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Overview

• Micromagnetics


• Formulation and approximations


• Energetic terms and magnetostatics


• Magnetisation dynamics


• Atomistic spin models


• Foundations and approximations


• Monte Carlo methods


• Spin Dynamics


• Landau-Lifshitz-Bloch micromagnetics (tomorrow)



Micromagnetics

source: mumax



Why do we need magnetic simulations?
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Why do we need magnetic simulations?
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Why do we need magnetic simulations?

• Most magnetic problems are not solvable analytically


• Complex shapes (cube or finite geometric shapes)


• Complex structures (polygranular materials, multilayers, devices)


• Magnetization dynamics


• Thermal effects


• Metastable phases (Skyrmions)



Analytical micromagnetics

• An analytical branch of 
micromagnetics, treating magnetism 
on a small (micrometre) length scale 


• Mathematically messy but elegant 


• When we talk about micromagnetics, 
we usually mean numerical 
micromagnetics



Numerical micromagnetics

• Treat magnetisation as a continuum approximation 

• Average over the local atomic moments to give an average moment 
density (magnetization) that is assumed to be continuous


• Then consider a small volume of space (1 nm)3 - (10 nm)3 where the 
magnetization (and all atomic moments) are assumed to point along the 
same direction

<M>



• This gives the fundamental unit of micromagnetics: the micromagnetic cell


• The magnetisation is resolved to a single point magnetic moment 

• Generally a good approximation for simple magnets (local moment 
variations are weak) at low temperatures (T < Tc/2)

The micromagnetic cell

Cell size a



• A typical problem is then divided (discretised) into multiple micromagnetic 
cells


• Can now generally treat any micromagnetic problem by solving system of 
equations describing magnetic interactions 

Micromagnetic problems



• Micromagnetics considers fundamental magnetic interactions


• Magnetostatic interactions (zero current)


• Exchange energy


• Anisotropy energy


• Zeeman energy


• Total energy is a summation over all micromagnetic cells


• Taking the derivative with respect to the local cell moment m, we can 
express this as a local magnetic field acting on the local moment

Micromagnetic energy terms

Etot = Edemag + Eexchange + Eanisotropy + EZeeman

where  is the fourth-order elasticity tensor. Here the elastic response is assumed to be isotropic
(based on the two Lamé constants λ and µ). Taking into account the constant length of m, we obtain the invariant-
based representation

This energy term contributes to magnetostriction.

The purpose of dynamic micromagnetics is to predict the time evolution of the magnetic configuration of a sample
subject to some non-steady conditions such as the application of a field pulse or an AC field. This is done by solving
the Landau-Lifshitz-Gilbert equation, which is a partial differential equation describing the evolution of the
magnetization in term of the local effective field acting on it.

The effective field is the local field felt by the magnetization. It can be described informally as the derivative of the
magnetic energy density with respect to the orientation of the magnetization, as in:

where dE/dV is the energy density. In variational terms, a change dm of the magnetization and the associated change
dE of the magnetic energy are related by:

It should be noted that, since m is a unit vector, dm is always perpendicular to m. Then the above definition leaves
unspecified the component of Heff that is parallel to m. This is usually not a problem, as this component has no effect
on the magnetization dynamics.

From the expression of the different contributions to the magnetic energy, the effective field can be found to be:

This is the equation of motion of the magnetization. It describes a Larmor precession of the magnetization around the
effective field, with an additional damping term arising from the coupling of the magnetic system to the environment.
The equation can be written in the so-called Gilbert form (or implicit form) as:

where γ is the electron gyromagnetic ratio and α the Gilbert damping constant.

Dynamic micromagnetics

Effective field

Landau-Lifshitz-Gilbert equation



• As each micromagnetic cell is a source of magnetic field, each one interacts 
with every other micromagnetic cell in the simulation via magnetic stray fields


• This is expressed as an integral over the volume magnetization of all other cells


• In implementation terms this is done by considering surface charges on cells 
and calculating the integral over the surface of the cell.


• The magnetostatic calculation is expensive since it scales with the square of 
the number of cells (O ~ N2)


• Typically this is solved using a Fast Fourier Transform, which scales with O ~ N 
log N

Magnetostatics

The Zeeman energy favors alignment of the magnetization parallel to the applied field.

The demagnetizing field is the magnetic field created by the magnetic sample upon
itself. The associated energy is:

where Hd is the demagnetizing field. This field depends on the magnetic
configuration itself, and it can be found by solving:

where −∇·M is sometimes called magnetic charge density. The solution of these
equations (c.f. magnetostatics) is:

where r is the vector going from the current integration point to the point where
Hd is being calculated.

It is worth noting that the magnetic charge density can be infinite at the edges of the sample, due to M changing
discontinuously from a finite value inside to zero outside of the sample. This is usually dealt with by using suitable
boundary conditions on the edge of the sample.

The energy of the demagnetizing field favors magnetic configurations that minimize magnetic charges. In particular,
on the edges of the sample, the magnetization tends to run parallel to the surface. In most cases it is not possible to
minimize this energy term at the same time as the others. The static equilibrium then is a compromise that minimizes
the total magnetic energy, although it may not minimize individually any particular term.

The magnetoelastic energy describes the energy storage due to elastic lattice distortions. It may be neglected if
magnetoelastic coupled effects are neglected. There exists a preferred local distortion of the crystalline solid
associated with the magnetization director m, . For a simple model, one can assume this strain to be isochoric and
fully isotropic in the lateral direction, yielding the deviatoric ansatz

where the material parameter E > 0 is the magnetostrictive constant. Clearly, E is the strain induced by the
magnetization in the direction m. With this ansatz at hand, we consider the elastic energy density to be a function of
the elastic, stress-producing strains . A quadratic form for the magnetoelastic energy is

Energy of the demagnetizing field

Example of micromagnetic
configuration. Compared to
a uniform state, the flux
closure structure lowers the
energy of the demagnetizing
field, at the expense of
some exchange energy.

Magnetoelastic Energy



Fourier Transforms for interactions

• Given a regular cubic grid and some interaction that is translationally invariant 
the interactions can be calculated in Fourier space (useful for crystals)

F(x) = m(x) f(x) → DFT [F(x)] = DFT [m(x)] DFT [f (x)]



Fast Fourier Transform

• DFT still an O(n2) operation - not particularly helpful!
• But Fast Fourier Transform (FFT) has O(n log n) scaling
• Can reformulate the DFT as 

        where         is a periodic function that repeats for 
        different combinations of n and k.
• Taking advantage of this symmetry through a Decimation in 

time method vastly reduces the number of operations that 
need to be performed (O(n log2 n)) (Cooley-Tukey 
algorithm and others)

7.3 The Fast Fourier Transform
The time taken to evaluate a DFT on a digital computer depends principally on the
number of multiplications involved, since these are the slowest operations. With
the DFT, this number is directly related to (matrix multiplication of a vector),
where is the length of the transform. For most problems, is chosen to be
at least 256 in order to get a reasonable approximation for the spectrum of the
sequence under consideration – hence computational speed becomes a major con-
sideration.

Highly efficient computer algorithms for estimating Discrete Fourier Trans-
forms have been developed since the mid-60’s. These are known as Fast Fourier
Transform (FFT) algorithms and they rely on the fact that the standard DFT in-
volves a lot of redundant calculations:

Re-writing as

it is easy to realise that the same values of are calculated many times as the
computation proceeds. Firstly, the integer product repeats for different com-
binations of and ; secondly, is a periodic function with only distinct
values.

