k4.

Given that the relationship between kNd
2 and kNd

4 is known,
all that remains is to determine the value of kNd

2 from the
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exchange interactions favoring a non-collinear state, such as
the Dzyaloshinskii-Moriya interaction. Assessing this possi-
bility would require detailed first principles density functional
theory calculations and mapping onto a spin model formalism
[38, 39], which may provide the necessary physical insight.
Such calculations are beyond the current article however, and
so we model the macroscopic behavior of a single canting an-
gle by assuming strong ferromagnetic coupling between the
sublattices, as presented earlier.

A significant challenge with magnetic alloys is determining
the elemental contributions to the total magnetic anisotropy
energy, in our case the individual contributions from the Fe
and Nd sublattices. The crystal field theory yields a wide
range of values for the effective Nd anisotropy [12], but in
each case self consistent with the different specifics of the
models. However, the ambiguity in the values complicates the
determination of the anisotropy constants within the atomistic
model framework, and so a self consistent approach must be
adopted. Using experimental data as a starting point, we take
advantage of the fact that R2Fe14B alloys are structurally sta-
ble for the whole rare-earth series. Therefore, by considering
the magnetic properties of a non magnetic rare earth such as
Y2Fe14B (where the anisotropy arises solely due to the Fe sub-
lattice), it is possible to uniquely determine the contribution of
the Fe sublattice to the total anisotropy energy of Nd2Fe14B.
Using this approach we separately consider the contributions
of the Nd and Fe sublattices to the total magnetic anisotropy
energy of Nd2Fe14B in a self consistent fashion.

Fe sublattice anisotropy

The R2Fe14B crystal structure is stable with the substitu-
tion of any of the rare-earth elements[32], some of which are
non-magnetic (e.g. Y, La) or have weak spin-orbit coupling
(e.g. Gd). In this case, the magnetocrystalline anisotropy
arises solely due to the Fe sublattice [12] , and so it is pos-
sible to determine the contribution of the Fe sublattice to the
total anisotropy in NdFeB.

In general the measured anisotropy fields for the non-
magnetic rare earth R2Fe14B compounds are quite large,
likely due to the complex crystal arrangement of the Fe atoms
within the unit cell. The anisotropy field also follows an un-
usual temperature dependence, initially increasing in temper-
ature and then falling to zero close to the Curie point. The
unusual temperature dependence is completely different to
that expected from the Callen-Callen theory which decreases
monotonically with increasing temperature. Bolzoni et al
have suggested that the origin of the increase is due to the
anomalous temperature dependence of the c/a ratio, leading
to a change in the local anisotropy [35]. Detailed experimental
measurements of the c/a ratio in Y2Fe14B by Yang et al show
a near-quadratic temperature dependence of the c/a ratio up
to the Curie temperature[40], which would certainly account
for an increase in the effective anisotropy with increasing tem-
perature. In this simplistic picture we assume that the temper-
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FIG. 5. (Color online) Plot of reduced temperature dependence of
the c/a ratio for the Y2Fe14B crystal, comparing experimental data
from Yang et al [40] and the fit from Eq. 9. The fitted parameters are
s0 = 1.37463, Ds = 0.00436 and ns = 2.19292.

ature dependence of the second order anisotropy constant for
Fe, kFe

2 , is some function of s = c/a ratio of the crystal such
that

kFe
2 (eT ) = f (s(eT )) (8)

where eT is the experimental temperature. The experimental
temperature dependence of s is in itself quite unusual, and is
plotted in Fig. 5. The near-quadratic dependence of c/a up to
Tc and subsequent plateau can be fitted by the function

s (et) =
⇢

s0 +Dsetns et  1
s0 +Ds et � 1 . (9)

Given the temperature dependence of s , the remaining
question is the relationship between the c/a ratio and the
anisotropy constant kFe

2 , given by f (s). Ideally one would like
to perform ab-initio calculations of the effect of the c/a ratio
on the effective anisotropy, but as stated earlier these are com-
plex and beyond the scope of the present work. We are there-
fore limited to determining f (s(eT )) parametrically to achieve
the same temperature dependence as seen experimentally. The
obvious choices for f (s(eT )) are either a linear or saturating
function. A linear variation is simplest form, but this leads
to a significant increase of the anisotropy close to the Curie
temperature, leading to a peak in the anisotropy field closer to
the Curie temperature than seen experimentally. We therefore
utilize a function of the form

f (es) = 1+
kca

r
tanh(res) (10)

which saturates the increase in the anisotropy at a lower tem-
perature than a linear increase in c/a. kca is a parameter which
determines the fractional variation of the anisotropy constant
caused by the change in the c/a ratio and r is the rate at which
the anisotropy saturates away from linear behavior. Since the
change in magneto-elastic anisotropy is only proportional to
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data. Combining Eqs. 8, 10, and 11 then gives the functional
form of the reduced temperature variation of the anisotropy,
as plotted in Fig. 6(a). Using the simple Callen-Callen rela-
tions it is also easy to estimate the expected temperature de-
pendence of the anisotropy field. Given the calculated tem-
perature dependence of the reduced Fe sublattice magneti-
zation mFe and the temperature dependence of the uniaxial
anisotropy ⇠ m3

Fe, it follows that

HFe
k (eT )⇠

2kFe
2 (eT )

h
mFe(eT )

i3

µFemFe(eT )
=

2kFe
2 (eT )
µFe

mFe(eT )2. (12)

Given a zero temperature anisotropy field of 18kOe, the
temperature dependence of the anisotropy field follows di-
rectly from Eq. 12, as shown in Fig. 6(b), which agrees well
with the available experimental data. Finally, the actual value
of the magnetic anisotropy constant at zero temperature can
be taken directly from the usual relation kFe

2 = µFeHFe
k /2 =

1.836⇥10�23 J/atom. The calculated value for the anisotropy
of the Fe atoms in Y2Fe14B is assumed to be the same as in
the Nd2Fe14B alloy.

Nd sublattice anisotropy

At the atomic level the local Neodymium ion anisotropy is
described by

Ek,Nd
i =�kNd

2
eP2 �kNd

4
eP4 (13)

where kNd
2 and kNd

4 are the microscopic second and fourth
order anisotropy coefficients of the respective renormalized
Legendre polynomials eP2 and eP4 defined by [8]

eP2 =� 1
3 (3S2

z �1) (14)
eP4 =� 1

12 (35S4
z �30S2

z +3) (15)

where Sz is a unit vector describing the z-component of the
Nd spin i, where z is along the c-axis of the crystal. Note
that here we incorporate a renormalizing factor � 2

3 into the
usual Legendre polynomials to maintain parity with a pure
second order uniaxial anisotropy K1 expressed in the usual
macroscopic form (EK = K1 sin2 q ). We note the use of Leg-
endre polynomials as opposed to a straightforward cartesian
expansion of Eq. 7 commonly used for atomistic simulations
[16]. Such a cartesian expansion suffers from cross-pollution
of terms due to their non-orthogonality, therefore causing a
different temperature dependence of the anisotropy depend-
ing on which terms are included in the model. Conversely the
Legendre polynomials are orthogonal functions and so follow
the well known temperature dependencies from Akulov [31]
and Callen and Callen [29].

The determination of the anisotropy coefficients kNd
2 and

kNd
4 is not entirely straight forward, but phenomenologically

their origin is guided by two key experimental observations.
The first is the presence of the spin-reorientation transition
(SRT), where at low temperatures the Nd sublattice is oriented
away from the c-axis with an easy-cone anisotropy and at high
temperatures the Nd is oriented along the c-axis. The second
important observation is the significantly enhanced anisotropy
of Nd2Fe14B over Y2Fe14B, its sister compound with a non-
magnetic rare-earth (where the anisotropy arises due to the Fe
sublattice only). These observations mean that the Nd sublat-
tice still possesses uniaxial anisotropy above the SRT, and that
the anisotropy term giving rise to a high canting angle has a
stronger temperature dependence than the c-axis term.

From the Callen-Callen theory [29, 30] one expects
that the temperature dependence of the effective anisotropy
coefficients keff

2 (T ) ⇠ mNd(T )3 and keff
4 (T ) ⇠ mNd(T )10,

where mNd(T ) is the reduced Nd sublattice magnetization
MNd(T )/M0

Nd. The significantly stronger temperature depen-
dence of the fourth order anisotropy coefficient makes it ap-
parent that this term is responsible for the canted preferential
orientation of the Nd spins at low temperatures, and so is a
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FIG. 3. (Color online) Calculated temperature dependent magnetiza-
tion of the Fe sublattice (a) and fit of the temperature dependent mag-
netization according to Eq. 5. Adjusted temperature dependent mag-
netization plotted against temperature (b) with fit from Kuzmin to ex-
perimental data[25] and the classical fit from (a) shown for compar-
ison. Applying the temperature rescaling correction with a = 1.756
for fluctuations in hSi gives a corrected temperature dependent mag-
netization curve which agrees very well with experiment.

classical systems do not follow Bloch’s Law (low tempera-
tures always have finite fluctuations in m), a = 1, and so fitting
to the calculated temperature dependent magnetization yields
a critical exponent of b = 0.301± 0.004 and Curie tempera-
ture of 585 K. Due to the long range nature of the exchange
interactions, the critical exponent b is slightly lower than that
for the 3D Heisenberg model.

Due to the neglect of quantum effects within the classical
spin model, the calculated temperature dependent magnetiza-
tion has finite slope at zero temperature. As noted by Kuz’min
et al, this is in disagreement with experimentally measured
magnetization curves for a number of elemental ferromagnets
[26] and transition-metal rare-earth alloys [25]. We address
this apparent disparity by considering that the spin Hamilto-
nian expressed in Eq. 3 is in fact only dependent on the spin
S, and not directly on the temperature, since the effects of
temperature are introduced within the Monte Carlo integra-

tion of the system. The macroscopic temperature dependent
properties of the system, such as effective anisotropies, are
consequently only actually dependent on the magnetization
state hSi, rather than the temperature directly. We therefore
apply the temperature rescaling by Evans et al [27] to deter-
mine the temperature dependent properties comparable with
experiment. We define the rescaled experimental temperature
et = eT/Tc in reduced form simply as

et = t
1
a (6)

where a is the temperature rescaling exponent from Eq. 5 and
t = T/Tc is the reduced simulation temperature. The temper-
ature rescaling requires a priori information about the Curie
temperature of the simulated system, for example from exper-
imental data or in our case classical simulations. The rescaling
exponent is obtained by a two-step procedure [27], first fitting
Eq. 5 to the classical simulation result for a = 1 to obtain b
and Tc, and then by fitting to the experimental values for the Fe
sublattice (provided by the Kuz’min equation [25]) to obtain
a . Using this procedure we obtain a = 1.756 and show the
rescaled simulation data in Fig. 3(b) along side the experimen-
tal result fitted by Kuz’min [25]. As is evident, the rescaled
data agrees almost perfectly with the fit from Kuz’min et al
and the experimentally derived values. We note that in prin-
ciple the temperature rescaling could be different for Nd and
Fe sublattices, though in the present work we assume as a first
approximation that the rescaling is identical for both. From
this point on all calculations of temperature dependent prop-
erties of the Nd2Fe14B system are presented after applying the
aforementioned temperature rescaling.

Nd sublattice magnetization

Although the rescaling of the Fe sublattice magnetization
with the temperature was performed for a constant value of
the Nd-Fe exchange interaction, it is worthwhile considering
the effect of varying the inter-sublattice exchange energy on
the temperature dependent magnetization and the Curie point.
Without detailed ab-initio calculations, the Nd-Fe exchange is
unknown, and so we consider it as a free parameter in the first
instance. Due to the variations in the Fe-Fe exchange pairwise
interactions, we treat the total mean Fe-Fe exchange integral
averaged over 16 coordination atoms as a reference value of
the exchange energy, denoted J̃Fe. We then vary the Nd-Fe
interatomic exchange energy as a fraction of this value. The
calculated Fe and Nd sublattice magnetizations for different
strengths of the inter-sublattice exchange energy are shown in
Fig. 4(a) and Fig. 4(b) respectively.

The calculated sublattice magnetization in Fig. 4(a) shows
that the Fe-Nd exchange interaction has a strong effect on the
Curie temperature of the coupled system, with full coupling
giving ⇠ 140 K increase of the Curie point, a well known
effect with rare-earth transition-metal alloys[23, 28]. Since
the magnetic order comes principally from the Fe sublattice,
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Figure 5. Comparative simulation of temperature-dependent
magnetization for Monte Carlo and LLG simulations. Simulation
parameters assume a nearest neighbour exchange of
6.0 ⇥ 10�21 J/link with a simple cubic crystal structure, periodic
boundary conditions and 21952 atoms. The Monte Carlo
simulations use 50 000 equilibration and averaging steps, while the
LLG simulations use 5000 000 equilibration and averaging steps
with critical damping (� = 1) and a time step of 0.01 fs. The value
of Tc ⇠ 625 K calculated from equation (9) is shown by the dashed
vertical line. The temperature-dependent magnetization is fitted to
the expression m(T ) = (1 � T/Tc)� (shown by the solid line) which
yields a fitted Tc = 631.82 K and exponent � = 0.334 297.

5.1. Angular variation of the coercivity

Assuming a correct implementation of an integration scheme
as described in the previous section, the first test case of interest
is the correct implementation of uniaxial magnetic anisotropy.
For a single spin in an applied field and at zero temperature,
the behaviour of the magnetization is essentially that of a
Stoner–Wohlfarth particle, where the angular variation of the
coercivity, or reversing field, is well known [125]. This test
serves to verify the static solution for the LLG equation by
ensuring an easy axis loop gives a coercivity of Hk = 2ku/µs
as expected analytically. For this problem the Hamiltonian
reads

H = �kuS
2
z
� µsS · Happ (26)

where ku is the on-site uniaxial anisotropy constant and Happ
is the external applied field. The spin is initialized pointing
along the applied field direction, and then the LLG equation
is solved for the system, until the net torque on the system
S ⇥ Heff  |10�6| T, essentially a condition of local minimum
energy.

The field strength is decreased from saturation in steps
of 0.01 H/Hk and solved again until the same condition is
reached. A plot of the calculated alignment of the magnetiza-
tion to the applied field (S · Happ) for different angles from the
easy axis is shown in figure 6. The calculated hysteresis curve
conforms exactly to the Stoner–Wohlfarth solution.

5.2. Boltzmann distribution for a single spin

To quantitatively test the thermal effects in the model and
the correct implementation of the stochastic LLG or Monte
Carlo integrators, the simplest case is that of the Boltzmann

Figure 6. Plot of alignment of magnetization with the applied field
for different angles of from the easy axis. The 0� and 90� loops
were calculated for very small angles from the easy and hard axes
respectively, since in the perfectly aligned case the net torque is zero
and no change of the spin direction occurs.

Figure 7. Calculated angular probability distribution for a single
spin with anisotropy for different effective temperatures ku/kBT .
The lines show the analytic solution given by equation (27).

distribution for a single spin with anisotropy (or applied
field), where the probability distribution is characteristic of
the temperature and the anisotropy energy. The Boltzmann
distribution is given by:

P(✓) / sin ✓ exp
✓

�
ku sin2 ✓

kBT

◆
(27)

where ✓ is the angle from the easy axis. The spin is initialized
along the easy axis direction and the system is allowed
to evolve for 108 time steps after equilibration, recording
the angle of the spin to the easy axis at each time. Since
the anisotropy energy is symmetric along the easy axis, the
probability distribution is reflected and summed about ⇡/2,
since at low temperatures the spin is confined to the upper
well (✓ < ⇡/2). Figure 7 shows the normalized probability
distribution for three reduced temperatures.

