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Overview

e Micromagnetics
* Formulation and approximations
* Energetic terms and magnetostatics

* Magnetisation dynamics

e Atomistic spin models
* Foundations and approximations
e Monte Carlo methods

e Spin Dynamics

e [ andau-Lifshitz-Bloch micromagnetics (tomorrow)



Micromagnetics
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Why do we need magnetic simulations?
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Why do we need magnetic simulations?
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Why do we need magnetic simulations?

Most magnetic problems are not solvable analytically

e Complex shapes (cube or finite geometric shapes)

e Complex structures (polygranular materials, multilayers, devices)
 Magnetization dynamics

 Thermal effects

e Metastable phases (Skyrmions)



Analytical micromagnetics

 An analytical branch of
micromagnetics, treating magnetism
on a small (micrometre) length scale

* Mathematically messy but elegant

* When we talk about micromagnetics,
we usually mean numerical
micromagnetics




Numerical micromagnetics

Treat magnetisation as a continuum approximation

Average over the local atomic moments to give an average moment
density (magnetization) that is assumed to be continuous

Then consider a small volume of space (1 nm)3 - (10 nm)3 where the
magnetization (and all atomic moments) are assumed to point along the
same direction



The micromagnetic cell

* This gives the fundamental unit of micromagnetics: the micromagnetic cell

e The magnetisation is resolved to a single point magnetic moment
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e Generally a good approximation for simple magnets (local moment
variations are weak) at low temperatures (T < T</2)



Micromagnetic problems

e A typical problem is then divided (discretised) into multiple micromagnetic
cells
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e (Can now generally treat any micromagnetic problem by solving system of
equations describing magnetic interactions



Micromagnetic energy terms

Micromagnetics considers fundamental magnetic interactions
 Magnetostatic interactions (zero current)

 EXxchange energy

* Anisotropy energy

e Zeeman energy

Total energy is a summation over all micromagnetic cells

Etot — Edemag T Eexchange T Eanisotropy T EZeeman

Taking the derivative with respect to the local cell moment m, we can
express this as a local magnetic field acting on the local moment
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Magnetostatics

As each micromagnetic cell is a source of magnetic field, each one interacts
with every other micromagnetic cell in the simulation via magnetic stray fields

This is expressed as an integral over the volume magnetization of all other cells
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In implementation terms this is done by considering surface charges on cells
and calculating the integral over the surface of the cell.

The magnetostatic calculation is expensive since it scales with the square of
the number of cells (O ~ N2)

Typically this is solved using a Fast Fourier Transform, which scales with O ~ N
log N



Fourier Transforms for interactions
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Given a regular cubic grid and some interaction that is translationally invariant
the interactions can be calculated in Fourier space (useful for crystals)

F(x) = m(X) f(x) — DFT [F(x)] = DFT [m(x)] DFT [f (x)]



Fast Fourier Transform

DFT still an O(n2) operation - not particularly helpful!
But Fast Fourier Transform (FFT) has O(n log n) scaling
Can reformulate the DFT as

Fln) = 3" fIW3:

where Wi¥is a periodic function that repeats for
different combinations of » and k.

- Taking advantage of this symmetry through a Decimation in
time method vastly reduces the number of operations that

need to be performed (O(nlogz2 n)) (Cooley-Tukey
algorithm and others)

http.//jakevdp.github.io/blog/2013/08/28/understanding-the-fft/



Exchange interactions

 (Continuum formulation of the Heisenberg exchange: neighbouring cells
tend to prefer parallel alignment
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o [Effective exchange energy between cells from average of atomic
exchange interactions Jj over interaction length a (atomic spacing)

z ] Jlj

A =
2a
* Micromagnetic exchange field given by Laplacian
2A
H Vim
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Magnetic anisotropy

* Preference for atomic magnetic )|
moments to align with particular o
crystallographic directions
(magnetocrystalline anisotropy)

e Purely quantum mechanical effect
from spin-orbit coupling

 Gives a preference for magnetization
to lie along particular spatial
directions
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Applied magnetic field