For example, consider (the FFT is simplest by far if is an integral power
of 2)

say

Then

From the above, it can be seen that:
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• Continuum formulation of the Heisenberg exchange: neighbouring cells 
tend to prefer parallel alignment


• Effective exchange energy between cells from average of atomic 
exchange interactions Jij over interaction length a (atomic spacing)


• Micromagnetic exchange field given by Laplacian

Exchange interactions

other hand. MUMAX combines both with the huge computational
power of GPU hardware.

2.1. Effective field terms

In the present version of MUMAX, the effective field can have
five different contributions: the magnetostatic field, the exchange
field, the applied field, the anisotropy field and the thermal field.
In what follows we present these terms and comment on their
optimized implementation.

2.1.1. Magnetostatic field
The magnetostatic field Hms accounts for the long-range

interaction throughout the complete sample

HmsðrÞ ¼ $
1

4p

Z

V
rr 1
jr$ r0j

%Mðr0Þ dr0: ð2Þ

Since the magnetostatic field in one FD cell depends on the
magnetization in all other FD cells, the calculation of Hms is the most
time-consuming part of a micromagnetic simulation. The chosen
method for this calculation is thus decisive for the performance of the
simulator. Therefore, we opted for a fast Fourier transform (FFT)
based method. In this case, the convolution structure of (2) is
exploited. By applying the convolution theorem, the convolution is
accelerated by first Fourier transforming the magnetization, then
multiplying this result with the Fourier-transform of the convolution
kernel and finally inverse transforming this product to obtain the
magnetostatic field. The overall complexity of this method is
OðNlogNÞ, as it is dominated by the FFTs.

Methods with even lower complexity exist as well. The fast
multipole method, e.g., only has complexity OðNÞ, but with such a
large pre-factor that in most cases the FFT method remains much
faster [7].

A consequence of the FFT method is that the magnetic
moments must lie on a regular grid. This means that a finite
difference (FD) spatial discretization has to be used: space is
divided into equal cuboid cells. This method is thus most suited
for rectangular geometries. Other shapes have to be approxi-
mated in a staircase-like fashion. However, thanks to the speedup
offered by MUMAX’s, smaller cells may be used to improve this
without excessive performance penalties.

The possibility of adding periodic boundary conditions in one
or more directions is also included in the software. This is done by
adding a sufficiently large number of periodic images to the
convolution kernel. The application of periodic boundary condi-
tions has a positive influence on the computational time since the
magnetization data does not need to be zero padded in the
periodic directions, which roughly halves the time spend on FFTs
for every periodic direction.

2.1.2. Exchange field
The exchange interaction contributes to the effective field in

the form of a Laplacian of the magnetization:

Hexch ¼
2A
m0Ms
r2m, ð3Þ

with A the exchange stiffness. In discretized form, this can be
expressed as a linear combination of the magnetization of a cell
and a number of its neighbors. MUMAX uses a six-neighbor
scheme, similar to [8]. In the case of 2D simulations (only one
FD cell in the z-direction), this method automatically reduces to a
four-neighbor scheme.

The exchange field calculation is included in the magnetostatic
field routines by simply adding the kernel describing the
exchange interaction to the magnetostatic kernel. In this way,
the exchange calculation is essentially free, as only one joint

convolution product is needed to simultaneously evaluate both
the magnetostatic and exchange fields. Moreover, by introducing
the exchange contribution in the magnetostatic field kernel
periodic boundary conditions are directly accounted for if
applicable.

2.1.3. Other effective field terms
Next to the above mentioned interaction terms and the

applied field contribution, MUMAX provides the ability to include
magnetocrystalline anisotropy. Currently, uniaxial and cubic
anisotropies are available. The considered anisotropy energies are

fani ¼ Kusin2y ð4Þ

and

faniðrÞ ¼ K1½a2
1ðrÞa2

2ðrÞ þ a2
2ðrÞa2

3ðrÞ þ a2
1ðrÞa2

3ðrÞ(
þ K2½a2

1ðrÞa2
2ðrÞa2

3ðrÞ( ð5Þ

for uniaxial and cubical anisotropies respectively. Here, Ku and
ðK1,K2Þ are the uniaxial and cubical anisotropies constants, y is the
angle between the local magnetization and uniaxial anisotropy
axis and ai (i¼1,2,3) are the direction cosines between the local
magnetization and the cubic easy magnetization axes.

Furthermore, thermal effects are included by means of a
fluctuating thermal field:

Hth ¼ gðr,tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2akBT

gm0MsVdt

s

ð6Þ

which is added to the effective field Heff according to [9]. In (6), kB

is the Boltzmann constant, V is the volume of a FD cell, dt is the
used time step and gðr,tÞ is a stochastic vector whose components
are Gaussian random numbers, uncorrelated in space and time
with zero mean value and dispersion 1.

2.1.4. Spin-transfer torque
The spin-transfer torque interaction describes the influence of

electrical currents on the local magnetization. Possible applica-
tions are spin-transfer torque random-access memory [10] and
racetrack memory [11]. MUMAX incorporates the spin-transfer
torque description developed by Berger [12], refined by Zhang
and Li [13]

@M
@t
¼ $

g
1 þ a2

M)Heff $
ag

Msð1 þ a2Þ
M) ðM)Heff Þ

$
bj

M2
s ð1 þ a2Þ

M) ðM) ðj %rÞMÞ

$
bj

Msð1 þ a2Þ
ðx$ aÞM) ðj %rÞM: ð7Þ

Here, x is the degree of non-adiabicity and bj is the coupling
constant between the current density j and the magnetization:

bj ¼
PmB

eMsð1 þ x2Þ
, ð8Þ

with P the polarization of the current density, mB the Bohr
magneton and e the electron charge.

2.2. Time integration schemes

MUMAX provides a range of Runge–Kutta (RK) methods to
integrate the Landau–Lifshitz equation. Currently the user can
select between the following options:

* RK1: Euler’s method
* RK2: Heun’s method
* RK12: Heun–Euler (adaptive step)
* RK3: Kutta’s method

A. Vansteenkiste, B. Van de Wiele / Journal of Magnetism and Magnetic Materials 323 (2011) 2585–25912586

A =
∑ij Jij

2a



• Preference for atomic magnetic 
moments to align with particular 
crystallographic directions 
(magnetocrystalline anisotropy)


• Purely quantum mechanical effect 
from spin-orbit coupling


• Gives a preference for magnetization 
to lie along particular spatial 
directions

Magnetic anisotropy

cubic

uniaxial

where  is the fourth-order elasticity tensor. Here the elastic response is assumed to be isotropic
(based on the two Lamé constants λ and µ). Taking into account the constant length of m, we obtain the invariant-
based representation

This energy term contributes to magnetostriction.

The purpose of dynamic micromagnetics is to predict the time evolution of the magnetic configuration of a sample
subject to some non-steady conditions such as the application of a field pulse or an AC field. This is done by solving
the Landau-Lifshitz-Gilbert equation, which is a partial differential equation describing the evolution of the
magnetization in term of the local effective field acting on it.

The effective field is the local field felt by the magnetization. It can be described informally as the derivative of the
magnetic energy density with respect to the orientation of the magnetization, as in:

where dE/dV is the energy density. In variational terms, a change dm of the magnetization and the associated change
dE of the magnetic energy are related by:

It should be noted that, since m is a unit vector, dm is always perpendicular to m. Then the above definition leaves
unspecified the component of Heff that is parallel to m. This is usually not a problem, as this component has no effect
on the magnetization dynamics.