The agreement between the calculated distributions is
excellent, indicating a correct implementation of the stochastic
LLG equation.
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Figure 5. Comparative simulation of temperature-dependent
magnetization for Monte Carlo and LLG simulations. Simulation
parameters assume a nearest neighbour exchange of
6.0 ⇥ 10�21 J/link with a simple cubic crystal structure, periodic
boundary conditions and 21952 atoms. The Monte Carlo
simulations use 50 000 equilibration and averaging steps, while the
LLG simulations use 5000 000 equilibration and averaging steps
with critical damping (� = 1) and a time step of 0.01 fs. The value
of Tc ⇠ 625 K calculated from equation (9) is shown by the dashed
vertical line. The temperature-dependent magnetization is fitted to
the expression m(T ) = (1 � T/Tc)� (shown by the solid line) which
yields a fitted Tc = 631.82 K and exponent � = 0.334 297.

5.1. Angular variation of the coercivity

Assuming a correct implementation of an integration scheme
as described in the previous section, the first test case of interest
is the correct implementation of uniaxial magnetic anisotropy.
For a single spin in an applied field and at zero temperature,
the behaviour of the magnetization is essentially that of a
Stoner–Wohlfarth particle, where the angular variation of the
coercivity, or reversing field, is well known [125]. This test
serves to verify the static solution for the LLG equation by
ensuring an easy axis loop gives a coercivity of Hk = 2ku/µs
as expected analytically. For this problem the Hamiltonian
reads

H = �kuS
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where ku is the on-site uniaxial anisotropy constant and Happ
is the external applied field. The spin is initialized pointing
along the applied field direction, and then the LLG equation
is solved for the system, until the net torque on the system
S ⇥ Heff  |10�6| T, essentially a condition of local minimum
energy.

The field strength is decreased from saturation in steps
of 0.01 H/Hk and solved again until the same condition is
reached. A plot of the calculated alignment of the magnetiza-
tion to the applied field (S · Happ) for different angles from the
easy axis is shown in figure 6. The calculated hysteresis curve
conforms exactly to the Stoner–Wohlfarth solution.

5.2. Boltzmann distribution for a single spin

To quantitatively test the thermal effects in the model and
the correct implementation of the stochastic LLG or Monte
Carlo integrators, the simplest case is that of the Boltzmann
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spin with anisotropy for different effective temperatures ku/kBT .
The lines show the analytic solution given by equation (27).

distribution for a single spin with anisotropy (or applied
field), where the probability distribution is characteristic of
the temperature and the anisotropy energy. The Boltzmann
distribution is given by:

P(✓) / sin ✓ exp
✓

�
ku sin2 ✓

kBT

◆
(27)

where ✓ is the angle from the easy axis. The spin is initialized
along the easy axis direction and the system is allowed
to evolve for 108 time steps after equilibration, recording
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Analysis of available experimental data shows that there exists a limited variety of shapes of
temperature dependence of spontaneous magnetization. For most metallic ferromagnets the shape (as
opposed to scale) of the Ms versus T curve can be characterized by a single dimensionless parameter. A
numerical description of the dependence Ms!T" for a particular ferromagnetic material is thus reduced to
evaluating three quantities: the saturation magnetization M0 # Ms!0", the Curie point TC, and the shape
parameter s. It is demonstrated that classical spin (S $ 1) dynamics fails to describe correctly either of
the finite-temperature characteristics, TC or s.
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Spontaneous magnetization Ms is the most fundamental
property of a ferromagnet. Not surprisingly a lot of effort
has been spent over the last century on attempts to describe
theoretically Ms as a function of temperature, between zero
Kelvin and the Curie point TC, where Ms vanishes. At
present only the problem of evaluating saturation magne-
tization M0, that is Ms!T $ 0", can be considered solved;
calculations based upon the density functional theory
(DFT) produce values of M0 which are consistently in
good agreement with experiment [1]. There have also
appeared many reports of TC calculations (see, e.g.,
Ref. [2], also Ref. [3], and references therein) employing
a combination of DFT and Langevin’s spin dynamics,
based on the classical Heisenberg model. The classical
(S $ 1) approximation is examined at some length later
and found inapplicable, in particular, to TC calculations.

However, the main subject of this Letter is the shape,
rather than the scale, of temperature dependence of sponta-
neous magnetization. To study the shape of Ms!T" in its
pure form, it is convenient to introduce reduced sponta-
neous magnetization, m # Ms=M0, and reduced tempera-
ture, ! # T=TC. Consider the following question: How
various are the observed forms of m!!"? That there is no
universal function m!!" valid for all ferromagnets (the so-
called Law of Corresponding States) was established ex-
perimentally over half a century ago [4,5]. If so, how many
extra parameters are needed to fully describe the variety of
existing shapes of m!!"?

An immediate answer is given by the molecular field
theory: m!!" depends on a single dimensionless parameter.
In the localized, Weiss-Brillouin approach, this parameter
is the relevant atomic quantum number, S or J. In the
itinerant version, due to Stoner, it is the ratio of the
exchange to the Fermi energy. (An excellent description
of both cases can be found in Morrish’s textbook [6],
whereas Aharoni’s monograph [7] contains rather accurate
explicit expressions for m!!" obtained in the Weiss-
Brillouin approach with 1=2< S< 7=2.) However, one
cannot be fully satisfied with this answer since the mo-

lecular field theory does not describe the shape of m!!"
correctly.

There is no general analytical expression for m!!" be-
yond the molecular field approximation, except in the
two limiting cases, ! ! 0 and ! ! 1, although it has
been recently demonstrated [8,9] that an accurate de
scription of m!!" in the entire interval 0< !< 1 is pro-
vided by a combination of two (in some cases, three)
simple power laws, one for each of the temperature
subintervals.

To advance the matters further, we propose to present the
function m!!" in the following form:

m!!" $ %1& s!3=2 & !1& s"!p'1=3; (1)

where s and p are parameters, p > 3=2, s > 0.
Equation (1) is constructed to obey Bloch’s 3=2 power
law at low temperatures, m ( 1& 1

3 s!
3=2 as ! ! 0,

whereas in the critical region, ! ! 1, m is proportional
to !1& !"1=3, as prompted by the critical behavior of the
Heisenberg model [10].

TABLE I. Characteristics of temperature dependence of spon-
taneous magnetization of ferromagnets: saturation magnetization
M0, Curie temperature TC, parameters entering Eq. (1), p and s.
The TC values are those used to normalize the data presented in
Fig. 1; they do not necessarily coincide with the values given in
the cited references.

Compound M0 (emu=g) TC (K) p s Source

Fe 222 1044 4 0.35 Ref. [11]
Co, hcp 164 1385 5=2 0.11 Refs. [4,12]
Co, fcc 166 1385 5=2 0.11 Ref. [5]
Ni 57.6, 58.6 628, 631 5=2 0.15 Refs. [11,13]
Gd 268 291 5=2 1.3 Ref. [14]
YCo5 124 930 5=2 0.7 Ref. [15]
Y2Fe17 170 312 5=2 0.6 Ref. [16]
GdZn 186 270 5=2 1.9 Ref. [17]
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Available experimental data were fitted to Eq. (1). The

best-fit parameters are listed in Table I and the correspond-
ing curves are shown in Fig. 1.

It turns out that all but one of the considered ferromag-
nets are described by Eq. (1) with p ! 5=2. This result is
not quite unexpected; it reminds us of Dyson’s low-
temperature expansion [18] for the quantity m3, truncated
after the third term. The only exception from this rule is
bcc iron, which obeys Eq. (1) with p ! 4. Setting aside this

exception, one can say that the entire variety of observed
m"!# dependences can be characterized by a single pa-
rameter—the shape parameter s.

At this stage Eq. (1) should be regarded as an empirical
expression; we are unable to strictly explain it or the fact
that p ! 5=2 in most cases.

We stress, however, that Eq. (1) pretends to describe the
experimental m"!# dependence as a whole, not just the
asymptotics at ! ! 0 or ! ! 1. Small details of this de-
pendence are often sample specific and sometimes can be
traced back to impurities. A didactic example is Ni
[Fig. 1(a)]. The more recent and more detailed data of
Crangle and Goodman [11] (open circles) deviate from
Eq. (1) (continuous line) around ! ! 0:7. However, the
earlier data of Weiss and Forrer [13] (filled circles) show
no such anomaly and comply with Eq. (1) everywhere. We
therefore deliberately avoid considering any experimental
data other than those obtained on stoichiometrically pure
single crystals. It is interesting that the genuine anomaly
associated with the hcp-fcc transition in cobalt is not
visible on the scale of Fig. 1(c). Note that two slightly
different values of M0 were used to normalize the data
above and below the transition point (indicated with an
arrow) as could be reasonably expected from two structur-
ally distinct phases.

Thus, the problem of describing temperature depen-
dence of spontaneous magnetization is reduced to evaluat-
ing three quantities: two scale factors, M0 and TC, and one
shape parameter s. Making use of the classical spin-wave
theory [19], the latter can be expressed as follows:

s ! 3

8
"$ 3=2#

!
3

2

"
$B

M0

!
kTC

D

"
3=2

! 0:176
$B

M0

!
kTC

D

"
3=2

;

(2)

where #"x# stands for Riemann’s # function, #"32# % 2:612
[20], and D is spin-wave stiffness (the coefficient in the
parabolic magnon dispersion relation, !h! ! Dq2, valid in
the limit q ! 0). Both M0 and D are ground state proper-
ties, and as such they should be described well by the DFT.
This is particularly true about M0 [1], the situation for D
being somewhat less satisfactory [2,3]. The discrepancies
in the latter case could be accounted for, partially at least,
by the errors made when deducing D from both experi-
mental and calculated dispersion curves. The fact that
agreement with experiment is very good at larger q [21]
leaves room for optimism.

As regards Eq. (2) itself, it seems to relate s and D
correctly, insofar as the available data allow us to judge;
see Table II. Here, once again, iron is a notable exception,
its scalc being less than one-half of the corresponding
‘‘experimental’’ value from Table I.

Unlike M0 and D, Curie temperature is not a ground
state property, so no quantitative description of TC can be
reasonably expected from DFT alone. As a first application
of the obtained formula (1), let us demonstrate that DFT
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FIG. 1. Reduced spontaneous magnetization versus reduced
temperature for several ferromagnets. The continuous lines
were calculated using Eq. (1) with the p and s of Table I. The
symbols are experimental data points from (a) Refs. [11] (& ) and
[13] (!); (b) Ref. [11]; (c) Refs. [5] (& ), [12] (!), and [4] (4);
(d) Ref. [14]; (e) Ref. [15]; (f) Ref. [16]; (g) Ref. [17]. The arrow
marks the hcp-fcc transition point in cobalt.
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FIG. 2. Simulated demagnetization of Ni comparing classical and
rescaled models with experimental data from [6]. The rescaled
dynamic simulations show quantitative agreement with experiment
from an atomic level model. Color Online.

For the rescaling of the simulation results to the experimen-
tal data, we therefore map the as-calculated temperature de-
pendent properties to a real temperature T̃ that is equivalent
to the experimental measurement temperature. The reduced
real temperature τ̃ = T̃/Tc is given by

τ̃ = τ
1
α (8)

where α is the scaling exponent from Eq. (4). The physical
interpretation of the rescaling is that at low temperatures the
allowed spin fluctuations in the classical limit are over esti-
mated and so this corresponds to a higher effective tempera-
ture than given in the simulation.

Using this simple temperature rescaling we can now obtain
the scaling exponent α by fitting the simulated temperature
dependent magnetization to the experimental data. α is deter-
mined by a two-step fitting procedure. First Eq. (4) is fitted to
the simulated temperature dependent magnetization to obtain
Tc and β for α = 1. Fixing Tc and β , Eq. (4) is then fitted
to the experimental data as given by Eq. (5) to obtain α . The
final fitted parameters are given in Tab. I. The temperature
rescaling is then applied to the simulated temperature depen-
dent magnetization and directly compared to the experimen-
tal line, as shown by the corrected simulation data in Fig. 1.
For Co, Ni and Gd the agreement between the rescaled sim-
ulation data and the experimental measurement is remarkable
given the simplicity of the approach. The fit for Fe is not as
good as for the others due to the peculiarity of the experimen-
tally measured magnetization curve, as noted by Kuz’min[22].
However the simple rescaling presented here is accurate to a
few percent over the whole temperature range, and if greater
accuracy is required then a non-analytic temperature rescal-
ing can be used to give exact agreement with the experimental
data.

The ability of direct interpolation of Bloch’s Law with crit-
ical scaling to describe the temperature dependent magnetiza-
tion is significant for two reasons. Firstly, it provides a sim-

TABLE I. Fitting parameters for the temperature dependent magne-
tization derived from the classical spin model simulations by fitting
to Eq. (4) for α = 1 (Tc and β ) and by secondary fitting to Eq. (5) to
obtain the rescaling factor α .

Co Fe Ni Gd
Tc 1395 1049 635 294
β 0.340 0.339 0.341 0.339
α 2.369 2.876 2.322 1.278

ple way to parameterize experimentally measured temperature
dependent magnetization in terms of only three parameters
via Eq. (4). Secondly, it allows a direct and accurate deter-
mination of the temperature dependence of all the parame-
ters needed for numerical micromagnetics at elevated temper-
atures from first principles when combined with atomistic spin
model simulations. We also expect the same form is appli-
cable to other technologically important composite magnets
such as CoFeB, NdFeB or FePt alloys.

We now proceed to demonstrate the power of the rescal-
ing method by considering magnetization dynamics using a
Langevin dynamics approach[15] with temperature rescaling
to investigate the laser-induced sub picosecond demagnetiza-
tion of Ni first observed experimentally by Beaurepaire et al.
[6]. The laser pulse is simulated using the two temperature
model[35] with parameters obtained for Ni[36]. The simu-
lated magnetization dynamics for the classical and rescaled
calculations are shown along with the experimental results
in Fig. 2. As expected the standard classical model shows
poor agreement with experiment because of the incorrect
m(T ). However, after applying dynamic temperature rescal-
ing quantitative agreement is found between the atomistic
model and experiment. This result fully validates our ap-
proach by demonstrating the ability to describe both equilib-
rium and dynamic properties of magnetic materials at all tem-
peratures.

In conclusion, we have performed atomistic spin model
simulations of the temperature dependent magnetization of
the elemental ferromagnets Ni, Fe, Co and Gd to determine
the Curie temperature directly from the microscopic exchange
interactions. Using a simple temperature rescaling consid-
ering classical and quantum spin wave fluctuations we find
quantitative agreement between the simulations and experi-
ment for the temperature dependent magnetization. By rescal-
ing the temperature in this way it is now possible to derive
all temperature dependent magnetic properties in quantita-
tive agreement with experiment from a microscopic atomistic
model. In addition we have shown the applicability of the ap-
proach to modeling ultrafast magnetization dynamics, also in
quantitative agreement with experiment. This approach now
enables accurate temperature dependent simulations of mag-
netic materials suitable for a wide range of materials of prac-
tical and fundamental interest.

Finally it is interesting to ponder what is the physical origin

2

to a decrease of the macroscopic magnetization M(T ) as
temperature increases.[25] In the limit of low temperatures,
m(T ) = M(T )/M(0) can be calculated as m = 1 − ρ(T ),
where ρ(T ) = (1/N )∑kkk nkkk is the sum over the wave vec-
tor kkk of the spin wave occupation number in the first Brillouin
zone[26, 27]. The different forms of m(T ) then depend on
the specific nkkk used. The occupation number of a spin wave
of energy εk follows the Boltzmann law in reciprocal space,
nkkk = kBT/εkkk, where T is the temperature, kB is the Boltz-
mann constant. Whilst quantum spin waves follow the Bose-
Einstein distribution (nkkk = 1/(exp(εkkk/kBT ))−1)).