Coupling of the magnetic
moment to external magnetic
field t 1

Simple addition to the
effective field +Ha

Ha
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Finite element micromagnetics

The cubic discretisation described previously is
known as finite difference micromagnetics, due to
the derivative of the energy over a finite length

An alternative formulation is finite element
micromagnetics

Space is discretised into tetrahedra - much better
approximation for curved geometries and complex nmag
shapes

Much more complicated to implement and set up
numerically

Dipole fields typically calculated with Boundary
Element/Finite element (BE/FE) method

Josef Fidler and Thomas Schrefl 2000 J. Phys. D: Appl. Phys. 33 R135



Micromagnetic simulations

* Problem is defined in terms of set of interacting cells
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 Have defined a local field acting on each cell

 Final step is to actually evolve the magnetic configuration



Energy minimisation : conjugate gradient method

Consider a uniformly magnetised cube

Corners are a relatively high energy, as the
magnetization is not perpendicular to the surface

The magnetization would prefer to form a “flower” m
state to lower the total energy - this costs some
exchange energy but gains a larger amount of
magnetostatic energy.

Conjugate gradient method considers the gradient

of energy on each cell, and calculates the steepest

trajectory. It then changes the magnetization E

direction along the steepest decent direction to

reduce the energy in an iterative fashion /

After a number of steps the solution is converged
(no further changes will reduce the energy), net
torque

mXHeﬁ‘=O



Magnetisation dynamics

Not all problems are limited to the ground-state magnetic configuration

Many dynamic problems

* Magnetic recording and sensing
 Fast reversal dynamics

* Microwave oscillators

e Domain wall/Skyrmion dynamics

Need an equation of motion to describe time evolution of the
magnetization of each cell



Landau Lifshitz Gilbert equation

Phenomenological equation of motion
describing uniform magnetization dynamics

oM(r,t) g
xy

Heff

Consists of two terms - precession and

relaxation — [Mx[MxHe]]
gﬂﬁj - —— 1?;]%

Some quantum mechanical origins: Larmor Ny -

precession

Relaxation term is much more complex and
hides a multitude of complex physical
phenomena (dissipation of angular
momentum)



Numerical solution of the LLG equation

Considering a small step in time, need
to consider the evolution of the spin in
the effective field

A range of numerical integration
schemes available (Euler, Heun,
Runge-Kutta, semi-implicit)

Time evolution is complex as the fields
changes as spins move

Higher order schemes typically best
compromise of accuracy/speed as
take into account intermediate
changes of the local fields and
moments

Heff
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Stochastic LLG equation

As written, the LLG equation is
strictly for zero temperature
simulations

Effective temperature dependent
magnetic properties can be
included, eg Ms(T), A(T), K(T)

Small cell size however means that
there are thermal fluctuations of the
magnetization at the nanoscale

Include a random ‘thermal’ field
using a Langevin Dynamics
formalism to simulate the effect of
thermal fluctuations
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Typical simulations |

Micromagnetic standard problems
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Typical simulations Il

e Domain wall dynamics




Codes for micromagnetics

OOMMEF - Object Oriented
MicroMagnetic Framework - classic
code with GUI

MuMAX - modern GPU code, much
faster than OOMMEF (~100x)

MAGPAR - old finite element code,
good but takes a week to find all the
libraries to compile it

nmag - finite difference/finite
element code, development moved
to a new code fidimag

Several others available, some
commercial

g




Atomistic spin models




Often we need to consider problems where
continuum micromagnetics is a poor approximation

Multi-sublattice ferro, ferri and antiferromagnets
Realistic particles with surface effects
Elevated temperatures near Tc
Magnetic interfaces

Crystal defects and disorder




Example: Nd2Fe14B permanent magnets

Micromagnetics Atomistic



The atomistic model treats each atom as
possessing a localized magnetic ‘spin’