From the expression of the different contributions to the magnetic energy, the effective field can be found to be:

This is the equation of motion of the magnetization. It describes a Larmor precession of the magnetization around the
effective field, with an additional damping term arising from the coupling of the magnetic system to the environment.
The equation can be written in the so-called Gilbert form (or implicit form) as:

where γ is the electron gyromagnetic ratio and α the Gilbert damping constant.

Dynamic micromagnetics

Effective field

Landau-Lifshitz-Gilbert equation

Hanis =



• Coupling of the magnetic 
moment to external magnetic 
field


• Simple addition to the 
effective field +Ha

Applied magnetic field

Ha



• The cubic discretisation described previously is 
known as finite difference micromagnetics, due to 
the derivative of the energy over a finite length


• An alternative formulation is finite element 
micromagnetics


• Space is discretised into tetrahedra - much better 
approximation for curved geometries and complex 
shapes


• Much more complicated to implement and set up 
numerically


• Dipole fields typically calculated with Boundary 
Element/Finite element (BE/FE) method

Finite element micromagnetics

nmag

Josef Fidler and Thomas Schrefl 2000 J. Phys. D: Appl. Phys. 33 R135



• Problem is defined in terms of set of interacting cells


• Have defined a local field acting on each cell


• Final step is to actually evolve the magnetic configuration

Micromagnetic simulations
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where γ is the electron gyromagnetic ratio and α the Gilbert damping constant.

Dynamic micromagnetics

Effective field

Landau-Lifshitz-Gilbert equation



• Consider a uniformly magnetised cube


• Corners are a relatively high energy, as the 
magnetization is not perpendicular to the surface


• The magnetization would prefer to form a “flower” 
state to lower the total energy - this costs some 
exchange energy but gains a larger amount of 
magnetostatic energy.


• Conjugate gradient method considers the gradient 
of energy on each cell, and calculates the steepest 
trajectory. It then changes the magnetization 
direction along the steepest decent direction to 
reduce the energy in an iterative fashion


• After a number of steps the solution is converged 
(no further changes will reduce the energy), net 
torque

Energy minimisation : conjugate gradient method

m × Heff = 0

m

E



• Not all problems are limited to the ground-state magnetic configuration


• Many dynamic problems


• Magnetic recording and sensing


• Fast reversal dynamics


• Microwave oscillators


• Domain wall/Skyrmion dynamics


• Need an equation of motion to describe time evolution of the 
magnetization of each cell

Magnetisation dynamics



Landau Lifshitz Gilbert equation
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a b s t r a c t

We present MUMAX, a general-purpose micromagnetic simulation tool running on graphical processing
units (GPUs). MUMAX is designed for high-performance computations and specifically targets large
simulations. In that case speedups of over a factor 100 ! can be obtained compared to the CPU-based
OOMMF program developed at NIST. MUMAX aims to be general and broadly applicable. It solves the
classical Landau–Lifshitz equation taking into account the magnetostatic, exchange and anisotropy
interactions, thermal effects and spin-transfer torque. Periodic boundary conditions can optionally be
imposed. A spatial discretization using finite differences in two or three dimensions can be employed.
MUMAX is publicly available as open-source software. It can thus be freely used and extended by
community. Due to its high computational performance, MUMAX should open up the possibility of
running extensive simulations that would be nearly inaccessible with typical CPU-based simulators.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Micromagnetic simulations are indispensable tools in the field
of magnetism research. Hence, micromagnetic simulators like,
e.g., OOMMF [1], magpar [2] and Nmag [3] are widely used.
These tools solve the Landau–Lifshitz equation on regular CPU
hardware. Due to the required fine spatial and temporal discre-
tizations, such simulations can be very time consuming. Limited
computational resources therefore often limit the full capabilities
of the otherwise successful micromagnetic approach.

There is currently a growing interest in running numerical
calculations on graphical processing units (GPUs) instead of CPUs.
Although originally intended for purely graphical purposes, GPUs
turn out to be well suited for high-performance, general-purpose
calculations. Even relatively cheap GPUs can perform an enor-
mous amount of calculations in parallel. E.g., the nVIDIA GTX580
GPU used for this work costs less than $500 and delivers
1.5 trillion floating-point operations (Flops) per second, about
two orders of magnitude more than a typical CPU.

However, in order to employ this huge numerical power
programs need to be written specifically for GPU hardware, using
the programming languages and tools provided by the GPU
manufacturer, and the code also needs to handle many hard-
ware-specific technicalities. Additionally, the used algorithms
need to be expressed in a highly parallel manner, which is not
always easily possible.

Other groups have already implemented micromagnetic simula-
tions on GPU hardware and report considerable speedups compared
to a CPU-only implementation [4,5]. At the time of writing, however,
none of these implementations is freely available. MUMAX, on the
other hand, is available as open-source software and can be readily
used by anyone. Its performance also compares favorably to these
other implementations.

2. Methods

Since the micromagnetic theory describes the magnetization
as a continuum field Mðr,tÞ, the considered magnetic sample is
discretized in cuboidal finite difference (FD) cells with a uniform
magnetization. The time evolution of the magnetization in each
cell is given by the Landau–Lifshitz equation:

@Mðr,tÞ
@t

¼ %
g

1 þ a2
Mðr,tÞ !Heff ðr,tÞ

%
ag

Msð1 þ a2Þ
Mðr,tÞ ! ðMðr,tÞ !Heff ðr,tÞÞ: ð1Þ

Here, Ms is the saturation magnetization, g the gyromagnetic ratio
and a the damping parameter. The continuum effective field Heff

has several contributions that depend on the magnetization,
the externally applied field and the material parameters of the
considered sample. When timestepping equation (1) the effective
field is evaluated several times per time step. Hence, the
efficiency of micromagnetic software depends on the efficient
evaluation of the different effective field terms at the one hand
and the application of efficient time stepping schemes on the
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• Phenomenological equation of motion 
describing uniform magnetization dynamics


• Consists of two terms - precession and 
relaxation


• Some quantum mechanical origins: Larmor 
precession


• Relaxation term is much more complex and 
hides a multitude of complex physical 
phenomena (dissipation of angular 
momentum)



• Considering a small step in time, need 
to consider the evolution of the spin in 
the effective field


• A range of numerical integration 
schemes available (Euler, Heun, 
Runge-Kutta, semi-implicit)


• Time evolution is complex as the fields 
changes as spins move


• Higher order schemes typically best 
compromise of accuracy/speed as 
take into account intermediate 
changes of the local fields and 
moments

Numerical solution of the LLG equation



• As written, the LLG equation is 
strictly for zero temperature 
simulations


• Effective temperature dependent 
magnetic properties can be 
included, eg Ms(T), A(T), K(T)


• Small cell size however means that 
there are thermal fluctuations of the 
magnetization at the nanoscale


• Include a random ‘thermal’ field 
using a Langevin Dynamics 
formalism to simulate the effect of 
thermal fluctuations

Stochastic LLG equation

other hand. MUMAX combines both with the huge computational
power of GPU hardware.

2.1. Effective field terms

In the present version of MUMAX, the effective field can have
five different contributions: the magnetostatic field, the exchange
field, the applied field, the anisotropy field and the thermal field.
In what follows we present these terms and comment on their
optimized implementation.