Given that the spin wave energies εkkk are the same in both the
quantum and classical model the difference in the form of the
M(T ) curve comes solely from the different statistics. We can
illustrate the difference in the statistics by considering the sim-
plest possible ferromagnet described by a quantum and clas-
sical spin Heisenberg Hamiltonian. To do so, we consider the
anisotropy and external magnetic fields as small contributions
to the Hamiltonian in comparison to the exchange interaction
energy. Thus, the energy can be written as εkkk = J0(1− γkkk),
where γkkk = (1/z)∑ j J0 j exp(−ikkkrrr0 j), rrr0 j = rrr0 − rrr j with rrr0 j is
the relative position of the z nearest neighbors.

The integral ρ(T ) = (1/N )∑kkk nkkk at low temperatures for
both quantum and classical statistics are very-well known
results.[26] For the classical statistics

mc(T ) = 1− kBT
J0

1
N ∑

kkk

1
1− γkkk

≈ 1− 1
3

T
Tc
, (1)

where Tc is the Curie temperature and we have used the
random-phase approximation (RPA) relation to relate W and
Tc (J0/3 ≈ WkBTc)[28] (exact for the spherical model [29]),
where W = (1/N ∑kkk

1
1−γkkk

) is the Watson integral.
Under the same conditions in the quantum Heisenberg case

one obtains the T 3/2 Bloch law,

mq(T ) = 1− 1
3

s
(

T
Tc

)3/2
(2)

where s is a slope factor given by

s = S1/2 (2πW )−3/2 ζ (3/2). (3)

where S is the spin value and ζ (x) the well-known Riemann
ζ function, and the RPA relation (3kBTc = J0S2/W ) has been
used. We note that Kuz’min[22] utilized semi-classical linear
spin wave theory to determine s, and so use the experimen-
tally measured magnetic moment and avoid to the well known
problem of choosing a value of S for the studied metals.

Mapping between the classical and quantum m(T ) expres-
sions is done simply by equalizing Eqs. (1) and (2) yield-
ing τcl = sτ3/2

q . This expression therefore relates the ther-
mal fluctuations between the classical and quantum Heisen-
berg models at low temperatures. At higher temperatures
more terms are required to describe m(T ) for both approaches,
making the simple identification between temperatures cum-
bersome. At temperatures close to and above Tc, βεkkk → 0

is a small parameter and thus the thermal Bose distribu-
tion 1/(exp(βεkkk)− 1) ≈ βεkkk tends to the Boltzmann distri-
bution, thus the effect of the spin quantization is negligible
here. For this temperature region, a power law is expected,
m(τ)≈ (1− τ)β , where β = 1/3 for the Heisenberg model in
both cases.

The existence of a simple relation between classical and
quantum temperature dependent magnetization at low temper-
atures leads to the question - does a similar scaling quantita-
tively describe the behavior of elemental ferromagnets for the
whole range of temperatures? Our starting point is to repre-
sent the temperature dependent magnetization in the simplest
form arising from a straightforward interpolation of the Bloch
law[25] and critical behavior[30] given by the Curie-Bloch
equation

m(τ) = (1− τα)β (4)

where α is an empirical constant and β ≈ 1/3 is the critical
exponent. We will demonstrate that this simple expression is
sufficient to describe the temperature dependent magnetiza-
tion in elemental ferromagnets with a single fitting parameter
α . An alternative to the Curie-Bloch equation was proposed
by Kuz’min[22] which has the form

m(τ) = [1− sτ3/2 − (1− s)τ p]1/3. (5)

The parameters s and p are taken as fitting parameters, where
it was found that p = 5/2 for all ferromagnets except for Fe
and s relates to the form of the m(T ) curve and corresponds to
the extent that the magnetization follows Bloch’s law at low
temperatures. In the case of a pure Bloch ferromagnet where
p= 3/2 and α = p equations (4) and (5) are identical, demon-
strating the same physical origin of these phenomenological
equations.

While Kuz’min’s equation quantitatively describes the form
of the magnetization curve, it does not link the macro-
scopic Curie temperature to microscopic exchange interac-
tions which can be conveniently determined by ab-initio first
principles calculations[31]. Exchange interactions calculated
from first principles are often long ranged and oscillatory
in nature and so analytical determination of the Curie tem-
perature can be done with a number of different standard
approaches such as mean-field (MFA) or random phase ap-
proximations (RPA), neither of which are particularly accu-
rate due to the approximations involved. A much more suc-
cessful method is incorporating the microscopic exchange
interactions into a multiscale atomistic spin model which
has been shown to yield Curie temperatures much closer to
experiment[21]. The clear advantage of this approach is the
direct linking of electronic scale calculated parameters to
macroscopic thermodynamic magnetic properties such as the
Curie temperature. What is interesting is that the classical
spin fluctuations give the correct Tc for a wide range of mag-
netic materials[21, 31], suggesting that the particular value of
the exchange parameters and the form of the m(T ) curve are
largely independent quantities, as suggested by Eq. (3). The
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Figure 5. Comparative simulation of temperature-dependent
magnetization for Monte Carlo and LLG simulations. Simulation
parameters assume a nearest neighbour exchange of
6.0 ⇥ 10�21 J/link with a simple cubic crystal structure, periodic
boundary conditions and 21952 atoms. The Monte Carlo
simulations use 50 000 equilibration and averaging steps, while the
LLG simulations use 5000 000 equilibration and averaging steps
with critical damping (� = 1) and a time step of 0.01 fs. The value
of Tc ⇠ 625 K calculated from equation (9) is shown by the dashed
vertical line. The temperature-dependent magnetization is fitted to
the expression m(T ) = (1 � T/Tc)� (shown by the solid line) which
yields a fitted Tc = 631.82 K and exponent � = 0.334 297.

5.1. Angular variation of the coercivity

Assuming a correct implementation of an integration scheme
as described in the previous section, the first test case of interest
is the correct implementation of uniaxial magnetic anisotropy.
For a single spin in an applied field and at zero temperature,
the behaviour of the magnetization is essentially that of a
Stoner–Wohlfarth particle, where the angular variation of the
coercivity, or reversing field, is well known [125]. This test
serves to verify the static solution for the LLG equation by
ensuring an easy axis loop gives a coercivity of Hk = 2ku/µs
as expected analytically. For this problem the Hamiltonian
reads

H = �kuS
2
z
� µsS · Happ (26)

where ku is the on-site uniaxial anisotropy constant and Happ
is the external applied field. The spin is initialized pointing
along the applied field direction, and then the LLG equation
is solved for the system, until the net torque on the system
S ⇥ Heff  |10�6| T, essentially a condition of local minimum
energy.

The field strength is decreased from saturation in steps
of 0.01 H/Hk and solved again until the same condition is
reached. A plot of the calculated alignment of the magnetiza-
tion to the applied field (S · Happ) for different angles from the
easy axis is shown in figure 6. The calculated hysteresis curve
conforms exactly to the Stoner–Wohlfarth solution.

5.2. Boltzmann distribution for a single spin

To quantitatively test the thermal effects in the model and
the correct implementation of the stochastic LLG or Monte
Carlo integrators, the simplest case is that of the Boltzmann

Figure 6. Plot of alignment of magnetization with the applied field
for different angles of from the easy axis. The 0� and 90� loops
were calculated for very small angles from the easy and hard axes
respectively, since in the perfectly aligned case the net torque is zero
and no change of the spin direction occurs.

Figure 7. Calculated angular probability distribution for a single
spin with anisotropy for different effective temperatures ku/kBT .
The lines show the analytic solution given by equation (27).

distribution for a single spin with anisotropy (or applied
field), where the probability distribution is characteristic of
the temperature and the anisotropy energy. The Boltzmann
distribution is given by:

P(✓) / sin ✓ exp
✓

�
ku sin2 ✓

kBT

◆
(27)

where ✓ is the angle from the easy axis. The spin is initialized
along the easy axis direction and the system is allowed
to evolve for 108 time steps after equilibration, recording
the angle of the spin to the easy axis at each time. Since
the anisotropy energy is symmetric along the easy axis, the
probability distribution is reflected and summed about ⇡/2,
since at low temperatures the spin is confined to the upper
well (✓ < ⇡/2). Figure 7 shows the normalized probability
distribution for three reduced temperatures.

The agreement between the calculated distributions is
excellent, indicating a correct implementation of the stochastic
LLG equation.
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magnetization is well fitted by the function [15]

m(T ) =
(

1 − T

Tc

)β

. (8)

We note that Eqs. (4) and (8) are identical for the case of α = 1.
Fitting the simulated temperature-dependent magnetization
for Fe, Co, Ni, and Gd to Eq. (8) in our case yields an
apparently universal critical exponent of β = 0.340 ± 0.001
and a good estimate of the Curie temperature Tc within 1%
of the experimental values. In general β depends on both the
system size and the form of the spin Hamiltonian [38], hence
our use of a large system size and many averaging Monte
Carlo steps. We note that our calculated critical exponent
in all cases is closer to 0.34 as found experimentally for
Ni [39] rather than the 1/3 normally expected [22]. The
simulations confirm the ability of the atomistic spin model to
relate microscopic exchange interactions to the macroscopic
Curie temperature. However, as is evident from the Kuz’min
fits to the experimental data (see Fig. 1), the form of the
magnetization curve is seriously in error.

IV. TEMPERATURE RESCALING

To resolve the disparity in the temperature-dependent mag-
netization between the classical simulation and experiment
we proceed by implementing temperature rescaling to map the
simulations onto experiment in a quantitative manner. Similar
to Kuz’min [22], we assume in our fitting that the critical
exponent β is universal and thus the same for both the classical
simulation and experiment, so the only free fitting parameter is
α. Due to the limited availability of raw experimental data, we
use the equation proposed by Kuz’min as a substitute for the
experimental data since they agree extremely well [22]. This
also has the advantage of smoothing any errors in experimental
data. We proceed by fitting the Curie-Bloch equation given
by Eq. (4) to the Kuz’min equation given by Eq. (5),
where the parameters s and p are known fitting parameters
(determined from experimental data by Kuz’min [22]) and β ≃
0.34 and Tc are determined from the atomistic simulations.
The determined value of α then conveniently relates the result
of the classical simulation to the experimental data, allowing a
simple mapping as follows. The (internal) simulation tempera-
ture Tsim is rescaled so that for the input experimental (external)
temperature Texp the equilibrium magnetization agrees with the
experimental result. Tsim and Texp are related by the expression

Tsim

Tc
=

(
Texp

Tc

)α

. (9)

Thus, for a desired real temperature Texp, the simulation
will use an effective temperature within the Monte Carlo
or Langevin dynamics simulation of Texp, where for α > 1,
Tsim < Texp, leading to an effective reduction of the thermal
fluctuations in the simulation. The physical interpretation of
the rescaling is that at low temperatures the allowed spin
fluctuations in the classical limit are overestimated and so
this corresponds to a higher effective temperature than given
in the simulation. This is illustrated schematically in Fig. 2.

Clearly, different values of α in Eq. (9) lead to different
mappings between the experimental temperature and the
internal simulation temperature. Larger values of α lead to

Texp = 300 K

Simulation
Tsim = 50 K

Universe

msim = 0.9

mexp = 0.9

FIG. 2. Schematic diagram of the rescaling applied to the
simulation of a magnetic material. The universe has a temperature
Texp = 300 K, which for an experimental sample has a macroscopic
magnetization length of mexp = M/M0

s = 0.9. Using the temperature
rescaling, this leads to an internal simulation temperature of Tsim =
50 K, which leads to a simulated equilibrium magnetization of
msim = 0.9. Therefore, macroscopically, mexp ≡ msim.

reduced thermal fluctuations in the spin model simulations,
owing to quantum mechanical “stiffness.” A plot of the
simulation temperature Tsim as a function of the input exper-
imental temperature Texp for different values of the rescaling
exponent α is shown in Fig. 3. Above Tc it is assumed that
Tsim = Texp due to the absence of magnetic order. For Monte
Carlo simulations the reduced simulation temperature appears
directly in the acceptance criteria P = exp(−#E/kBTsim)
for individual trial moves, thus reducing the probability of
acceptance and resulting in a larger magnetization length for
the system.

We now apply the temperature rescaling to the simulated
temperature-dependent magnetization for Fe, Co, Ni, and Gd
and directly compare the result to the experimental curve,
as shown by the corrected simulation data in Fig. 1, where
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Higher values of α correspond to a lower effective temperature and
reduced fluctuations in the simulation.
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magnetization is well fitted by the function [15]

m(T ) =
(

1 − T

Tc

)β

. (8)

We note that Eqs. (4) and (8) are identical for the case of α = 1.
Fitting the simulated temperature-dependent magnetization
for Fe, Co, Ni, and Gd to Eq. (8) in our case yields an
apparently universal critical exponent of β = 0.340 ± 0.001
and a good estimate of the Curie temperature Tc within 1%
of the experimental values. In general β depends on both the
system size and the form of the spin Hamiltonian [38], hence
our use of a large system size and many averaging Monte
Carlo steps. We note that our calculated critical exponent
in all cases is closer to 0.34 as found experimentally for
Ni [39] rather than the 1/3 normally expected [22]. The
simulations confirm the ability of the atomistic spin model to
relate microscopic exchange interactions to the macroscopic
Curie temperature. However, as is evident from the Kuz’min
fits to the experimental data (see Fig. 1), the form of the
magnetization curve is seriously in error.

IV. TEMPERATURE RESCALING

To resolve the disparity in the temperature-dependent mag-
netization between the classical simulation and experiment
we proceed by implementing temperature rescaling to map the
simulations onto experiment in a quantitative manner. Similar
to Kuz’min [22], we assume in our fitting that the critical
exponent β is universal and thus the same for both the classical
simulation and experiment, so the only free fitting parameter is
α. Due to the limited availability of raw experimental data, we
use the equation proposed by Kuz’min as a substitute for the
experimental data since they agree extremely well [22]. This
also has the advantage of smoothing any errors in experimental
data. We proceed by fitting the Curie-Bloch equation given
by Eq. (4) to the Kuz’min equation given by Eq. (5),
where the parameters s and p are known fitting parameters
(determined from experimental data by Kuz’min [22]) and β ≃
0.34 and Tc are determined from the atomistic simulations.
The determined value of α then conveniently relates the result
of the classical simulation to the experimental data, allowing a
simple mapping as follows. The (internal) simulation tempera-
ture Tsim is rescaled so that for the input experimental (external)
temperature Texp the equilibrium magnetization agrees with the
experimental result. Tsim and Texp are related by the expression

Tsim

Tc
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. (9)

Thus, for a desired real temperature Texp, the simulation
will use an effective temperature within the Monte Carlo
or Langevin dynamics simulation of Texp, where for α > 1,
Tsim < Texp, leading to an effective reduction of the thermal
fluctuations in the simulation. The physical interpretation of
the rescaling is that at low temperatures the allowed spin
fluctuations in the classical limit are overestimated and so
this corresponds to a higher effective temperature than given
in the simulation. This is illustrated schematically in Fig. 2.

Clearly, different values of α in Eq. (9) lead to different
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internal simulation temperature. Larger values of α lead to
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reduced thermal fluctuations in the spin model simulations,
owing to quantum mechanical “stiffness.” A plot of the
simulation temperature Tsim as a function of the input exper-
imental temperature Texp for different values of the rescaling
exponent α is shown in Fig. 3. Above Tc it is assumed that
Tsim = Texp due to the absence of magnetic order. For Monte
Carlo simulations the reduced simulation temperature appears
directly in the acceptance criteria P = exp(−#E/kBTsim)
for individual trial moves, thus reducing the probability of
acceptance and resulting in a larger magnetization length for
the system.

We now apply the temperature rescaling to the simulated
temperature-dependent magnetization for Fe, Co, Ni, and Gd
and directly compare the result to the experimental curve,
as shown by the corrected simulation data in Fig. 1, where
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Classical spin model with Heisenberg exchange

J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

this suggests that the bonding electrons are unpolarized, and
after taking into account the bonding charge the remaining
d-electrons form a well-defined effective localized moment on
the atomic sites.