5

S| = ug



The ‘spin’ Hamiltonian

H = Hexc =+ Hani =+ %app

Exchange Anisotropy Applied Field



Foundation of the atomistic model is
Heisenberg exchange

S, S

Hexe = — Z JiiSi*S;

1< ]

Natural discrete limit of magnetization



Exchange interaction determines
type of magnetic ordering

tttt 1ty
tttt it

Ferromagnet Anti-ferromagnet



Exchange energy defines the Curie / Néel
temperature of the material

. 3kpT,

€<

Mean field approximation with correction factor for spin waves

D. A. Garanin, Physical Review B 53, 11593 (1996)



Exchange tensor

e (Can express the exchange interaction as a tensor, where the exchange
energy Is orientation dependent

_ _ J

L Jxx va Jxz S?
Hgf(C:_Z[s;S;S;] Jyx Iy Dy || S
i<j R Szj

* Encapsulates isotropic exchange, mediated 2-ion anisotropy and
Dzyaloshinskii-Moriya interaction into a compact form



Magnetic anisotropy energy

Uniaxial

Cubic
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Externally applied fields




Integration methods




Ising model

Beitrag zur Theorie des Ferromagnetismus ).

Von Ernst Ising in Hamburg.
(Eingegangen am 9. Dezember 1924.)

Es wird im wesentlichen das thermische Verhalten eines linearen, aus Elementar-
magneten bestehenden Korpers untersucht, wobei im Gegensatz zur Weissschen
Theorie des Ferromagnetismus kein molekulares Feld, sondern pur eine (nicht
magnetische) Wechselwirkung benachbarter Elementarmagnete angenommen ird.
Es wird gezeigt, dafl ein solches Modell noch keine ferromagnetischen Eigenschaften
hesitzt und diese Aussage auch auf das dreidimensionale Modell ausgedehnt,

1. Annahmen Die Erklirung, die P. Weiss? fiir den Ferro-
magnetismus gegeben hat, ist zwar formal befriedigend, doch lalit sie
besonders die Frage nach einer physikalischen Erklirung der Hypothese
des molekularen Feldes offen. Nach dieser Theorie wirkt auf jeden

Simplest model of spin-1/2 ferromagnet phase transition

“Toy model”



Ising model

Two allowable states, up, down T l

Energy barrier between states
Hexe = — Z JijSi*S;

defined by exchange energy vy



Monte Carlo algorithm

1. Pick a new trial state (or
move)

2. Evaluate energy before (E1)
and after (E2) spin flip

3. Evaluate energy difference
between states

4. Accept move with probabillity

3

AE = (E> - E))

exp(-AE/ksT)



Extension to 3D Heisenberg
model straightforward

\

Use a combination of different trial moves



Temperature dependent
magnetization for different particle sizes

e (Calculate m(T) curves for

: : : 1.0 ~ 1nm —e— 4nm
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Spin dynamics

—_—
f——
-

S,-xB,-{
&Si Vi

— ) i X Bi +A;S; i X B;
5 15 22) S; X AiSi < (S; x B;)]



Stochastic Landau-Lifshitz-Gilbert equation

AikpT

G = (G (08 (0) = 288 —1) =

|
S

(Gi'(2))



Magnetostatics in atomistic spin models

Magnetostatics a weak effect at short distances, particularly at the atomic
scale

We therefore use a micromagnetic approach to the demagnetizing field:
macrocell approximation

Local moments are summed into a cell and the continuum approximation
applied

Interaction between cells encapsulated in a dipole tensor, built from
atomistic dipole-dipole interactions, dipole field at large ranges



Typical simulations: hysteresis simulations
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Typical simulations: ultrafast spin dynamics
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R F L Evans et al, Appl. Phys. Lett. (2014)



VAMPIRE

vampire.york.ac.uk

Review article
R F L Evans et al, J. Phys.: Condens. Matter 26 (2014) 103202



Imulations

IC Simu

Other codes for atomist

UppASD - good for linking to first
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Summary

 (Covered the essential elements of micromagnetic simulations and their
formulation

* Introduced atomistic spin models, their fundamentals