2.1.1. Magnetostatic field
The magnetostatic field Hms accounts for the long-range

interaction throughout the complete sample

HmsðrÞ ¼ $
1

4p

Z

V
rr 1
jr$ r0j

%Mðr0Þ dr0: ð2Þ

Since the magnetostatic field in one FD cell depends on the
magnetization in all other FD cells, the calculation of Hms is the most
time-consuming part of a micromagnetic simulation. The chosen
method for this calculation is thus decisive for the performance of the
simulator. Therefore, we opted for a fast Fourier transform (FFT)
based method. In this case, the convolution structure of (2) is
exploited. By applying the convolution theorem, the convolution is
accelerated by first Fourier transforming the magnetization, then
multiplying this result with the Fourier-transform of the convolution
kernel and finally inverse transforming this product to obtain the
magnetostatic field. The overall complexity of this method is
OðNlogNÞ, as it is dominated by the FFTs.

Methods with even lower complexity exist as well. The fast
multipole method, e.g., only has complexity OðNÞ, but with such a
large pre-factor that in most cases the FFT method remains much
faster [7].

A consequence of the FFT method is that the magnetic
moments must lie on a regular grid. This means that a finite
difference (FD) spatial discretization has to be used: space is
divided into equal cuboid cells. This method is thus most suited
for rectangular geometries. Other shapes have to be approxi-
mated in a staircase-like fashion. However, thanks to the speedup
offered by MUMAX’s, smaller cells may be used to improve this
without excessive performance penalties.

The possibility of adding periodic boundary conditions in one
or more directions is also included in the software. This is done by
adding a sufficiently large number of periodic images to the
convolution kernel. The application of periodic boundary condi-
tions has a positive influence on the computational time since the
magnetization data does not need to be zero padded in the
periodic directions, which roughly halves the time spend on FFTs
for every periodic direction.

2.1.2. Exchange field
The exchange interaction contributes to the effective field in

the form of a Laplacian of the magnetization:

Hexch ¼
2A
m0Ms
r2m, ð3Þ

with A the exchange stiffness. In discretized form, this can be
expressed as a linear combination of the magnetization of a cell
and a number of its neighbors. MUMAX uses a six-neighbor
scheme, similar to [8]. In the case of 2D simulations (only one
FD cell in the z-direction), this method automatically reduces to a
four-neighbor scheme.

The exchange field calculation is included in the magnetostatic
field routines by simply adding the kernel describing the
exchange interaction to the magnetostatic kernel. In this way,
the exchange calculation is essentially free, as only one joint

convolution product is needed to simultaneously evaluate both
the magnetostatic and exchange fields. Moreover, by introducing
the exchange contribution in the magnetostatic field kernel
periodic boundary conditions are directly accounted for if
applicable.

2.1.3. Other effective field terms
Next to the above mentioned interaction terms and the

applied field contribution, MUMAX provides the ability to include
magnetocrystalline anisotropy. Currently, uniaxial and cubic
anisotropies are available. The considered anisotropy energies are

fani ¼ Kusin2y ð4Þ

and

faniðrÞ ¼ K1½a2
1ðrÞa2

2ðrÞ þ a2
2ðrÞa2

3ðrÞ þ a2
1ðrÞa2

3ðrÞ(
þ K2½a2

1ðrÞa2
2ðrÞa2

3ðrÞ( ð5Þ

for uniaxial and cubical anisotropies respectively. Here, Ku and
ðK1,K2Þ are the uniaxial and cubical anisotropies constants, y is the
angle between the local magnetization and uniaxial anisotropy
axis and ai (i¼1,2,3) are the direction cosines between the local
magnetization and the cubic easy magnetization axes.

Furthermore, thermal effects are included by means of a
fluctuating thermal field:

Hth ¼ gðr,tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2akBT

gm0MsVdt

s

ð6Þ

which is added to the effective field Heff according to [9]. In (6), kB

is the Boltzmann constant, V is the volume of a FD cell, dt is the
used time step and gðr,tÞ is a stochastic vector whose components
are Gaussian random numbers, uncorrelated in space and time
with zero mean value and dispersion 1.

2.1.4. Spin-transfer torque
The spin-transfer torque interaction describes the influence of

electrical currents on the local magnetization. Possible applica-
tions are spin-transfer torque random-access memory [10] and
racetrack memory [11]. MUMAX incorporates the spin-transfer
torque description developed by Berger [12], refined by Zhang
and Li [13]

@M
@t
¼ $

g
1 þ a2

M)Heff $
ag

Msð1 þ a2Þ
M) ðM)Heff Þ

$
bj

M2
s ð1 þ a2Þ

M) ðM) ðj %rÞMÞ

$
bj

Msð1 þ a2Þ
ðx$ aÞM) ðj %rÞM: ð7Þ

Here, x is the degree of non-adiabicity and bj is the coupling
constant between the current density j and the magnetization:

bj ¼
PmB

eMsð1 þ x2Þ
, ð8Þ

with P the polarization of the current density, mB the Bohr
magneton and e the electron charge.

2.2. Time integration schemes

MUMAX provides a range of Runge–Kutta (RK) methods to
integrate the Landau–Lifshitz equation. Currently the user can
select between the following options:

* RK1: Euler’s method
* RK2: Heun’s method
* RK12: Heun–Euler (adaptive step)
* RK3: Kutta’s method

A. Vansteenkiste, B. Van de Wiele / Journal of Magnetism and Magnetic Materials 323 (2011) 2585–25912586
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Nd Fe B

FIG. 1. Visualization of the Nd2Fe14B unit cell. The unit cell con-
tains 68 atoms (8 Nd, 56 Fe and 4 B) with dimensions 8.8⇥ 8.8⇥
12.2 Å. (Color Online).

Bilbao crystal server13–15.
For both the Fe and Nd atoms, the magnetic moments in

the crystal vary slightly depending on the atomic site.12 How-
ever, the variations are small and so for simplicity we assume
uniform magnetic moments for Fe and Nd sites of 2.2 µB and
3.2 µB at 0 K respectively, giving a total magnetization per
formula unit of 37.2 µB.

III. ATOMISTIC SPIN MODEL

Given the crystal structure of the Nd2Fe14B crystal, we now
formulate a Heisenberg spin Hamiltonian H which describes
the energetics of the system describing energy contributions16

for the Nd and Fe sublattices:

H = HNd +HFe (1)
HNd =�Â

i,d
JNdFeSi ·Sd

�Â
i

Ek,Nd
i �µNd Â

i
Happ ·Si (2)

HFe =�Â
n ,d

JFe(r)Sn ·Sd �Â
n , j

JNdFeSn ·S j

�Â
n

Ek,Fe
n �µFe Â

n
Happ ·Sn (3)

where S are unit vectors describing the direction of the mag-
netic moments at each atomic site, i, j label Nd sites with mo-

ment µNd, n ,d label Fe sites with moment µFe and Happ is the
externally applied magnetic field vector. JNdFe is the Fe-Nd
nearest neighbor exchange energy and JFe(r) is the Fe-Fe ex-
change between Fe sites separated by interatomic distance r.
Ek,Nd

i and Ek,Fe
n describe the local anisotropy on the Nd and Fe

sites respectively, but due to the complexity of these functions
their details are presented later. Full details of the final model
parameters are detailed in Tab. I. The calculations have been
carried out using the VAMPIRE software package16,17. The
equilibrium temperature dependent properties of the system
are calculated using a Monte Carlo metropolis algorithm16 us-
ing the Hinzke-Nowak combinational algorithm18. The simu-
lated system consists of 10⇥10⇥7 unit cells (approximately
8 nm3) with periodic boundary conditions applied to eliminate
surface effects.