Magnetic systems are fundamentally quantum mechani-
cal in nature since the electron energy levels are quantized,
the exchange interaction is a purely quantum mechanical
effect, and other important effects such as magnetocrystalline
anisotropy arise from relativistic interactions of electronic
orbitals with the lattice, which are the province of ab initio

models. In addition to these properties at the electronic level,
the properties of magnetic materials are heavily influenced
by thermal effects which are typically difficult to incorporate
into standard density functional theory approaches. Therefore
models of magnetic materials should combine the quantum
mechanical properties with a robust thermodynamic formal-
ism. The simplest model of magnetism using this approach is
the Ising model [1], which allows the atomic moments one of
two allowed states along a fixed quantization axis. Although
useful as a descriptive system, the forced quantization is
equivalent to infinite anisotropy, limiting the applicability of
the Ising model in relation to real materials. In the classical
description the direction of the atomic moment is a continuous
variable in 3D space allowing for finite anisotropies and
dynamic calculations. In some sense the classical spin model is
analogous to Molecular Dynamics, where the energetics of the
system are determined primarily from quantum mechanics, but
the time evolution and thermodynamic properties are treated
classically.

2.1. The classical spin Hamiltonian

The extended Heisenberg spin model encapsulates the essen-
tial physics of a magnetic material at the atomic level, where
the energetics of a system of interacting atomic moments is
given by a spin Hamiltonian (which neglects non-magnetic
effects such the as the Coulomb term). The spin Hamiltonian
H typically has the form:

H =Hexc +Hani +Happ (1)

denoting terms for the exchange interaction, magnetic
anisotropy, and externally applied magnetic fields respectively.

The dominant term in the spin Hamiltonian is the Heisen-
berg exchange energy, which arises due to the symmetry of the
electron wavefunction and the Pauli exclusion principle [60]
which governs the orientation of electronic spins in over-
lapping electron orbitals. Due to its electrostatic origin, the
associated energies of the exchange interaction are around
1–2 eV, which is typically up to 1000 times larger than the
next largest contribution and gives rise to magnetic ordering
temperatures in the range 300–1300 K. The exchange energy
for a system of interacting atomic moments is given by the
expression

Hexc = �

X

i 6= j

Ji j Si · S j (2)

where Ji j is the exchange interaction between atomic sites
i and j , Si is a unit vector denoting the local spin moment
direction and S j is the spin moment direction of neighbouring

atoms. The unit vectors are taken from the actual atomic mo-
ment µs and given by Si = µs/|µs|. It is important to note here
the significance of the sign of Ji j . For ferromagnetic materials
where neighbouring spins align in parallel, Ji j > 0, and for
antiferromagnetic materials where the spins prefer to align
anti-parallel Ji j < 0. Due to the strong distance dependence
of the exchange interaction, the sum in equation (2) is often
truncated to include nearest neighbours only. This significantly
reduces the computational effort while being a good approxi-
mation for many materials of interest. In reality the exchange
interaction can extend to several atomic spacings [29, 30],
representing hundreds of pairwise interactions.

In the simplest case the exchange interaction Ji j is
isotropic, meaning that the exchange energy of two spins
depends only on their relative orientation, not their direction.
In more complex materials, the exchange interaction forms a
tensor with components:

J
M
i j

=

"
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

#

, (3)

which is capable of describing anisotropic exchange interac-
tions, such as two-ion anisotropy [29] and the Dzyaloshinskii–
Moriya interaction (off-diagonal components of the exchange
tensor). In the case of tensorial exchange H

M
exc, the exchange

energy is given by the product:

H
M
exc = �

X

i 6= j

⇥
S

i

x
S

i

y
S

i

z

⇤
"

Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

# 2

64
S

j

x

S
j

y

S
j

z

3

75 . (4)

Obtaining the components of the exchange tensor may be
done phenomenologically, or via ab initio methods such as
the relativistic torque method [62–65] or the spin-cluster
expansion technique [30, 66–68]. The above expressions
for the exchange energy also exclude higher-order exchange
interactions such as three-spin and four-spin terms. In most
materials the higher-order exchange terms are significantly
smaller than the leading term and can safely be neglected.

While the exchange energy gives rise to magnetic ordering
at the atomic level, the thermal stability of a magnetic material
is dominated by the magnetic anisotropy, or preference for the
atomic moments to align along a preferred spatial direction.
There are several physical effects which give rise to anisotropy,
but the most important is the magnetocrystalline anisotropy
(namely the preference for spin moments to align with particu-
lar crystallographic axes) arising from the interaction of atomic
electron orbitals with the local crystal environment [69, 70].

The simplest form of anisotropy is of the single-ion
uniaxial type, where the magnetic moments prefer to align
along a single axis, e, often called the easy axis and is an
interaction confined to the local moment. Uniaxial anisotropy
is most commonly found in particles with elongated shape
(shape anisotropy), or where the crystal lattice is distorted
along a single axis as in materials such as hexagonal Cobalt and
L10 ordered FePt. The uniaxial single-ion anisotropy energy
is given by the expression:

H
uni
ani = �ku

X

i

(Si · e)2 (5)

3
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FIG. 1. Temperature dependent magnetization for the elemental ferromagnets (a) Co, (b) Fe, (c) Ni and (d) Gd. Circles give the simulated
mean magnetization, and dark solid lines show the corresponding fit according to Eq. (4) for the classical case α = 1. Light solid lines give
the experimentally measured temperature dependent magnetization as fitted by Kuz’min’s equation. Triangles give the simulated data after
the temperature rescaling has been applied showing excellent agreement with the experimentally measured magnetizations for all studied
materials. Inset are plots of the relative error of the rescaled magnetization compared to Kuz’min’s equation, showing less than 3% error for
all materials in the whole temperature range (a more restrictive 1% error is shown by the shaded region). The final fitting parameters are listed
in Tab. I. Color Online.

difficulty with the classical model is that the form of the curve
is intrinsically wrong when compared to experiment.

To determine the classical temperature dependent magneti-
zation for the elemental ferromagnets Co, Fe, Ni and Gd we
proceed to simulate them using the classical atomistic spin
model. The energetics of the system are described by the clas-
sical spin Hamiltonian[15] of the form

H =−∑
i< j

Ji jSi ·S j (6)

where Si and S j are unit vectors describing the direction of the
local and nearest neighbor magnetic moments at each atomic
site and Ji j is the nearest neighbor exchange energy given
by[28]

Ji j =
3kBTc

γz
(7)

where γ(W ) gives a correction factor from the MFA and which

for RPA γ = 1/W . The numerical calculations have been car-
ried out using the VAMPIRE software package[32]. The sim-
ulated system for Co, Ni, Fe and Gd consists of a cube 20
nm3 in size with periodic boundary conditions applied to re-
move any surface effects. The equilibrium temperature depen-
dent properties of the system are calculated using the Hinzke-
Nowak Monte Carlo algorithm[15, 33] resulting in the cal-
culated temperature dependent magnetization curves for each
element shown in Fig. 1. The classical spin model simu-
lations yield Curie temperatures with an error of less than
1% compared to the experimentally determined values. The
calculated critical exponent in all cases is close to 0.34 as
found experimentally for Ni[34] rather than the 1/3 normally
expected[22]. The simulations confirm the ability of the atom-
istic spin model to relate microscopic exchange interactions
to the macroscopic Curie temperature. However as is evident
from the Kuz’min fits to the experimental data (see Fig. 1) the
form of the magnetization curve is seriously in error.
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FIG. 3. (Color online) Calculated temperature dependent magnetiza-
tion of the Fe sublattice (a) and fit of the temperature dependent mag-
netization according to Eq. 5. Adjusted temperature dependent mag-
netization plotted against temperature (b) with fit from Kuzmin to ex-
perimental data[25] and the classical fit from (a) shown for compar-
ison. Applying the temperature rescaling correction with a = 1.756
for fluctuations in hSi gives a corrected temperature dependent mag-
netization curve which agrees very well with experiment.

classical systems do not follow Bloch’s Law (low tempera-
tures always have finite fluctuations in m), a = 1, and so fitting
to the calculated temperature dependent magnetization yields
a critical exponent of b = 0.301± 0.004 and Curie tempera-
ture of 585 K. Due to the long range nature of the exchange
interactions, the critical exponent b is slightly lower than that
for the 3D Heisenberg model.

Due to the neglect of quantum effects within the classical
spin model, the calculated temperature dependent magnetiza-
tion has finite slope at zero temperature. As noted by Kuz’min
et al, this is in disagreement with experimentally measured
magnetization curves for a number of elemental ferromagnets
[26] and transition-metal rare-earth alloys [25]. We address
this apparent disparity by considering that the spin Hamilto-
nian expressed in Eq. 3 is in fact only dependent on the spin
S, and not directly on the temperature, since the effects of
temperature are introduced within the Monte Carlo integra-

tion of the system. The macroscopic temperature dependent
properties of the system, such as effective anisotropies, are
consequently only actually dependent on the magnetization
state hSi, rather than the temperature directly. We therefore
apply the temperature rescaling by Evans et al [27] to deter-
mine the temperature dependent properties comparable with
experiment. We define the rescaled experimental temperature
et = eT/Tc in reduced form simply as

et = t
1
a (6)

where a is the temperature rescaling exponent from Eq. 5 and
t = T/Tc is the reduced simulation temperature. The temper-
ature rescaling requires a priori information about the Curie
temperature of the simulated system, for example from exper-
imental data or in our case classical simulations. The rescaling
exponent is obtained by a two-step procedure [27], first fitting
Eq. 5 to the classical simulation result for a = 1 to obtain b
and Tc, and then by fitting to the experimental values for the Fe
sublattice (provided by the Kuz’min equation [25]) to obtain
a . Using this procedure we obtain a = 1.756 and show the
rescaled simulation data in Fig. 3(b) along side the experimen-
tal result fitted by Kuz’min [25]. As is evident, the rescaled
data agrees almost perfectly with the fit from Kuz’min et al
and the experimentally derived values. We note that in prin-
ciple the temperature rescaling could be different for Nd and
Fe sublattices, though in the present work we assume as a first
approximation that the rescaling is identical for both. From
this point on all calculations of temperature dependent prop-
erties of the Nd2Fe14B system are presented after applying the
aforementioned temperature rescaling.

Nd sublattice magnetization

Although the rescaling of the Fe sublattice magnetization
with the temperature was performed for a constant value of
the Nd-Fe exchange interaction, it is worthwhile considering
the effect of varying the inter-sublattice exchange energy on
the temperature dependent magnetization and the Curie point.
Without detailed ab-initio calculations, the Nd-Fe exchange is
unknown, and so we consider it as a free parameter in the first
instance. Due to the variations in the Fe-Fe exchange pairwise
interactions, we treat the total mean Fe-Fe exchange integral
averaged over 16 coordination atoms as a reference value of
the exchange energy, denoted J̃Fe. We then vary the Nd-Fe
interatomic exchange energy as a fraction of this value. The
calculated Fe and Nd sublattice magnetizations for different
strengths of the inter-sublattice exchange energy are shown in
Fig. 4(a) and Fig. 4(b) respectively.

The calculated sublattice magnetization in Fig. 4(a) shows
that the Fe-Nd exchange interaction has a strong effect on the
Curie temperature of the coupled system, with full coupling
giving ⇠ 140 K increase of the Curie point, a well known
effect with rare-earth transition-metal alloys[23, 28]. Since
the magnetic order comes principally from the Fe sublattice,

R. F. L. Evans et al, 
Phys. Rev. B 91, 144425 (2015)
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magnetization is well fitted by the function [15]

m(T ) =
(

1 − T

Tc

)β

. (8)

We note that Eqs. (4) and (8) are identical for the case of α = 1.
Fitting the simulated temperature-dependent magnetization
for Fe, Co, Ni, and Gd to Eq. (8) in our case yields an
apparently universal critical exponent of β = 0.340 ± 0.001
and a good estimate of the Curie temperature Tc within 1%
of the experimental values. In general β depends on both the
system size and the form of the spin Hamiltonian [38], hence
our use of a large system size and many averaging Monte
Carlo steps. We note that our calculated critical exponent
in all cases is closer to 0.34 as found experimentally for
Ni [39] rather than the 1/3 normally expected [22]. The
simulations confirm the ability of the atomistic spin model to
relate microscopic exchange interactions to the macroscopic
Curie temperature. However, as is evident from the Kuz’min
fits to the experimental data (see Fig. 1), the form of the
magnetization curve is seriously in error.

IV. TEMPERATURE RESCALING

To resolve the disparity in the temperature-dependent mag-
netization between the classical simulation and experiment
we proceed by implementing temperature rescaling to map the
simulations onto experiment in a quantitative manner. Similar
to Kuz’min [22], we assume in our fitting that the critical
exponent β is universal and thus the same for both the classical
simulation and experiment, so the only free fitting parameter is
α. Due to the limited availability of raw experimental data, we
use the equation proposed by Kuz’min as a substitute for the
experimental data since they agree extremely well [22]. This
also has the advantage of smoothing any errors in experimental
data. We proceed by fitting the Curie-Bloch equation given
by Eq. (4) to the Kuz’min equation given by Eq. (5),
where the parameters s and p are known fitting parameters
(determined from experimental data by Kuz’min [22]) and β ≃
0.34 and Tc are determined from the atomistic simulations.
The determined value of α then conveniently relates the result
of the classical simulation to the experimental data, allowing a
simple mapping as follows. The (internal) simulation tempera-
ture Tsim is rescaled so that for the input experimental (external)
temperature Texp the equilibrium magnetization agrees with the
experimental result. Tsim and Texp are related by the expression

Tsim

Tc
=

(
Texp

Tc

)α

. (9)

Thus, for a desired real temperature Texp, the simulation
will use an effective temperature within the Monte Carlo
or Langevin dynamics simulation of Texp, where for α > 1,
Tsim < Texp, leading to an effective reduction of the thermal
fluctuations in the simulation. The physical interpretation of
the rescaling is that at low temperatures the allowed spin
fluctuations in the classical limit are overestimated and so
this corresponds to a higher effective temperature than given
in the simulation. This is illustrated schematically in Fig. 2.

Clearly, different values of α in Eq. (9) lead to different
mappings between the experimental temperature and the
internal simulation temperature. Larger values of α lead to

Texp = 300 K

Simulation
Tsim = 50 K

Universe

msim = 0.9

mexp = 0.9

FIG. 2. Schematic diagram of the rescaling applied to the
simulation of a magnetic material. The universe has a temperature
Texp = 300 K, which for an experimental sample has a macroscopic
magnetization length of mexp = M/M0

s = 0.9. Using the temperature
rescaling, this leads to an internal simulation temperature of Tsim =
50 K, which leads to a simulated equilibrium magnetization of
msim = 0.9. Therefore, macroscopically, mexp ≡ msim.

reduced thermal fluctuations in the spin model simulations,
owing to quantum mechanical “stiffness.” A plot of the
simulation temperature Tsim as a function of the input exper-
imental temperature Texp for different values of the rescaling
exponent α is shown in Fig. 3. Above Tc it is assumed that
Tsim = Texp due to the absence of magnetic order. For Monte
Carlo simulations the reduced simulation temperature appears
directly in the acceptance criteria P = exp(−#E/kBTsim)
for individual trial moves, thus reducing the probability of
acceptance and resulting in a larger magnetization length for
the system.

We now apply the temperature rescaling to the simulated
temperature-dependent magnetization for Fe, Co, Ni, and Gd
and directly compare the result to the experimental curve,
as shown by the corrected simulation data in Fig. 1, where
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reduced fluctuations in the simulation.
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to a decrease of the macroscopic magnetization M(T ) as
temperature increases.[25] In the limit of low temperatures,
m(T ) = M(T )/M(0) can be calculated as m = 1 − ρ(T ),
where ρ(T ) = (1/N )∑kkk nkkk is the sum over the wave vec-
tor kkk of the spin wave occupation number in the first Brillouin
zone[26, 27]. The different forms of m(T ) then depend on
the specific nkkk used. The occupation number of a spin wave
of energy εk follows the Boltzmann law in reciprocal space,
nkkk = kBT/εkkk, where T is the temperature, kB is the Boltz-
mann constant. Whilst quantum spin waves follow the Bose-
Einstein distribution (nkkk = 1/(exp(εkkk/kBT ))−1)).

Given that the spin wave energies εkkk are the same in both the
quantum and classical model the difference in the form of the
M(T ) curve comes solely from the different statistics. We can
illustrate the difference in the statistics by considering the sim-
plest possible ferromagnet described by a quantum and clas-
sical spin Heisenberg Hamiltonian. To do so, we consider the
anisotropy and external magnetic fields as small contributions
to the Hamiltonian in comparison to the exchange interaction
energy. Thus, the energy can be written as εkkk = J0(1− γkkk),
where γkkk = (1/z)∑ j J0 j exp(−ikkkrrr0 j), rrr0 j = rrr0 − rrr j with rrr0 j is
the relative position of the z nearest neighbors.

The integral ρ(T ) = (1/N )∑kkk nkkk at low temperatures for
both quantum and classical statistics are very-well known
results.[26] For the classical statistics

mc(T ) = 1− kBT
J0

1
N ∑

kkk

1
1− γkkk

≈ 1− 1
3

T
Tc
, (1)

where Tc is the Curie temperature and we have used the
random-phase approximation (RPA) relation to relate W and
Tc (J0/3 ≈ WkBTc)[28] (exact for the spherical model [29]),
where W = (1/N ∑kkk

1
1−γkkk

) is the Watson integral.
Under the same conditions in the quantum Heisenberg case

one obtains the T 3/2 Bloch law,

mq(T ) = 1− 1
3

s
(

T
Tc

)3/2
(2)

where s is a slope factor given by

s = S1/2 (2πW )−3/2 ζ (3/2). (3)

where S is the spin value and ζ (x) the well-known Riemann
ζ function, and the RPA relation (3kBTc = J0S2/W ) has been
used. We note that Kuz’min[22] utilized semi-classical linear
spin wave theory to determine s, and so use the experimen-
tally measured magnetic moment and avoid to the well known
problem of choosing a value of S for the studied metals.

Mapping between the classical and quantum m(T ) expres-
sions is done simply by equalizing Eqs. (1) and (2) yield-
ing τcl = sτ3/2

q . This expression therefore relates the ther-
mal fluctuations between the classical and quantum Heisen-
berg models at low temperatures. At higher temperatures
more terms are required to describe m(T ) for both approaches,
making the simple identification between temperatures cum-
bersome. At temperatures close to and above Tc, βεkkk → 0

is a small parameter and thus the thermal Bose distribu-
tion 1/(exp(βεkkk)− 1) ≈ βεkkk tends to the Boltzmann distri-
bution, thus the effect of the spin quantization is negligible
here. For this temperature region, a power law is expected,
m(τ)≈ (1− τ)β , where β = 1/3 for the Heisenberg model in
both cases.

The existence of a simple relation between classical and
quantum temperature dependent magnetization at low temper-
atures leads to the question - does a similar scaling quantita-
tively describe the behavior of elemental ferromagnets for the
whole range of temperatures? Our starting point is to repre-
sent the temperature dependent magnetization in the simplest
form arising from a straightforward interpolation of the Bloch
law[25] and critical behavior[30] given by the Curie-Bloch
equation

m(τ) = (1− τα)β (4)

where α is an empirical constant and β ≈ 1/3 is the critical
exponent. We will demonstrate that this simple expression is
sufficient to describe the temperature dependent magnetiza-
tion in elemental ferromagnets with a single fitting parameter
α . An alternative to the Curie-Bloch equation was proposed
by Kuz’min[22] which has the form

m(τ) = [1− sτ3/2 − (1− s)τ p]1/3. (5)

The parameters s and p are taken as fitting parameters, where
it was found that p = 5/2 for all ferromagnets except for Fe
and s relates to the form of the m(T ) curve and corresponds to
the extent that the magnetization follows Bloch’s law at low
temperatures. In the case of a pure Bloch ferromagnet where
p= 3/2 and α = p equations (4) and (5) are identical, demon-
strating the same physical origin of these phenomenological
equations.

While Kuz’min’s equation quantitatively describes the form
of the magnetization curve, it does not link the macro-
scopic Curie temperature to microscopic exchange interac-
tions which can be conveniently determined by ab-initio first
principles calculations[31]. Exchange interactions calculated
from first principles are often long ranged and oscillatory
in nature and so analytical determination of the Curie tem-
perature can be done with a number of different standard
approaches such as mean-field (MFA) or random phase ap-
proximations (RPA), neither of which are particularly accu-
rate due to the approximations involved. A much more suc-
cessful method is incorporating the microscopic exchange
interactions into a multiscale atomistic spin model which
has been shown to yield Curie temperatures much closer to
experiment[21]. The clear advantage of this approach is the
direct linking of electronic scale calculated parameters to
macroscopic thermodynamic magnetic properties such as the
Curie temperature. What is interesting is that the classical
spin fluctuations give the correct Tc for a wide range of mag-
netic materials[21, 31], suggesting that the particular value of
the exchange parameters and the form of the m(T ) curve are
largely independent quantities, as suggested by Eq. (3). The
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FIG. 6. (Color online) Temperature dependence of the reduced Fe
sublattice anisotropy constant kFe

2 (eT )/kFe
2 (0) (a). Expected analyt-

ical temperature dependence of the Fe sublattice anisotropy field
(b), showing a slow increase with increasing temperature reaching
a broad peak around eT ⇠ 350 K in good agreement with experimen-
tal data for Y2Fe14B [32].

utilize a function of the form

f (es) = 1+
kca

r
tanh(res) (10)

which saturates the increase in the anisotropy at a lower tem-
perature than a linear increase in c/a. kca is a parameter which
determines the fractional variation of the anisotropy constant
caused by the change in the c/a ratio and r is the rate at which
the anisotropy saturates away from linear behavior. Since the
change in magneto-elastic anisotropy is only proportional to
the variation of the c/a ratio and not its absolute value, we
utilize a reduced expression for s , s̃ , and given by

es (et) = etns , et  1 (11)

where ns = 2.193 is the exponent fitted from the experimental
data. Combining Eqs. 8, 10, and 11 then gives the functional
form of the reduced temperature variation of the anisotropy,
as plotted in Fig. 6(a). Using the simple Callen-Callen rela-
tions it is also easy to estimate the expected temperature de-
pendence of the anisotropy field. Given the calculated tem-
perature dependence of the reduced Fe sublattice magneti-
zation mFe and the temperature dependence of the uniaxial
anisotropy ⇠ m3

Fe, it follows that

HFe
k (eT )⇠

2kFe
2 (eT )

h
mFe(eT )

i3

µFemFe(eT )
=

2kFe
2 (eT )
µFe

mFe(eT )2. (12)

Given a zero temperature anisotropy field of 18kOe, the
temperature dependence of the anisotropy field follows di-
rectly from Eq. 12, as shown in Fig. 6(b), which agrees well
with the available experimental data. Finally, the actual value
of the magnetic anisotropy constant at zero temperature can
be taken directly from the usual relation kFe

2 = µFeHFe
k /2 =

1.836⇥10�23 J/atom. The calculated value for the anisotropy
of the Fe atoms in Y2Fe14B is assumed to be the same as in
the Nd2Fe14B alloy.

Nd sublattice anisotropy

At the atomic level the local Neodymium ion anisotropy is
described by

Ek,Nd
i =�kNd

2
eP2 �kNd

4
eP4 (13)

where kNd
2 and kNd

4 are the microscopic second and fourth
order anisotropy coefficients of the respective renormalized
Legendre polynomials eP2 and eP4 defined by [8]

eP2 =� 1
3 (3S2

z �1) (14)
eP4 =� 1

12 (35S4
z �30S2

z +3) (15)

where Sz is a unit vector describing the z-component of the
Nd spin i, where z is along the c-axis of the crystal. Note
that here we incorporate a renormalizing factor � 2

3 into the
usual Legendre polynomials to maintain parity with a pure
second order uniaxial anisotropy K1 expressed in the usual
macroscopic form (EK = K1 sin2 q ). We note the use of Leg-
endre polynomials as opposed to a straightforward cartesian
expansion of Eq. 7 commonly used for atomistic simulations
[16]. Such a cartesian expansion suffers from cross-pollution
of terms due to their non-orthogonality, therefore causing a
different temperature dependence of the anisotropy depend-
ing on which terms are included in the model. Conversely the
Legendre polynomials are orthogonal functions and so follow
the well known temperature dependencies from Akulov [31]
and Callen and Callen [29].

The determination of the anisotropy coefficients kNd
2 and

kNd
4 is not entirely straight forward, but phenomenologically

their origin is guided by two key experimental observations.
The first is the presence of the spin-reorientation transition
(SRT), where at low temperatures the Nd sublattice is oriented
away from the c-axis with an easy-cone anisotropy and at high
temperatures the Nd is oriented along the c-axis. The second
important observation is the significantly enhanced anisotropy
of Nd2Fe14B over Y2Fe14B, its sister compound with a non-
magnetic rare-earth (where the anisotropy arises due to the Fe
sublattice only). These observations mean that the Nd sublat-
tice still possesses uniaxial anisotropy above the SRT, and that
the anisotropy term giving rise to a high canting angle has a
stronger temperature dependence than the c-axis term.

From the Callen-Callen theory [29, 30] one expects
that the temperature dependence of the effective anisotropy
coefficients keff

2 (T ) ⇠ mNd(T )3 and keff
4 (T ) ⇠ mNd(T )10,

where mNd(T ) is the reduced Nd sublattice magnetization
MNd(T )/M0

Nd. The significantly stronger temperature depen-
dence of the fourth order anisotropy coefficient makes it ap-
parent that this term is responsible for the canted preferential
orientation of the Nd spins at low temperatures, and so is a
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Domain wall structures in Nd2Fe14B
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1 The Atomistic Spin Model
I developed an atomistic spin model of Iridium 
Manganeses (IrMn)[1]. This is an AFM material often used 
in exchange bias systems. The energy is calculated using 
a spin Hamiltonian of the form:

The Hamiltonian uses the Heisenberg model to simulate 
the exchange interactions and the Néel pair anisotropy 
model to simulate the anisotropy[1]. This model reproduces 
previous experimental and ab initio. results. Shown in the 
centre panel[3].

[1] R. F. L. Evans et al, J. Phys.: Condens. Matter 26, 
103202 (2014).
[2] L. Szunyogh et al, Phys. Rev. B, 79, 020403(R) (2009) 
[3] Frangou, L. and Oyarz\un, S., Phys. Rev. Lett.,116 
(2016)

2 The simulated System

The IrMn is sandwiched between two non-magnetic Cu 
layers. 
The thickness was varied in the range 0.25 to 10 nm. 
Initially the interface between is assumed to be atomically 
flat. We also study the intermixing between the layers to 
recreate the effects of sputtered films.
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The antiferromagnetic properties of IrMn alloys
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We first compared our model with experimental results to check the validity, then we measured dependance
of Neel on composition/order. and looked into how order affects the ground state structure. Etc. etc.

I. INTRODUCTION

Iridium Manganese has a high exchange bias and thermal
stability. This makes it ideal for use as the anti-ferromagnetic
layer in GMR sensors, which are an important component
of magnetic hard drives. The ever increasing demand for
portable storage devices means the recording densities used in
hard drives now approaches 1 Tb in-2. To keep pace with this
demand the size of the read elements in magnetic storage de-
vices are now at the atomic scale ref 1. However, very little is
known about how the composition and structure of materials
affects magnetic properties at these small scales. If the mag-
netic processes and dependence on composition and structure
could be understood materials could be engineered which al-
low higher density storage with better thermal stability.

Kohn et al. discovered the ground state structures of IrMn3
in both its ordered and disordered states. We will be using
these results as a benchmark to check the validity of our code.
To further validate the code we will be comparing the Néel
temperatures to those found in reference? . Industrially Irid-
ium Manganese is often used without full knowledge of the
order or composition of the sample. However, very little is
known about how the composition and structure of materials
affects magnetic properties at these small scales. If the mag-
netic processes and dependence on composition and structure
could be understood materials could be engineered which al-
low higher density storage with better thermal stability.

experiment, theory, ordered alloys, previous models.
In this paper we develop an atomistic spin model of Iridium

Manganese to study the effects of crystallographic order and
composition on the magnetic properties. Néel temperature,
ground state.

II. THE MODEL

The basis of our approach is the atomistic spin model1,
treating each atom as a localized spin magnetic moment of
fixed length µs = 2.0 µB. The energetics of the system are
described by the spin Hamiltonian

H =−∑
i, j

Ji jSi ·S j −∑
i, j

kN

2
(Si · ei j)

2 (1)

where Ji j is the exchange interaction limited to nearest (Jnn
i j )

and next nearest (Jnnn
i j ) nearest neighbors, Si and S j are unit

vectors of spins i and j respectively giving the orientation of

local and neighboring atomic spins, kN is the Néel anisotropy
constant and ei j is a unit position vector between nearest
neighbor spins. We now proceed to determine the model pa-
rameters Jnn

i j , Jnnn
i j and kN.

A. Exchange energy

In ferromagnetic materials it
J1-2 models, mitsumata, Szunyogh
To find the correct value of the exchange parameter to use

in the model many simulations were run. In each simulation a
different value of the exchange parameter was used with val-
ues chosen around the value predicted by? . For each simula-
tion a graph of how the magnetization varies with temperature
is plotted from which the Néel temperature can be determined.
The exchange parameter value was chosen which gives the
Néel temperature closest to the accepted value. IrMn3 was
used as it is most widely studied and has a more accurate
accepted value for the Néel temperature. The process is de-
scribed more fully below.
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FIG. 1. Magnetisation against temperature curves for IrMn3. The ex-
change parameter was varied between 4.25×10−21 and 6× 10−21
as taken from? , these are compared to the experimental Néel temper-
ature as found in? to find the exchange parameter. The figure shows
the theroetically calculated points and a curve fit with equation 2

To calculate the Néel temperatures, a field-cool simulation
was run from 1500K on a 10nm3 sample. The sample is ini-
tially fully disordered and is slowly magnetized as the tem-
perature decreases until the ground state is reached. It ran for

3 The Néel temperature of L12  - IrMn3

n(T ) = n0(1�
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The Néel temperature is 
calculated as the point the 
subalttice magnetisation (n) 
is reduced to zero:
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4 The Néel temperature of ultra thin 
films of IrMn3

For 1nm thick films the Néel temperature was calculated:

The simulations show a significant decrease in the Néel 
temperature due to the missing interface Mn-Mn 
exchange bonds.

5 Finite Size effects

 0

 200

 400

 600

 800

 1000

 0  2  4  6  8  10

N
é

e
l T

e
m

p
e

ra
tu

re

Thickness (nm)

FM (TC = 960)

Mixing = 0nm

Mixing = 0.25nm

Mixing = 0.5nm

 0

 200

 400

 600

 800

 1000

 0  2  4  6  8  10

N
é

e
l T

e
m

p
e

ra
tu

re

Thickness (nm)

FM (TC = 560)

Mixing = 0nm

Mixing = 0.25nm

Mixing = 0.5nm

!

L12

(a)

(b)

For thin films the Néel temperature is 
calculated from the peak in the 
susceptibility. 