The equilibrium properties of the system are obtained by
performing 10,000 Monte Carlo steps at each temperature be-
fore calculating average magnetic properties over a further
20,000 steps. When calculating temperature dependent prop-
erties the final spin configuration from the previous temper-
ature calculation is used to reduce the number of time steps
required to reach thermal equilibrium at the new temperature.

IV. EXCHANGE INTERACTIONS

The exchange interactions in rare-earth transition-metal in-
termetallic compounds are primarily responsible of the mag-
netic ordering of the system, being 2-3 orders of magnitude
larger than the magnetocrystalline anisotropy. Given the large
Fe content of R2Fe14B alloys, one would expect a compar-
atively high Curie point, but in reality Curie temperatures
are much reduced compared to bulk Fe. Givord et al19 sug-
gested that this may be due to a sign change in the near-
est neighbor Fe-Fe exchange interaction, although recent ab-
initio calculations20 have suggested that reduced density is
primarily responsible for the reduction in the exchange in-
teractions due to less overlap of the atomic orbitals. With-
out more detailed ab-initio information about the exchange
interactions in Nd2Fe14B it is difficult to make definitive state-
ments about the exchange interactions between atomic sites.
In general it is known that exchange interactions are relatively
long ranged and depend strongly on interatomic separation.
Given that the Fe is the dominant atomic species in Nd2Fe14B,
it is expected that the magnetization is dominated by the Fe
sublattice.

Fe exchange interactions

Typically the first approach in parameterizing the classical
spin models is to calculate an effective pairwise nearest neigh-
bor exchange interaction, derived from the Curie temperature
of the system using a molecular field approximation16. For
Nd2Fe14B this approach is complicated by the complex crys-
tal structure which makes a global nearest neighbor distance a
poorly defined quantity, leading to different numbers of inter-
actions for different atomic sites within the same interatomic
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II. THE ATOMISTIC SPIN MODEL

Magnetism on the atomic scale presents two natural
limits: the discrete limit of continuum micromagnetics
and the classical limit for the quantum mechanical elec-
tron spin. The essential model of atomic scale magnetism
was devised by Heisenberg in 192824 for molecular hy-
drogen. The so-named Heisenberg model describes the
atomic scale exchange interaction with a local moment
theory, considering the interaction between two electron
spins on neighbouring atomic sites. By applying the
Heitler-London approximation25 for the linear combina-
tion of electron orbitals, Heisenberg developed a model
which describes the energy of neighbouring atoms with
spin, given by:

< H >= �JijS̃i · S̃j (1)

where S̃i and S̃j are the quantum mechanical spins on
atomic sites i and j respectively, and Jij is the interaction
energy arising from the probability of the two electrons
exchanging atomic sites. The quantum mechanical na-
ture of the electron spins leads to quantization of the elec-
tron energy, which for a single spin was demonstrated by
the Stern-Gerlach experiment26. In the above case, how-
ever, the quantum e↵ects are far more complex due to the
coupling of the electronic spin moments. In the limit of
infinite spin angular momentum, the quantisation e↵ects
vanish, and the spin moments have continuous degrees of
freedom. Such spins are said to be classical, leading to
the classical Heisenberg spin model. It should be pointed
out that there is a fundamental assumption within the
Heisenberg model, namely that the electrons are closely
bound to the atomic sites. In general this is not the case
for most magnetic materials, since the magnetic interac-
tions usually arise from unpaired outer electrons, which
in metals are loosely bound. The band theory of fer-
romagnetism proposed by Stoner27 successfully explains
why the usual magnetic atoms possess non-integer spin
moments by describing the exchange splitting of the spin-
up and spin-down energy bands. However, the band the-
ory reveals little about the fundamental magnetic prop-
erties due to its complexity, and so an assumption that
on some, very short, timescale the local moment approx-
imation is valid is not unreasonable, provided that it
is acknowledged that in fact electrons are not confined
to the atomic sites over longer timescales. Collectively
this leads to an e↵ective Heisenberg classical spin model,
where the spins have some non-integer, time-averaged,
value of the spin moment which is assumed constant.
Discussion, Hubbard model

A. The Classical Spin Hamiltonian

The Heisenberg spin model incorporates all the pos-
sible magnetic interactions into a single convenient for-

malism which can be used to investigate a myriad of
magnetic phenomena at the natural atomic scale. The
principal component of the model is the formation of the
spin Hamiltonian, describing the fundamental energetics
of any magnetic system. Such a Hamiltonian is formed
from a summation of contributions, each of which de-
scribes an interaction between an atomic spin moment
and neighbouring moments or external magnetic fields.
The spin Hamiltonian typically takes the form:

H = Hexc +Hani +Happ (2)

The dominant contribution to the spin Hamiltonian for
the vast majority of magnetic materials comes from the
exchange or Weiss field, which attempts to align the
atomic spin moments. The Weiss field in fact originates
from the quantum mechanical exchange interaction, aris-
ing from the probability of an electron moving from one
atomic site to another. The exchange interaction, as it is
called, leads to very strong alignment of spin moments to
their neighbours in ferromagnetic metals. The total ex-
change energy for each atom, i, is described by the sum
over all neighbouring atomic spin moments:

Hexchange =
X

i<j

JijSi · Sj (3)

where Jij is the exchange interaction between the sites i
and j, Si is the local spin moment and Sj are the spin
moments of neighbouring atoms. The spin moments are
expressed here as unit vectors Si = µi/|µi|. In the sim-
plest case the exchange interaction is single valued, and
the interaction is only between nearest neighbours. In
this case a negative value of Jij results in a ferromagnetic
interaction between spins and attempts to align the spins,
while a positive value results in an anti-ferromagnetic
interaction between spins, which attempts to align the
spins anti-parallel. In more complex materials, the ex-
change interaction forms a tensor with components:

Jij =

2

4
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

3

5 (4)

which is capable of describing anisotropic exchange in-
teractions, such as two-ion anisotropy (Oleg) and the
Dzyaloshinskii-Moriya interaction (o↵-diagonal compo-
nents of the exchange tensor). Additionally the exchange
interaction can extend to several atomic spacings, rep-
resenting hundreds of atomic interactions. Such com-
plex interactions generally result from Density Functional
Theory parameterisation of magnetic materials, where
the electronic interactions can extend far away from the
local spin.

After the exchange interaction, the most important pa-
rameter in a magnetic system is generally the magneto-
crystalline anisotropy, namely the preference for spin mo-
ments to align with particular crystallographic axes, aris-
ing from the e↵ect of the local crystal environment on

The ‘spin’ Hamiltonian

Exchange Anisotropy Applied Field
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II. THE ATOMISTIC SPIN MODEL

Magnetism on the atomic scale presents two natural
limits: the discrete limit of continuum micromagnetics
and the classical limit for the quantum mechanical elec-
tron spin. The essential model of atomic scale magnetism
was devised by Heisenberg in 1928? for molecular hy-
drogen. The so-named Heisenberg model describes the
atomic scale exchange interaction with a local moment
theory, considering the interaction between two electron
spins on neighbouring atomic sites. By applying the
Heitler-London approximation? for the linear combina-
tion of electron orbitals, Heisenberg developed a model
which describes the energy of neighbouring atoms with
spin, given by:

< H >= �JijS̃i · S̃j (1)

where S̃i and S̃j are the quantum mechanical spins on
atomic sites i and j respectively, and Jij is the interaction
energy arising from the probability of the two electrons
exchanging atomic sites. The quantum mechanical na-
ture of the electron spins leads to quantization of the elec-
tron energy, which for a single spin was demonstrated by
the Stern-Gerlach experiment? . In the above case, how-
ever, the quantum e↵ects are far more complex due to the
coupling of the electronic spin moments. In the limit of
infinite spin angular momentum, the quantisation e↵ects
vanish, and the spin moments have continuous degrees of
freedom. Such spins are said to be classical, leading to
the classical Heisenberg spin model. It should be pointed
out that there is a fundamental assumption within the
Heisenberg model, namely that the electrons are closely
bound to the atomic sites. In general this is not the case
for most magnetic materials, since the magnetic interac-
tions usually arise from unpaired outer electrons, which
in metals are loosely bound. The band theory of fer-
romagnetism proposed by Stoner? successfully explains
why the usual magnetic atoms possess non-integer spin
moments by describing the exchange splitting of the spin-
up and spin-down energy bands. However, the band the-
ory reveals little about the fundamental magnetic prop-
erties due to its complexity, and so an assumption that
on some, very short, timescale the local moment approx-
imation is valid is not unreasonable, provided that it
is acknowledged that in fact electrons are not confined
to the atomic sites over longer timescales. Collectively
this leads to an e↵ective Heisenberg classical spin model,
where the spins have some non-integer, time-averaged,
value of the spin moment which is assumed constant.
Discussion, Hubbard model

A. The Classical Spin Hamiltonian

The Heisenberg spin model incorporates all the pos-
sible magnetic interactions into a single convenient for-

malism which can be used to investigate a myriad of
magnetic phenomena at the natural atomic scale. The
principal component of the model is the formation of the
spin Hamiltonian, describing the fundamental energetics
of any magnetic system. Such a Hamiltonian is formed
from a summation of contributions, each of which de-
scribes an interaction between an atomic spin moment
and neighbouring moments or external magnetic fields.
The spin Hamiltonian typically takes the form:

H = Hexc +Hani +Happ (2)

The dominant contribution to the spin Hamiltonian for
the vast majority of magnetic materials comes from the
exchange or Weiss field, which attempts to align the
atomic spin moments. The Weiss field in fact originates
from the quantum mechanical exchange interaction, aris-
ing from the probability of an electron moving from one
atomic site to another. The exchange interaction, as it is
called, leads to very strong alignment of spin moments to
their neighbours in ferromagnetic metals. The total ex-
change energy for each atom, i, is described by the sum
over all neighbouring atomic spin moments:

Hexc =
X

i<j

JijSi · Sj (3)

where Jij is the exchange interaction between the sites i
and j, Si is the local spin moment and Sj are the spin
moments of neighbouring atoms. The spin moments are
expressed here as unit vectors Si = µi/|µi|. In the sim-
plest case the exchange interaction is single valued, and
the interaction is only between nearest neighbours. In
this case a negative value of Jij results in a ferromagnetic
interaction between spins and attempts to align the spins,
while a positive value results in an anti-ferromagnetic
interaction between spins, which attempts to align the
spins anti-parallel. In more complex materials, the ex-
change interaction forms a tensor with components:

Jij =

2

4
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

3

5 (4)

which is capable of describing anisotropic exchange in-
teractions, such as two-ion anisotropy (Oleg) and the
Dzyaloshinskii-Moriya interaction (o↵-diagonal compo-
nents of the exchange tensor). Additionally the exchange
interaction can extend to several atomic spacings, rep-
resenting hundreds of atomic interactions. Such com-
plex interactions generally result from Density Functional
Theory parameterisation of magnetic materials, where
the electronic interactions can extend far away from the
local spin.

After the exchange interaction, the most important pa-
rameter in a magnetic system is generally the magneto-
crystalline anisotropy, namely the preference for spin mo-
ments to align with particular crystallographic axes, aris-
ing from the e↵ect of the local crystal environment on

3

the spin-orbit coupling of the electrons. The anisotropy
of a material determines its long term magnetic stability,
which can result in dynamic behaviour over the timescale
of nanoseconds to millions of years. The simplest form of
anisotropy is single ion uniaxial, where the magnetic mo-
ments prefer to align along a single axis, e, often called
the easy axis. Such an anisotropy exists where the crys-
tal lattice is distorted along a single axis, as in materials
such as hexagonal Cobalt and L10 FePt. The uniaxial
single ion anisotropy energy is given by:

H
uni
ani = �ku

X

i

(Si · e)
2 (5)

where Ku is the anisotropy energy per atom. Mate-
rials with a cubic crystal structure, such as Iron and
Nickel, have a di↵erent form of anisotropy known as cu-
bic anisotropy. Cubic anisotropy is a much weaker e↵ect
than in uniaxial anisotropy, and has three principal di-
rections which energetically are easy, hard and very hard
magnetisation directions respectively. This is defined in
terms of the value of the directional cosines of the spin
moment relative to the cartesian axes, such that, to first
order, the anisotropy energy density of a single spin is
given by

H
cub
ani =

kc

2

X

i

�
S
4
x + S

4
y + S

4
z

�
(6)

where Kc is the cubic anisotropy energy per atom, and
Sx,Sy, and Sz are the x,y, and z components of the spin
moment Si respectively.

Most magnetic problems also involve interactions be-
tween the system and external applied fields, Happlied.
External fields can arise in many ways, for example a
nearby magnetic material, or as an e↵ective field from an
electric current. In all cases the applied field energy is
simply given by:

Happ = �

X

i

µsSi ·Happ. (7)

An important consideration when modeling magnetic
materials is the e↵ect of the de-magnetising or dipolar
field. However, for isolated nanoparticles with spherical
geometries the de-magnetising field is largely isotropic
and much weaker than other contributions, and so can
generally be neglected. This is fortunate as its calculation
is computationally costly. Although the de-magnetising
field arises due to the atomistic magnetic moments, its
e↵ect is not significant over atomic lengthscales, and so
can be safely neglected. For thin films and multi-granular
materials the e↵ect of the demagnetisation field becomes
significant, inducing domain states in su�ciently large
films, or complex inter-grain interactions in the case of
granular systems. For systems where this is important,
the dipolar interactions are calculated with a micromag-
netic approximation, by creating magnetic cells, each
consisting of several atoms. These cells then interact with

the usual dipolar interaction, and its implementation in
the code is described in detail under computational meth-
ods.

A note on magnetic units

The subject of magnetic units is controversial due to
the existence of multiple competing standards and histor-
ical origins. Starting from the atomic level however the
dimensionality of units is relatively transparent. Atomic
moments are usually accounted for in multiples of the
Bohr magneton (µB), the magnetic moment of an isolated
electron, with units of Joules/Tesla. Given a number of
atoms of moment µ in a volume, the moment per unit
volume is in units of J/T/m3, which is identical to the
SI unit of A/m. However, the dimensionality (moment
per unit volume) of the unit A/m is not as transparent
as JT�1m�3, and so the latter form is used herein.

Applied magnetic fields are defined in Tesla, which
comes naturally from the derivative of the Hamiltonian
with respect to the local moment. The unit of Tesla for
applied field is also beneficial for hysteresis loops, since
the area enclosed a typical M-H loop is then given as an
energy density (Joules/m3). A list of key magnetic pa-
rameters and their units are shown in Tab. ??, and a list
of relevant atomic constants and their units are shown in
Tab. ??.