This is shown in the graph for L12 

IrMn3. The susceptibility shows a well 
defined peak at the Néel 
temperature. 
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The Néel temperature was calculated for different film thickness’ and 
compared to a generic FM. 
The AFM shows a stronger decrease in the Néel temperature than the 
comparable FM film.This is due to the geometric spin frustration.
For the thinnest films the Néel temperature is reduced to only a few Kelvin. 
We believe that the origin of this reduction is due to the percolation effect 
where locally AFM order still exists the long range order is disrupte
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Simple antiferromagnets

• ‘Simple’ antiferromagnets  consist of two 
magnetic sublattices


• Total magnetic moment is zero 
(macroscopically)


• Can consider two antiparallel contributions 
from each ‘colour’ of spin


• This is called the sublattice magnetization 

• The Néel vector n is the equivalent order 
parameter for antiferromagnets

ma = ∑
a

Sa mb = ∑
b

Sb

n = ma − mb



Motivation: exchange bias and 
antiferromagnetic spintronics

http://nabis.fisi.polimi.it/research-areas/antiferromagnet-spintronics/
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Atomistic spin model

-----

---
-

----

Ir Mn Ir

JNN-JNNN model Néel pair anisotropy

ference to be 5.22 meV, fitting nearly perfectly the previ-
ously determined MA constant.

Our last test to Eq. !1" referred to rotating the spins in
state T1 around the !110" axis. As compared to all the previ-
ous cases, this rotation implies a quite complicated form of
E!!",

E!!" = E!0" +
Keff

8

"#2 + sin2 ! − 2 cos ! − 2$2 sin !!1 − cos !"%.

!4"

In Fig. 2 we also plotted the results of this calculation to-
gether with the fit function as above. Reassuringly, this func-
tion describes E!!" well for the whole range of ! with the
MA constant as obtained before !Keff=10.42 meV". Note
that for the rotation around the !110" axis at !=109.47° the
energy of the ground state is regained since by this rotation
we obtain a T1 state lying in a plane normal to the !11̄1̄"
direction. In this case, we calculated an on-site anisotropy
constant, K&1.06 meV, indicating that, unlike the L10 IrMn
alloy, in this system the MAE is mainly governed by two-site
anisotropy, i.e., the second term in Eq. !1".

In order to perform finite-temperature simulations on the
magnetism of the IrMn compounds, we constructed a simpli-
fied effective spin model,

H = −
1
2'

i!j
JijS! iS! j −

Keff

2 '
i

!S! i · n! i"2, !5"

where Jij are isotropic Heisenberg exchange parameters and
the second term on the right-hand side of Eq. !5" merges also
the effect of the two-site anisotropy terms. Here, n! i are unit
vectors along the local uniaxial symmetry axes. We calcu-
lated the parameters Jij by using the relativistic torque
method.17,19

For both alloys, the calculated exchange interactions are
shown in Fig. 3 as a function of the distance between the Mn
atoms. The two sets of interactions show obvious similari-
ties: large antiferromagnetic !negative" nearest-neighbor in-
teractions, sizable oscillating interactions up to about Rij
=6 Å, and a strong damping for larger distances. Note that
double !multiple" values for some Rij’s appear due to the

different symmetry !neighborhood" of pairs with the given
separation. In the case of L10 IrMn these “degeneracies” are
mostly resolved via tetragonal distortion of the lattice. In
good comparison with other theoretical works13,15 from the
calculated Jij’s the mean-field estimates for the Néel tem-
peratures TN=1398 and 1222 K can be obtained.

Model !5" is simulated by solving the Landau-Lifshitz-
Gilbert !LLG" equation with Langevin dynamics, calculating
thermal equilibrium properties in the long-time !and high-
damping" limit. The methods we use are described in detail
in Ref. 20. The main quantity of interest is the sublattice
staggered magnetization Ms, defined as

Ms =
1
n '

a=1

n

($Max
2 + May

2 + Maz
2 ), !6"

where M! a='i"aS! i is proportional to the magnetization of
sublattice a, n is the number of antiferromagnetic sublattices,
and ( )denotes a thermal average.

Figure 4 shows the order parameter Ms versus tempera-
ture T. Despite finite-size effects, TN can be estimated as
1360 K for L10 IrMn and 1005 K for L12 IrMn3. Note that
though the exchange parameters in both cases have similar
values, the critical temperature in the L12 phase is signifi-
cantly lower. Obviously, the frustration of the spin ordering
in the L12 phase leads to a reduced TN as compared to the
L10 phase. The simulated critical temperatures clearly im-
prove upon the mean-field estimates as compared with ex-
perimentally observed Néel temperatures, 1145 and 960 K,14

respectively.
A further analysis of the sublattice magnetization vectors

reveals the magnetic ground-state configurations. In the case
of L10 IrMn the Mn spins align along the !110" direction
appropriate with the easy-plane anisotropy for this material.
For the L12 system, magnetic anisotropy included according
to Eq. !5" reveals that the T1 ground-state structure is fixed
to lie in one of the !111" planes, with each of the Mn spins
directed along the corresponding !21̄1̄" directions. These
spin orientations have previously been established by neu-
tron scattering;14 our results for the Néel temperature and the
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FIG. 3. !Color online" Isotropic exchange interactions Jij be-
tween the Mn atoms in IrMn alloys calculated from the correspond-
ing ground-state magnetic configurations by using the torque
method !Ref. 17".
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FIG. 4. !Color online" Staggered magnetizations Ms as a func-
tion of temperature obtained using Langevin dynamics over 20 ps
with system sizes of 24 000 sites !L12" and 70 000 sites !L10" and
using periodic boundary conditions.

GIANT MAGNETIC ANISOTROPY OF THE BULK… PHYSICAL REVIEW B 79, 020403!R" !2009"

RAPID COMMUNICATIONS

020403-3

AFM

FM

2

H =�Â
i< j

Ji jSi ·S j �
kN

2

z

Â
i 6= j

(Si · ei j)
2 (1)

where i, j represent local and neighboring atomic sites
and Si and S j the respective spin directions. The effec-
tive exchange interactions Ji j were limited to nearest an-
tiferromagnetic (Jnn

i j
= -6.4⇥10�21 ) and ferromagnetic

next nearest (Jnnn
i j

= 5.1⇥10�21 ) neighbors and assumed
to be independent of the local atomic ordering. This is
justified from first principles simulations which show a
similar interatomic range dependence of exchange inter-
actions for the ordered L10 and L12 phases of IrMn12.
The magnetocrystalline anisotropy in IrMn3 is assumed
to arise from the large spin-orbit coupling between Mn
and Ir sites. Usually the magnetocrystalline anisotropy
energy must be determined from first principles ab-initio

calculations12. However, such an approach is particu-
larly challenging for disordered alloys where the large
number of local atomic environments around the Mn
sites due to the random placement of Ir in the crystal. We
therefore use an approximate yet robust approach using
the Néel pair anisotropy model2,14 where Si and S j are
unit vectors describing the spin direction at the local site
i and neighboring j sites respectively. ki j = 4.22⇥10�22

is the Néel pair anisotropy constant between Mn and Ir
sites and ei j is a unit position vector between nearest
neighboring Mn and Ir sites.

The temperature dependent properties of the system
are simulated using a metropolis Monte Carlo algo-
rithm using the Hinzke-Nowak update algorithm15 using
a combination of spin-flip, random and Gaussian trial
spin moves. Each sample was initially equilibrated at
a temperature of 1500 K (above the Néel temperature)
to thermalize the spins. The system was then cooled
to 0 K using a linear cooling function over 1 000 000
Monte Carlo steps to find a ground state spin configura-
tion. The system was then heated back up to 1500 K to
find the Néel temperature in steps of 10 K performing
10 000 equilibrating Monte Carlo steps and then aver-
aging over a further 10 000 Monte Carlo steps. All nu-
merical simulations were performed using the VAMPIRE
software package13,16.

The Néel temperature is determined from the mean
sublattice magnetization n which is the average magneti-
zation length calculated from a summation over the spins
of each distinct magnetic sublattice. As a classical simu-
lation the temperature dependent magnetization is accu-
rately described by the fitting function

n(T ) = n0

✓
1� T

TN

◆b
(2)

where n is the average sublattice magnetization, n0 is
the average zero-temperature ordering of the sublattices,

T is the temperature, TN is the Neel temperature and b
is the critical magnetization exponent. It is possible cal-
culate the Néel temperature from the sublattice magne-
tization against temperature curve. However, for small
sizes the fitting becomes inaccurate due to a reduced crit-
icality of the magnetization, and so we extract the Néel
temperature from the peak in the isotropic longitudinal
susceptibility cn for each sublattice given by

cn =
Âi µi

kBT

�
h|n|2i�h|n|i2� (3)

where i are indices of atoms within the same sublat-
tice. Fig. 1 shows a typical simulation result for a (10
nm)3 cube of L12 IrMn3 showing the usual decrease in
sublattice spin order with increasing temperature due to
spin fluctuations. The sublattice susceptibility diverges
at the Néel temperature with a well defined peak from
which we extract the TN.
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FIG. 1. Plot of the the average sublattice magnetization n and
isotropic longitudinal susceptibility cn as a function of temper-
ature for the L12 phase of IrMn3. The Néel temperature TN is
extracted from the peak in the susceptibility and is close to the
bulk value10 of 1000 K.

III. BULK MAGNETIC PROPERTIES OF IRIDIUM
MANGANESE

To validate our model we have simulated the ground
state spin structures of the ordered L12 and disordered g
phases of IrMn3 as shown in Fig. 2 using the Monte Carlo
Metropolis algorithm by zero-field cooling from above
the Néel temperature to 0 K. In agreement with previous
experimental9,10 and ab-initio results12 we find ordered
L12-IrMn3 has a triangular (T 1) spin structure where the
magnetic moments lie in plane along the [111] planes
with an angle of 120� degrees between them pointing
along the [211] directions and that disordered g-IrMn3
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Use spin dynamics to calculate switching rate 
for small system near blocking temperature

𝜏0 = 3.84 ⨉ 1011

Much higher attempt 
frequency than equivalent 
ferromagnets (~1010)



Thermodynamics of ultrafast 
magnetization processes



Ultrafast demagnetization in Ni

E. Beaurepaire et al, Phys. Rev. Lett. 76 4250 (1996)
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FIG. 1. (a) Experimental pump-probe setup allowing dynamic
longitudinal Kerr effect and transient transmissivity or reflectiv-
ity measurements. (b) Typical Kerr loops obtained on a 22 nm
thick Ni sample in the absence of pump beam and for a delay
Dt ≠ 2.3 ps between the pump and probe pulses. The pump
fluence is 7 mJ cm22. (c) Transient transmissivity [same exper-
imental condition as (b)].

transient transmission curve DTyT is displayed in
Fig. 1(c). For both techniques, we used 60 fs pulses
coming from a 620 nm colliding pulse mode locked dye
laser and amplified by a 5 kHz copper vapor laser. The
temporal delays between pump and probe are achieved
using a modified Michelson interferometer. The signals
are recorded using a boxcar and a lock-in synchronous
detection. In the case of differential transmission mea-
surements, the synchronization is made by chopping the
pump beam, while for the MOKE measurements it is
done on the probe beam.
The information about the spin dynamics is contained in

the time evolution of the hysteresis loops recorded for each
time delay Dt. Typical loops obtained for Dt ≠ 2.3 ps
and in the absence of the pump beam are presented in
Fig. 1(b). Each hysteresis loop is recorded at a fixed delay
by slowly sweeping the magnetic field H. For each H

value, the MOKE signal is averaged over about 100 pulses.
The most striking feature is an important decrease of the
remanence (signal at zero field) Mr when the pump is
on. The complete dynamics MrsDtd for a laser fluence
of 7 mJ cm22 is displayed in Fig. 2. The overall behavior
is an important and rapid decrease of Mr which occurs
within 2 ps, followed by a relaxation to a long lived
plateau. This figure clearly shows that the magnetization
of the film drops during the first picosecond, indicating a
fast increase of the spin temperature. It can be noticed
that for negative delays Mr does not completely recover
its value measured in the absence of pump beam. This
permanent effect is not due to a sample damage as checked
by recording hysteresis loops without the pump beam after
the dynamical measurements. Possible explanations for
this small permanent change are either heat accumulation
or slow motion of the domain walls induced by the
pump beam.
In order to determine the temperature dynamics, we

analyze Fig. 2 using the static temperature dependence
of the magnetization found in text books. This analysis
relies on a correspondence between the variations of the

FIG. 2. Transient remanent longitudinal MOKE signal of a
Ni(20 nm)/MgF2(100 nm) film for 7 mJ cm22 pump fluence.
The signal is normalized to the signal measured in the absence
of pump beam. The line is a guide to the eye.

spontaneous and remanent magnetization, as is usually
done in thin film magnetism. This leads to the time
variation of Ts in Fig. 3(a) (dotted points). Regarding the
determination of the electronic temperature, we assume
that it is proportional to the differential transmittance
shown in Fig. 1(c) as expected for weak DTyT signals.
Let us emphasize that this procedure is valid only when
a thermalized electron population can be defined. Since
this effect was never discussed for the case of d electrons
in metals, it deserves some comments. As discussed by
various authors [4–6], the optical pulse creates in the
metal film a nascent (nonthermal) electronic distribution
that relaxes due to electron-electron interactions, leading
to a fast increase of the electron temperature. This process
can be described in the random phase approximation
(RPA) defining nonthermal and thermal (in the sense
of the Fermi-Dirac statistics) electron populations. The
nonthermal electron population is therefore created during
the pump pulse and disappears with a characteristic time
tth (¯500 fs for Au), whereas the temperature of the
thermal population increases in the same time scale. The
contribution of the nonthermal electronic distribution to
the transient optical data is therefore expected to present
a sharp peak around zero probe delay (with a rise time
given by the temporal resolution) and the thermal electron
contribution should present a delayed extremum around
tth [5]. A detailed analysis of the transient effects in Ni
for short delays is beyond the scope of the present paper
and will be presented in a future publication. Let us only
mention that with the present experimental conditions
the transient reflectivity of the Ni film presents a single
contribution which is extremum for Dt ≠ 260 fs showing
that the contribution of nonthermal populations is weak
and that the thermalization time is tth ¯ 260 fs. This
short thermalization time for Ni as compared to Au is

4251

Laser excitation
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Origin of thermal fluctuations in the atomistic model

• Lets go back to the thermal fluctuations in the atomic 
model


• Physically caused by spin scattering phenomena


• electron-spin, spin-phonon, spin-photon


• Laser interaction causes heating of the electrons and 
more scattering events -> fast increase in the effective 
temperature in the material

J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

Figure 5. Comparative simulation of temperature-dependent
magnetization for Monte Carlo and LLG simulations. Simulation
parameters assume a nearest neighbour exchange of
6.0 ⇥ 10�21 J/link with a simple cubic crystal structure, periodic
boundary conditions and 21952 atoms. The Monte Carlo
simulations use 50 000 equilibration and averaging steps, while the
LLG simulations use 5000 000 equilibration and averaging steps
with critical damping (� = 1) and a time step of 0.01 fs. The value
of Tc ⇠ 625 K calculated from equation (9) is shown by the dashed
vertical line. The temperature-dependent magnetization is fitted to
the expression m(T ) = (1 � T/Tc)� (shown by the solid line) which
yields a fitted Tc = 631.82 K and exponent � = 0.334 297.

5.1. Angular variation of the coercivity

Assuming a correct implementation of an integration scheme
as described in the previous section, the first test case of interest
is the correct implementation of uniaxial magnetic anisotropy.
For a single spin in an applied field and at zero temperature,
the behaviour of the magnetization is essentially that of a
Stoner–Wohlfarth particle, where the angular variation of the
coercivity, or reversing field, is well known [125]. This test
serves to verify the static solution for the LLG equation by
ensuring an easy axis loop gives a coercivity of Hk = 2ku/µs
as expected analytically. For this problem the Hamiltonian
reads

H = �kuS
2
z
� µsS · Happ (26)

where ku is the on-site uniaxial anisotropy constant and Happ
is the external applied field. The spin is initialized pointing
along the applied field direction, and then the LLG equation
is solved for the system, until the net torque on the system
S ⇥ Heff  |10�6| T, essentially a condition of local minimum
energy.