TABLE I. Table of key variables and their units

Varible Symbol Unit
Atomic magnetic moment µs Joules/Tesla [JT�1]
Unit cell size a Angstroms [Å]
Exchange energy Jij Joules/link [J]
Anisotropy energy ku Joules/atom [J]
Applied Field H Tesla [T]
Temperature T Kelvin [K]
Time t Seconds [s]

TABLE II. Table of key parameters and their values

Parameter Symbol Value
Bohr Magneton µB 9.2740 ⇥10�24 JT�1

Gyromagnetic Ratio � 1.76 ⇥1011 T�1s�1

Permeability of Free Space µ0 4⇡ ⇥ 10�7 T2J�1m3

Boltzmann Constant kB 1.3807⇥ 10�23 JK�1
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II. THE ATOMISTIC SPIN MODEL

Magnetism on the atomic scale presents two natural
limits: the discrete limit of continuum micromagnetics
and the classical limit for the quantum mechanical elec-
tron spin. The essential model of atomic scale magnetism
was devised by Heisenberg in 1928? for molecular hy-
drogen. The so-named Heisenberg model describes the
atomic scale exchange interaction with a local moment
theory, considering the interaction between two electron
spins on neighbouring atomic sites. By applying the
Heitler-London approximation? for the linear combina-
tion of electron orbitals, Heisenberg developed a model
which describes the energy of neighbouring atoms with
spin, given by:

< H >= �JijS̃i · S̃j (1)

where S̃i and S̃j are the quantum mechanical spins on
atomic sites i and j respectively, and Jij is the interaction
energy arising from the probability of the two electrons
exchanging atomic sites. The quantum mechanical na-
ture of the electron spins leads to quantization of the elec-
tron energy, which for a single spin was demonstrated by
the Stern-Gerlach experiment? . In the above case, how-
ever, the quantum e↵ects are far more complex due to the
coupling of the electronic spin moments. In the limit of
infinite spin angular momentum, the quantisation e↵ects
vanish, and the spin moments have continuous degrees of
freedom. Such spins are said to be classical, leading to
the classical Heisenberg spin model. It should be pointed
out that there is a fundamental assumption within the
Heisenberg model, namely that the electrons are closely
bound to the atomic sites. In general this is not the case
for most magnetic materials, since the magnetic interac-
tions usually arise from unpaired outer electrons, which
in metals are loosely bound. The band theory of fer-
romagnetism proposed by Stoner? successfully explains
why the usual magnetic atoms possess non-integer spin
moments by describing the exchange splitting of the spin-
up and spin-down energy bands. However, the band the-
ory reveals little about the fundamental magnetic prop-
erties due to its complexity, and so an assumption that
on some, very short, timescale the local moment approx-
imation is valid is not unreasonable, provided that it
is acknowledged that in fact electrons are not confined
to the atomic sites over longer timescales. Collectively
this leads to an e↵ective Heisenberg classical spin model,
where the spins have some non-integer, time-averaged,
value of the spin moment which is assumed constant.
Discussion, Hubbard model

A. The Classical Spin Hamiltonian

The Heisenberg spin model incorporates all the pos-
sible magnetic interactions into a single convenient for-

malism which can be used to investigate a myriad of
magnetic phenomena at the natural atomic scale. The
principal component of the model is the formation of the
spin Hamiltonian, describing the fundamental energetics
of any magnetic system. Such a Hamiltonian is formed
from a summation of contributions, each of which de-
scribes an interaction between an atomic spin moment
and neighbouring moments or external magnetic fields.
The spin Hamiltonian typically takes the form:

H = Hexc +Hani +Happ (2)

The dominant contribution to the spin Hamiltonian for
the vast majority of magnetic materials comes from the
exchange or Weiss field, which attempts to align the
atomic spin moments. The Weiss field in fact originates
from the quantum mechanical exchange interaction, aris-
ing from the probability of an electron moving from one
atomic site to another. The exchange interaction, as it is
called, leads to very strong alignment of spin moments to
their neighbours in ferromagnetic metals. The total ex-
change energy for each atom, i, is described by the sum
over all neighbouring atomic spin moments:

Hexc =
X

i<j

JijSi · Sj (3)

where Jij is the exchange interaction between the sites i
and j, Si is the local spin moment and Sj are the spin
moments of neighbouring atoms. The spin moments are
expressed here as unit vectors Si = µi/|µi|. In the sim-
plest case the exchange interaction is single valued, and
the interaction is only between nearest neighbours. In
this case a negative value of Jij results in a ferromagnetic
interaction between spins and attempts to align the spins,
while a positive value results in an anti-ferromagnetic
interaction between spins, which attempts to align the
spins anti-parallel. In more complex materials, the ex-
change interaction forms a tensor with components:

Jij =
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Jxx Jxy Jxz

Jyx Jyy Jyz
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5 (4)

which is capable of describing anisotropic exchange in-
teractions, such as two-ion anisotropy (Oleg) and the
Dzyaloshinskii-Moriya interaction (o↵-diagonal compo-
nents of the exchange tensor). Additionally the exchange
interaction can extend to several atomic spacings, rep-
resenting hundreds of atomic interactions. Such com-
plex interactions generally result from Density Functional
Theory parameterisation of magnetic materials, where
the electronic interactions can extend far away from the
local spin.

After the exchange interaction, the most important pa-
rameter in a magnetic system is generally the magneto-
crystalline anisotropy, namely the preference for spin mo-
ments to align with particular crystallographic axes, aris-
ing from the e↵ect of the local crystal environment on

Natural discrete limit of magnetization
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this suggests that the bonding electrons are unpolarized, and
after taking into account the bonding charge the remaining
d-electrons form a well-defined effective localized moment on
the atomic sites.

Magnetic systems are fundamentally quantum mechani-
cal in nature since the electron energy levels are quantized,
the exchange interaction is a purely quantum mechanical
effect, and other important effects such as magnetocrystalline
anisotropy arise from relativistic interactions of electronic
orbitals with the lattice, which are the province of ab initio

models. In addition to these properties at the electronic level,
the properties of magnetic materials are heavily influenced
by thermal effects which are typically difficult to incorporate
into standard density functional theory approaches. Therefore
models of magnetic materials should combine the quantum
mechanical properties with a robust thermodynamic formal-
ism. The simplest model of magnetism using this approach is
the Ising model [1], which allows the atomic moments one of
two allowed states along a fixed quantization axis. Although
useful as a descriptive system, the forced quantization is
equivalent to infinite anisotropy, limiting the applicability of
the Ising model in relation to real materials. In the classical
description the direction of the atomic moment is a continuous
variable in 3D space allowing for finite anisotropies and
dynamic calculations. In some sense the classical spin model is
analogous to Molecular Dynamics, where the energetics of the
system are determined primarily from quantum mechanics, but
the time evolution and thermodynamic properties are treated
classically.

2.1. The classical spin Hamiltonian

The extended Heisenberg spin model encapsulates the essen-
tial physics of a magnetic material at the atomic level, where
the energetics of a system of interacting atomic moments is
given by a spin Hamiltonian (which neglects non-magnetic
effects such the as the Coulomb term). The spin Hamiltonian
H typically has the form:

H =Hexc +Hani +Happ (1)

denoting terms for the exchange interaction, magnetic
anisotropy, and externally applied magnetic fields respectively.