The field strength is decreased from saturation in steps
of 0.01 H/Hk and solved again until the same condition is
reached. A plot of the calculated alignment of the magnetiza-
tion to the applied field (S · Happ) for different angles from the
easy axis is shown in figure 6. The calculated hysteresis curve
conforms exactly to the Stoner–Wohlfarth solution.

5.2. Boltzmann distribution for a single spin

To quantitatively test the thermal effects in the model and
the correct implementation of the stochastic LLG or Monte
Carlo integrators, the simplest case is that of the Boltzmann

Figure 6. Plot of alignment of magnetization with the applied field
for different angles of from the easy axis. The 0� and 90� loops
were calculated for very small angles from the easy and hard axes
respectively, since in the perfectly aligned case the net torque is zero
and no change of the spin direction occurs.

Figure 7. Calculated angular probability distribution for a single
spin with anisotropy for different effective temperatures ku/kBT .
The lines show the analytic solution given by equation (27).

distribution for a single spin with anisotropy (or applied
field), where the probability distribution is characteristic of
the temperature and the anisotropy energy. The Boltzmann
distribution is given by:

P(✓) / sin ✓ exp
✓

�
ku sin2 ✓

kBT

◆
(27)

where ✓ is the angle from the easy axis. The spin is initialized
along the easy axis direction and the system is allowed
to evolve for 108 time steps after equilibration, recording
the angle of the spin to the easy axis at each time. Since
the anisotropy energy is symmetric along the easy axis, the
probability distribution is reflected and summed about ⇡/2,
since at low temperatures the spin is confined to the upper
well (✓ < ⇡/2). Figure 7 shows the normalized probability
distribution for three reduced temperatures.

The agreement between the calculated distributions is
excellent, indicating a correct implementation of the stochastic
LLG equation.

11



Equilibrium properties of Ni

• Use spin temperature rescaling to accurately reproduce temperature 
dependent magnetization
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FIG. 1. Temperature dependent magnetization for the elemental ferromagnets (a) Co, (b) Fe, (c) Ni and (d) Gd. Circles give the simulated
mean magnetization, and dark solid lines show the corresponding fit according to Eq. (4) for the classical case α = 1. Light solid lines give
the experimentally measured temperature dependent magnetization as fitted by Kuz’min’s equation. Triangles give the simulated data after
the temperature rescaling has been applied showing excellent agreement with the experimentally measured magnetizations for all studied
materials. Inset are plots of the relative error of the rescaled magnetization compared to Kuz’min’s equation, showing less than 3% error for
all materials in the whole temperature range (a more restrictive 1% error is shown by the shaded region). The final fitting parameters are listed
in Tab. I. Color Online.

difficulty with the classical model is that the form of the curve
is intrinsically wrong when compared to experiment.

To determine the classical temperature dependent magneti-
zation for the elemental ferromagnets Co, Fe, Ni and Gd we
proceed to simulate them using the classical atomistic spin
model. The energetics of the system are described by the clas-
sical spin Hamiltonian[15] of the form

H =−∑
i< j

Ji jSi ·S j (6)

where Si and S j are unit vectors describing the direction of the
local and nearest neighbor magnetic moments at each atomic
site and Ji j is the nearest neighbor exchange energy given
by[28]

Ji j =
3kBTc

γz
(7)

where γ(W ) gives a correction factor from the MFA and which

for RPA γ = 1/W . The numerical calculations have been car-
ried out using the VAMPIRE software package[32]. The sim-
ulated system for Co, Ni, Fe and Gd consists of a cube 20
nm3 in size with periodic boundary conditions applied to re-
move any surface effects. The equilibrium temperature depen-
dent properties of the system are calculated using the Hinzke-
Nowak Monte Carlo algorithm[15, 33] resulting in the cal-
culated temperature dependent magnetization curves for each
element shown in Fig. 1. The classical spin model simu-
lations yield Curie temperatures with an error of less than
1% compared to the experimentally determined values. The
calculated critical exponent in all cases is close to 0.34 as
found experimentally for Ni[34] rather than the 1/3 normally
expected[22]. The simulations confirm the ability of the atom-
istic spin model to relate microscopic exchange interactions
to the macroscopic Curie temperature. However as is evident
from the Kuz’min fits to the experimental data (see Fig. 1) the
form of the magnetization curve is seriously in error.

Evans et al, Phys. Rev. B 91, 144425 (2015)



Simulating a laser pulse: two temperature model

Free electron approximation
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FIG. 2. Simulated demagnetization of Ni comparing classical and
rescaled models with experimental data from [6]. The rescaled
dynamic simulations show quantitative agreement with experiment
from an atomic level model. Color Online.

For the rescaling of the simulation results to the experimen-
tal data, we therefore map the as-calculated temperature de-
pendent properties to a real temperature T̃ that is equivalent
to the experimental measurement temperature. The reduced
real temperature τ̃ = T̃/Tc is given by

τ̃ = τ
1
α (8)

where α is the scaling exponent from Eq. (4). The physical
interpretation of the rescaling is that at low temperatures the
allowed spin fluctuations in the classical limit are over esti-
mated and so this corresponds to a higher effective tempera-
ture than given in the simulation.

Using this simple temperature rescaling we can now obtain
the scaling exponent α by fitting the simulated temperature
dependent magnetization to the experimental data. α is deter-
mined by a two-step fitting procedure. First Eq. (4) is fitted to
the simulated temperature dependent magnetization to obtain
Tc and β for α = 1. Fixing Tc and β , Eq. (4) is then fitted
to the experimental data as given by Eq. (5) to obtain α . The
final fitted parameters are given in Tab. I. The temperature
rescaling is then applied to the simulated temperature depen-
dent magnetization and directly compared to the experimen-
tal line, as shown by the corrected simulation data in Fig. 1.
For Co, Ni and Gd the agreement between the rescaled sim-
ulation data and the experimental measurement is remarkable
given the simplicity of the approach. The fit for Fe is not as
good as for the others due to the peculiarity of the experimen-
tally measured magnetization curve, as noted by Kuz’min[22].
However the simple rescaling presented here is accurate to a
few percent over the whole temperature range, and if greater
accuracy is required then a non-analytic temperature rescal-
ing can be used to give exact agreement with the experimental
data.

The ability of direct interpolation of Bloch’s Law with crit-
ical scaling to describe the temperature dependent magnetiza-
tion is significant for two reasons. Firstly, it provides a sim-

TABLE I. Fitting parameters for the temperature dependent magne-
tization derived from the classical spin model simulations by fitting
to Eq. (4) for α = 1 (Tc and β ) and by secondary fitting to Eq. (5) to
obtain the rescaling factor α .

Co Fe Ni Gd
Tc 1395 1049 635 294
β 0.340 0.339 0.341 0.339
α 2.369 2.876 2.322 1.278

ple way to parameterize experimentally measured temperature
dependent magnetization in terms of only three parameters
via Eq. (4). Secondly, it allows a direct and accurate deter-
mination of the temperature dependence of all the parame-
ters needed for numerical micromagnetics at elevated temper-
atures from first principles when combined with atomistic spin
model simulations. We also expect the same form is appli-
cable to other technologically important composite magnets
such as CoFeB, NdFeB or FePt alloys.

We now proceed to demonstrate the power of the rescal-
ing method by considering magnetization dynamics using a
Langevin dynamics approach[15] with temperature rescaling
to investigate the laser-induced sub picosecond demagnetiza-
tion of Ni first observed experimentally by Beaurepaire et al.
[6]. The laser pulse is simulated using the two temperature
model[35] with parameters obtained for Ni[36]. The simu-
lated magnetization dynamics for the classical and rescaled
calculations are shown along with the experimental results
in Fig. 2. As expected the standard classical model shows
poor agreement with experiment because of the incorrect
m(T ). However, after applying dynamic temperature rescal-
ing quantitative agreement is found between the atomistic
model and experiment. This result fully validates our ap-
proach by demonstrating the ability to describe both equilib-
rium and dynamic properties of magnetic materials at all tem-
peratures.

In conclusion, we have performed atomistic spin model
simulations of the temperature dependent magnetization of
the elemental ferromagnets Ni, Fe, Co and Gd to determine
the Curie temperature directly from the microscopic exchange
interactions. Using a simple temperature rescaling consid-
ering classical and quantum spin wave fluctuations we find
quantitative agreement between the simulations and experi-
ment for the temperature dependent magnetization. By rescal-
ing the temperature in this way it is now possible to derive
all temperature dependent magnetic properties in quantita-
tive agreement with experiment from a microscopic atomistic
model. In addition we have shown the applicability of the ap-
proach to modeling ultrafast magnetization dynamics, also in
quantitative agreement with experiment. This approach now
enables accurate temperature dependent simulations of mag-
netic materials suitable for a wide range of materials of prac-
tical and fundamental interest.

Finally it is interesting to ponder what is the physical origin

Ni

R. F. L. Evans et al, Phys. Rev. B 91, 144425 (2015)
E. Beaurepaire et al, Phys. Rev. Lett. 76, 4250 (1996)

Ultrafast demagnetization in Ni

damping-constant =  0.001



What about magnetic alloys?

• Ni shows ultrafast response to a 
laser excitation?


• What about alloys? How do 
different magnetic moments inside 
a material respond to ultrafast laser 
excitation?


• Consider permalloy - alloy of 80% 
Ni, 20% Fe


• With XMCD can measure response 
of each sublattice separately 



Demagnetization dynamics in  
bulk Ni80Fe20 Permalloy 
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I. Radu et al, SPIN 5, 1550004 (2015)

𝝉 ∝𝜇/𝛼

𝜇Fe = 2.30 𝜇B 
𝜇Ni = 0.98 𝜇B 
𝛼 = 0.0065 



Artificial frustration - a route to tuneable dynamics? 

𝜇eff ~ 0.13 𝜇s

𝝉 ∝𝜇eff/𝛼 ?



Permalloy nanodot simulation Ni80Fe20 

70 nm

20 nm

𝜇Fe = 2.30 𝜇B 
𝜇Ni = 0.98 𝜇B 

8,815,413 spins

Include spin temperature rescaling to get correct dynamics



Parallel scaling of VAMPIRE code

J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

Figure 13. Runtime scaling of VAMPIRE for three different problem
sizes on the Infiniband network (a) and Ethernet network (b),
normalized to the runtime for 2 cores for each problem size.

On the Ethernet network system for the smallest system size
reasonable scaling is seen only for 4 CPUs due to the high
latency of the network. However larger problems are much less
sensitive to network latency due to latency hiding, and show
excellent scalability up to 32 CPUs. Essentially this means that
larger problems scale much better than small ones, allowing
more processors to be utilized. This is of course well known for
parallel scaling problems, but even relatively modest systems
consisting of 105 spins show significant improvements with
more processors.

For the system with the low-latency Infiniband network,
excellent scalability is seen for all problems up to 64 CPUs.
Beyond 64 CPUs the reduced scalability for all problem
sizes is likely due to a lack of network bandwidth. The
bandwidth requirements are similar for all problem sizes,
since smaller problems complete more time steps in a given
period of time and so have to send several sets of data to other
processors. Nevertheless improved performance is seen with
increasing numbers of CPUs allowing for continued reductions
in compute time. Although not shown, initial tests on an
IBM Blue Gene class system have demonstrated excellent
scaling of VAMPIRE up to 16 000 CPUs, allowing the real
possibility for atomistic simulations with lateral dimensions
of micrometres. Additional scaling tests for systems including
calculation of the demagnetizing field and a long-ranged
exchange interaction are presented in appendix C.

7. Conclusions and perspectives

We have described the physical basis of the rapidly developing
field of atomistic spin models, and given examples via its
implementation in the form of the VAMPIRE code. Although
the basic formalism underpinning atomistic spin models is
well established, ongoing developments in magnetic materials
and devices means that new approaches will need to be
developed to simulate a wider range of physical effects at the
atomistic scale. One of the most important phenomena is spin
transport and magnetoresistance which is behind an emergent
field of spin–electronics, or spintronics. Simulation of spin
transport and spin torque switching is already in development,
and must be included in atomistic level models in order to
simulate a wide range of spintronic materials and devices,
including read sensors and MRAM (magnetic random access
memory). Other areas of interest include ferroelectrics, the spin
Seebeck effect [132], and Coloured noise [110] where simu-
lation capabilities are desirable, and incorporation of these
effects are planned in future. In addition to modelling known
physical effects, it is hoped that improved models of damping
incorporating phononic and electronic mechanisms will be
developed which enable the study of magnetic properties of
materials at sub-femtosecond timescales.

The ability of atomistic models to incorporate magnetic
parameters from density functional theory calculations is a
powerful combination which allows complex systems such
as alloys, surfaces and defects to be accurately modelled. This
multiscale approach is essential to relate microscopic quantum
mechanical effects to a macroscopic length scale accessible to
experiment. Such a multiscale approach leads to the possibility
of simulation driven technological development, where the
magnetic properties of a complete device can be predicted and
optimized through a detailed understanding of the underlying
physics. Due to the potential of multiscale simulations, it is
planned in future to develop links to existing DFT codes such
as CASTEP [75, 76] to allow easier integration of DFT parameters
and atomistic spin models.

The computational methods presented here provide a
sound basis for atomistic simulation of magnetic materials, but
further improvements in both algorithmic and computational
efficiency are of course likely. One area of potential compu-
tational improvement is GPGPU (general purpose graphics
processing unit) computation, which utilizes the massively
parallel nature of GPUs to accelerate simulations, with speed
ups over a single CPU of 75 times routinely reported. With
several supercomputers moving to heterogenous computing ar-
chitectures utilizing both CPUs and GPUs, supporting GPGPU
computation is likely to be important in future, and an imple-
mentation in our VAMPIRE code is currently planned. In terms
of algorithmic improvements it should be noted that the Heun
numerical scheme although simple is relatively primitive by
modern standards, and moving to a midpoint scheme may
allow for larger time steps to be used than currently.

With the continuing improvements in computer power,
atomistic simulations have become a viable option for the
routine simulation of magnetic materials. With the increas-
ing complexity of devices and material properties, atomistic
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Demagnetization process in a Ni80Fe20 nanodot



Short time demagnetization dynamics in Ni80Fe20 
comparing bulk and vortex samples 

Vortex structure has no effect on dynamics!
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Longer timescale remagnetisation  
dynamics are different - topology? 
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To be continued…
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After thermal “kick”, oscillatory dynamics are long 
lived 



Ultrafast heat-induced switching of GdFeCo 



GdFe ferrimagnet
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FIG. 8. (Color online) Numerical values of the coercive field
(points) for various RE amounts. Data shown was calculated using a
sweep rate of 1 T/ns for a range of compositions. Results show good
qualitative agreement with the experimental results (Fig. 3), with the
divergence representing the magnetization compensation point. Lines
are guides to the eye. Values are reduced to the zero-temperature, pure
TM coercivity value with the same sweep rate.

compensation point exists is also in good agreement with the
experimental data in Ref. 16.

These initial results act as a validation of the computational
model and mean-field approach. Next the atomistic model is
used in a study of the effects of interlayer coupling on the static
and dynamic properties of the model ferrimagnet.

C. Coercivity calculations

Using the LLG model we show the compositional depen-
dence on the coercivity. The model reproduces qualitatively
similar behavior to the experimental results shown in Fig. 3.
The systems modeled are 62 500 spins in size due to limits
on computational resources, therefore, a single domain state
exists and reversal occurs via precessional switching over
the energy barrier. Figure 8 shows the results of numerical
calculations of the coercive field for a range of compositions
of the TM-RE system. The sweep rate applied was 1 T/ns,
which was required for computational efficiency. The system
was first equilibrated at the given temperature and then the
field was ramped in the opposing direction to the dominant
sublattice. The lines are guides to the eye applied above and
below TM for each composition. Qualitative agreement with
the experimental results of Fig. 3 is good, showing that the
divergence is due to the magnetization compensation point.
This is another validation of the use of this simple atomistic
model as a first approximation for this type of Ferrimagnet.
Complete agreement between experiment and theory is not
possible at the moment as the coercivity of a material depends
on many things, amongst other things, the presence of defects,
morphology, chemical segregation, formation of magnetic
grains, interfacial properties and the time over which the field
is swept, i.e. it is a time dependent quantity. Quantitative
agreement between the LLG simulations and experiments for
the whole range of temperatures and compositions is therefore
highly computationally expensive. This is because of the

JTM−RE=1.00Jmax

JTM−RE=0.75Jmax

JTM−RE=0.50Jmax

JTM−RE=0.25Jmax

RE

TM

T [K]

R
ed

uc
ed

M
ag

ne
ti

sa
ti

on

9007506004503001500

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

FIG. 9. (Color online) Reduced magnetization of the Fe and Gd
sublattices as a function of the intersublattice exchange (JTM−RE).
Magnetization is normalized to the sublattice magnetization. The
exchange leads to a polarization effect between the sublattices. Here
Jmax = −2.18 × 10−21 J.

timescales involved in the experiments, which are currently
unreachable by the LLG model. With this in mind we still see
the effect on the coercivity of the magnetization compensation
point in both the experiments and the simulations with this
very simple model

D. Computational results for the effect of TM-RE exchange

As previously discussed, the temperature dependence of
the magnetization of each sublattice is different depending on
the effective exchange. Although the details of the exchange
parameters are unknown, we can get an insight into the strength
of the exchange between the sublattices by comparing the re-
sults of our simulations with the XMCD experiments described
earlier, which measure the magnetization of each sublattice.

It can be seen from Fig. 2 that the magnetization is almost
linear with temperature for the RE sublattice, and the two
sublattices show the same Curie temperature Tc. To get an
insight into the strength of the exchange between the two
sublattices, we employed the Langevin dynamics model of the
TM-RE ferrimagnet to calculate the reduced static magneti-
zation as a function of the intersublattice exchange parameter
JTM−RE. Other than the variable intersublattice exchange, the
simulation details are the same as for the results in Fig. 4.
The results are shown in Fig. 9, which shows the reduced
magnetization of the Fe and Gd sublattices as a function of the
intersublattice exchange coupling (JTM−RE). Over the range of
exchange coupling shown, in agreement with Fig. 2, the two
sublattices share the same Curie temperature, suggesting that
there is a polarization effect of one sublattice on the other. This
polarization effect also changes the temperature dependence
of the magnetization, as seen in Fig. 9. For weaker coupling
(not shown here), the RE sublattice shows a reduced Tc. The
experimental results in Fig. 2 clearly show the presence of
strong coupling between the sublattices. Comparison between
the calculations and experimental results suggest a value
of ∼−1.09 × 10−21 J. This factor is potentially important
in relation to ultrafast magnetization processes, since the
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FIG. 2. (Color online) The variation of the coercive field Hc and
saturation magnetization Ms with temperature for a Gd23.4Fe73.3Co3.3

sample as deduced from element-specific hysteresis measured at
the Fe and Gd absorption edges. The divergence in the coercivity
indicates the magnetization compensation point. The solid lines are
fits according to M(T ) power law (see text). Dashed lines are guides
to the eye.

T/Tc)ρ (the solid lines in Fig. 2) we deduce a common Curie
temperature for both Fe and Gd sublattices of 540 ± 10 K.
Varying the Gd content from 23.4% to 29%, we are able to
tune the magnetization compensation temperature from below
60 K to 350 K, as shown in Fig. 3. The experimental results
show the coercive field for a range of compositions using the
XMCD technique as described. The divergence of the coercive
field represents the magnetization compensation point.

The common Curie temperature for the RE and TM
sublattice is an important observation as regards the strength
of the exchange coupling between the sublattices. In the
following we investigate the effects of intersublattice coupling
using the atomistic model.
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FIG. 3. (Color online) Experimental data showing temperature-
dependent coercivity for a range of GdFeCo compositions. The di-
vergence in the coercivity indicates the magnetization compensation
point. The solid lines are guides to the eye.

III. ATOMISTIC MODEL

Disordered ferrimagnetic materials demonstrate some very
interesting properties, for example, magnetization compensa-
tion point, a point at which there is no magnetization below
the Curie temperature (for a review, see Ref. 16). Compared
with their crystalline counterparts, the amorphous materials
can have differing spin moments, a changed band structure,
and strikingly different exchange values. In addition, the
microscopic origin of the perpendicular anisotropy in GdFeCo
remains elusive and cannot be attributed to strong L-Scoupling
in Gd as with other RE series in RE-TM hard magnetic mate-
rials. Clearly the magnetocrystalline anisotropy is extremely
complicated and there have been many suggestions as to its
origin including, pair ordering,23 single-ion anisotropy,24,25

exchange anisotropy26 and bond-orientational anisotropy,27

with no satisfactory explanation. With this in mind we
know that the uniaxial component of the magnetocrystalline
anisotropy is dominant in the composition range where the
compensation point occurs, therefore in our model we assume
a uniaxial anisotropy energy of 8.07246 × 10−24 Joules
per atom. This value should be strong enough to support
perpendicular magnetization in the thin films studied exper-
imentally. For simplicity we choose a generic transition-metal
ferromagnet to represent the Fe (TM), and a separate rare-
earth ferromagnet for the Gd (RE). The system consists of
N × N × N fcc cells with periodic boundary conditions. We
then populate the fcc lattice with a random distribution of TM
and RE ions in the desired concentration q and x , respectively
(q + x = 1). Note here the use of the fcc lattice, this structure
of course does not take into account the size of the Gd atom or
the fact that the structure is disordered, though the amorphous
structure is densely packed and the number of neighbours will
not be limited to six. This means that the distance between
spins is not realistically taken into account, though this is
not important as it does not appear in our Hamiltonian. A
more complicated model would require the use of some kind
of structural relaxation, though this would be complicated as
the exchange parameters would have to be calculated using
ab initio techniques requiring averaging over a number of
starting configurations.

Using the Heisenberg form of the exchange for nearest
neighbors, the energetics of the system are described by the
following Hamiltonian:

H = −1
2

∑

⟨i,j⟩
Jij Si · Sj −

N∑

i=1

Di(Si · ni)2 −
N∑

i=1

µiB · Si ,

(1)

where Jij is the exchange integral between spins i and j (i,j
are lattice sites), Si is the normalized vector |Si | = 1, Di is
the uniaxial anisotropy constant (assumed along z), ni is the
direction of the anisotropy vector, µi is the magnetic moment
of the site i, B is the vector describing the applied field, and
N is the total number of spins. We model the magnetization
dynamics of the system via the use of the LLG equation28 with
Langevin dynamics, given by

dSi

dt
= − γi(

1 + λi
2
)
µi

(
Si × Heff

i + λiSi ×
[
Si × Heff

i

] )
. (2)
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Ultrafast magnetization dynamics  
measured with XMCD

Complex reversal mechanism owing to different sub lattice magnetization 
dynamics

I. Radu et al, Nature 472, 205–208 (2011)



Ultrafast magnetization dynamics  
simulated with atomistic spin model

I. Radu et al, Nature 472, 205–208 (2011)
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The fundamental limit of the speed of magnetization reversal 
is currently a topic of great interest, particularly for the mag-
netic storage industry1. It is generally accepted that mag-

netization reversal must be driven by a directional stimulus. Even 
the possibility to control the magnetic order parameter with the 
help of a time-invariant vector, for example, by an electric field, 
has recently become a subject of debate2,3. Previously, it has been 
assumed that heat can act only to assist magnetization reversal. Such 
thermally assisted magnetic recording in an external magnetic field 
is one of the most promising ways to enable recording of informa-
tion at unprecedentedly high densities above 1 Tb/inch2 (ref. 4).  
This technology employs the effect of a laser-induced increase in 
the thermal energy of a magnetic medium in an external magnetic 
field. The necessity for the laser heating results from the large values 
of anisotropy required for thermal stability in recording media with 
small grain sizes, which are necessary to achieve the required signal 
to noise ratio at storage densities beyond 1 Tb/inch2. Such large ani-
sotropy values result in switching fields greater than the write fields 
available from current technology and the laser heating is used to 
produce a transient reduction in the anisotropy value to writable 
levels. Recent developments in near-field optics even allow laser-
induced heating with extremely high precision below the diffraction 
limit5. The thermal assist brings the magnetic material into a state 
with an increased magnetic susceptibility, but the actual magnetiza-
tion reversal and recording is driven by the simultaneously applied 
external magnetic field.

In recent years, owing to an increased interest in ferrimag-
netic materials, there have been a number of studies of ultrafast  
magnetic switching based on increasing the temperature of a ferri-
magnetic material over its magnetic compensation point with the 
help of a short laser pulse6–8. These studies demonstrated a strongly 
increased magnetic susceptibility followed by thermally assisted 
magnetization reversal in an external magnetic field. Such an 
increased susceptibility could not be defined in terms of equilib-
rium thermodynamics. Very recently, it has been discovered that 
such a thermal-energy increase of a ferrimagnet over the compen-
sation point brings the system into a strongly non-equilibrium, 
transient ferromagnetic-like state9. This raises the question of what 
is the actual magnetic susceptibility of this novel non-equilibrium 
state and what is the minimum external magnetic field required to 
trigger magnetization reversal? Aiming to answer these questions, 
we arrived at the counterintuitive and very intriguing conclusion 
that magnetization reversal could be achieved without any mag-
netic field, using an ultrafast thermal energy load alone. Intuitively, 
this conclusion seems to be contradicting since it is not clear how a 
thermal-energy increase, that is not a vector quantity, can result in 
a deterministic reversal of a vector. Nevertheless, if a novel mecha-
nism of magnetic recording by ultrafast thermal energy load alone 
were possible, it would open up the possibility to combine Tb/inch2, 
densities with THz writing rates, while using much less power 
because it would not require the application of a magnetic field.

To verify the feasibility of such a hypothetical magnetization 
reversal scenario, we performed atomistic scale modelling of laser-
induced spin dynamics in a Heisenberg Gd–Fe ferrimagnet. The 
numerical results support the above conjecture. Specifically, it is 
demonstrated that magnetization can be reversed after the applica-
tion of femtosecond laser pulses that increase the temperature of 
the thermal bath very rapidly in the absence of an applied field. The 
rapid transfer of thermal energy into the spin system leads to switch-
ing of the magnetization within a few picoseconds. Importantly for 
technological applications, we show, numerically and experimen-
tally, that this type of switching can occur when starting at room 
temperature. The simulations show that such a switching process 
proceeds with such impetus that even an opposing 40 T field is not 
able to prevent the magnetization from reversing on a short times-
cale. This switching mechanism has been experimentally verified 

in isolated in-plane and out-of-plane microstructures of GdFeCo 
under the action of a sequence of linearly polarized laser pulses.  
A further set of experiments showing the importance of the heat 
generation is presented, whereby we show, using circularly polar-
ized laser pulses that this switching occurs independently of polari-
zation and initial state in thin films of GdFeCo.

Results
Atomistic modelling of sub-picosecond switching without a field. 
In the atomistic model, we incorporate the rapid change in thermal 
energy of a system under the influence of a femtosecond laser pulse, 
and include the antiferromagnetic exchange interaction between 
the two magnetic sublattices. The atomistic spins are coupled to 
the temperature of the electron thermal bath10–11, the temporal 
evolution of which is calculated using the two temperature model12. 
The electronic thermal bath is coupled to that of the phonons, 
whereby thermal energy is removed from the electronic system 
on the picosecond timescale. The phonon thermal bath is also 
coupled to an external bath of constant temperature at 300 K that is 
above the compensation point of the simulated alloy. This thermal 
bath equilibrates the temperature back to its starting value on the 
nanosecond timescale. The action of a femtosecond laser pulse in the 
simulation results in a rapid change in the electronic temperature, to 
which we couple the spin system. Figure 1a shows how the electronic 
temperature varies with time during the action of 5 successive Gaussian 
thermal pulses with a temporal width of 50 fs each. We have simulated 
the collective response of the spins in the ferrimagnet Gd–Fe to an 
ultrafast linearly-polarized pulse. Figure 1b shows the z component 
of the magnetization for the individual Fe and Gd sublattices. Figure 
1c shows the z component of the net magnetization. The results 
clearly show that the magnetic order parameter of the ferrimagnet is 
switched every time a pulse is applied to the system without the need 
for the application of a magnetic field.
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Figure 1 | Computed ultrafast thermally induced switching dynamics. 
(a) Evolution of the temperature of the electronic thermal bath during a 
sequence of 5 Gaussian pulses. (b) Computed time-resolved dynamics 
of the z-component of the magnetizations of Fe and Gd sublattices; Gd is 
represented by the solid red line and the Fe by the dashed blue line. The 
net magnetization is shown in (c). A spike in the temporal behaviour of the 
total magnetization during the excitation is due to different dynamics of the 
magnetizations of the Fe and Gd sublattices as reported in (ref. 9).

T. Ostler et al, Nat. Commun. 3, 666 (2012)



Experimental confirmation of heat-induced switching

T. Ostler et al, Nat. Commun. 3, 666 (2012)



Difference in scale for magnetisation dynamics

What about the role of inhomogeneity in the sample?

12 

sample region as measured with STEM-EDX. Darker colored areas indicate elemental 
enrichment. White denotes below average concentrations. The maps show the anti-correlation of 
Gd-rich and Fe-rich regions and both Gd and Fe display chemically enriched areas with a 
frequency of ~ 10nm. (c) Illustration of measured I±(q) = Cq

2 + Sq
2 ± 2CqSq data and the 

separation of Cq and Sq for the Gd 4f system. The top panel shows the angle-integration of the 
recorded intensity patterns for parallel and antiparallel orientations of the sample magnetization 
and beam propagation direction as I+(q) and I-(q). The charge scattering, Cq

 2, related to the sum 
of I±(q) (see methods) is shown in the middle panel, and shows an intensity distribution at a q 
value (~0.6nm-1) in line with the chemical enrichment periodicity (~10nm) observed in (b). We 
also show the Cq

 2 off-resonance data as a dotted line for comparison. Sq, the Fourier component 
of the spin distribution in the sample, related to the difference of I±(q) (see methods) is shown in 
the bottom panel. The intensity distribution of Sq at q ~0.6nm-1 indicates the coexistence of spin 
variation with the chemically enriched regions shown in (b). 

 

 

 

Graves et al, Nature Materials (2013)



Different dynamics based on Gd and Fe concentrations

  

Laser-pulse-power: 10.18 mJ/(cm^2)
                    About  1.10e-21 J/atom Total

Concentration
 resolved

Atomistic inhomogeneous model based on the structure in the experiments

system size: 200*200*10 nm^3

The distribution map of xy-layer shows the variation of the composition

The colour bar presents the composition of Gd from 15% to 35%, with a total average of 

25%.

 

    Model

E. Iococca et al, arXiv:1809.02076



Large scale simulation 1 µm x 1 µm x 10 nm

E. Iococca et al, arXiv:1809.02076



Summary

• Introduced the basic background of 
Landau-Lifshitz-Bloch micromagnetics


• Presented simulations of the static and 
dynamic properties of more complex 
magnets


• Thermodynamics is a significant and 
important contribution to ultrafast 
magnetic processes
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