The dominant term in the spin Hamiltonian is the Heisen-
berg exchange energy, which arises due to the symmetry of the
electron wavefunction and the Pauli exclusion principle [60]
which governs the orientation of electronic spins in over-
lapping electron orbitals. Due to its electrostatic origin, the
associated energies of the exchange interaction are around
1–2 eV, which is typically up to 1000 times larger than the
next largest contribution and gives rise to magnetic ordering
temperatures in the range 300–1300 K. The exchange energy
for a system of interacting atomic moments is given by the
expression

Hexc = �

X

i 6= j

Ji j Si · S j (2)

where Ji j is the exchange interaction between atomic sites
i and j , Si is a unit vector denoting the local spin moment
direction and S j is the spin moment direction of neighbouring

atoms. The unit vectors are taken from the actual atomic mo-
ment µs and given by Si = µs/|µs|. It is important to note here
the significance of the sign of Ji j . For ferromagnetic materials
where neighbouring spins align in parallel, Ji j > 0, and for
antiferromagnetic materials where the spins prefer to align
anti-parallel Ji j < 0. Due to the strong distance dependence
of the exchange interaction, the sum in equation (2) is often
truncated to include nearest neighbours only. This significantly
reduces the computational effort while being a good approxi-
mation for many materials of interest. In reality the exchange
interaction can extend to several atomic spacings [29, 30],
representing hundreds of pairwise interactions.

In the simplest case the exchange interaction Ji j is
isotropic, meaning that the exchange energy of two spins
depends only on their relative orientation, not their direction.
In more complex materials, the exchange interaction forms a
tensor with components:
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which is capable of describing anisotropic exchange interac-
tions, such as two-ion anisotropy [29] and the Dzyaloshinskii–
Moriya interaction (off-diagonal components of the exchange
tensor). In the case of tensorial exchange H
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Obtaining the components of the exchange tensor may be
done phenomenologically, or via ab initio methods such as
the relativistic torque method [62–65] or the spin-cluster
expansion technique [30, 66–68]. The above expressions
for the exchange energy also exclude higher-order exchange
interactions such as three-spin and four-spin terms. In most
materials the higher-order exchange terms are significantly
smaller than the leading term and can safely be neglected.

While the exchange energy gives rise to magnetic ordering
at the atomic level, the thermal stability of a magnetic material
is dominated by the magnetic anisotropy, or preference for the
atomic moments to align along a preferred spatial direction.
There are several physical effects which give rise to anisotropy,
but the most important is the magnetocrystalline anisotropy
(namely the preference for spin moments to align with particu-
lar crystallographic axes) arising from the interaction of atomic
electron orbitals with the local crystal environment [69, 70].

The simplest form of anisotropy is of the single-ion
uniaxial type, where the magnetic moments prefer to align
along a single axis, e, often called the easy axis and is an
interaction confined to the local moment. Uniaxial anisotropy
is most commonly found in particles with elongated shape
(shape anisotropy), or where the crystal lattice is distorted
along a single axis as in materials such as hexagonal Cobalt and
L10 ordered FePt. The uniaxial single-ion anisotropy energy
is given by the expression:
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III. SYSTEM PARAMETERIZATION AND
GENERATION

Unlike micromagnetic simulations where the magnetic
system can be partitioned using either a finite di↵er-
ence or finite element discretization, atomistic simula-
tions generally require some apriori knowledge of atomic
positions. Most simple magnetic materials such as Fe,
Co or Ni form regular crystals, while more complex sys-
tems such as oxides, antiferromagnets and Heusler alloys
possess correspondingly complex atomic structures. For
ferromagnetic metals, the details of atomic positions are
generally less important due to the strong parallel ori-
entation of moments, and so they can often be (but not
always) represented using a simple cubic discretization.
In contrast, the properties of ferrimagnetic and antifer-
romagnetic materials are inherently tied to the atomic
positions due to frustration and exchange interactions,
and so simulation of these materials must incorporate
details of the atomic structure.

In addition to the atomic structure of the material, it
is also necessary to parametrize the spin Hamiltonian,
principally including exchange and anisotropy parame-
ters but also possibly with other terms. There are gen-
erally two ways in which this may be done: firstly using
experimentally determined properties or secondly with a
multiscale approach using density functional theory cal-
culations as input to the spin model.

A number of studies have determined atomic mag-
netic properties from first principles calculations by di-
rect mapping onto a spin model, including the prin-
ciple magnetic elements Co,Ni and Fe28, metallic al-
loys including FePt21, IrMn20, oxides29 and spin glasses
[ref CuMn]. Such calculations give detailed insight into
microscopic magnetic properties, including atomic mo-
ments, long-ranged exchange interactions, magnetocrys-
talline anisotropies (including surface and two-ion inter-
actions) and other details not readily available from phe-
nomenological theories. Combined with atomistic mod-
els it is possible to determine macroscopic properties
such as the Curie temperature, temperature dependent
anisotropies, and magnetic ground states, often in excel-
lent agreement with experiment. However, the compu-
tational complexity of DFT calculations also means that
the systems which can be simulated with this multi scale
approach are often limited to small clusters, perfect bulk
systems and 2D periodic systems, while real materials of
course often contain a plethora of defects disrupting the
long range order. Nevertheless, some studies have also
attempted to investigate the e↵ects of disorder, but so
far without atomistic parametrization[ref].

Atomistic parameters from macroscopic properties

The alternative approach to multiscale
atomistic/density-functional-theory simulations is
to derive the parameters from experimentally deter-

mined values. This has the advantage of speed and
lower complexity, whilst foregoing microscopic details
of the exchange interactions or anisotropies. Another
key advantage of generic parameters is the possibility of
parametric studies, where parameters are varied explic-
itly to determine their importance for the macroscopic
properties of the system, such as has been done for
studies of surface anisotropy8 and exchange bias5.

Unlike micromagnetics simulations, the robust ther-
modynamic approach of the atomistic model means that
all parameters must be determined for zero temperature.
The spin fluctuations then determine the intrinsic tem-
perature dependence of the e↵ective parameters which
are usually put into micromagnetic simulations as param-
eters. Fortunately determination of the atomic moments,
exchange constants and anisotropies from experimental
values is relatively straightforward for most systems.

Atomic spin moment

The atomic spin moment µs is related to the saturation
magnetization simply by:

µs =
Msa

3

nat
(8)

where Ms is the saturation magnetization at 0K in
JT�1m�3 (A/m), a is the unit cell size (m), and nat

is the number of atoms per unit cell. We also note the
usual convention of expressing atomic moments in mul-
tiples or fractions of µB owing to their electronic origin.
Taking Iron as an example, the zero temperature satura-
tion is xxx[ref], unit cell size of a = 2.501 Å, this gives
an atomic moment of 1.44 µB/atom.

Exchange energy

For a generic atomistic model with z nearest neighbor
interactions, the exchange constant is given conveniently
by the mean-field expression:

Jij =
3kBTc

✏z
(9)

where kB is the Boltzmann constant and Tc is the Curie
temperature z is the number of nearest neighbors. ✏ is
a correction factor from the usual mean-field expression
which arises due to spin waves in the 3D Heisenberg
model30 and is ⇠ 0.86. Because of this ✏ is also crys-
tal structure and coordination number dependent, and
so the calculated Tc will slightly vary according to the
specifics of the system. For Cobalt with a Tc of 1388K
and assuming a hexagonal crystal structure with z = 12,
this gives a nearest neighbor Jij = 5.57⇥ 10�21J/link.

D. A. Garanin, Physical Review B 53, 11593 (1996)

Mean field approximation with correction factor for spin waves

Exchange energy defines the Curie / Néel  
temperature of the material
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this suggests that the bonding electrons are unpolarized, and
after taking into account the bonding charge the remaining
d-electrons form a well-defined effective localized moment on
the atomic sites.

Magnetic systems are fundamentally quantum mechani-
cal in nature since the electron energy levels are quantized,
the exchange interaction is a purely quantum mechanical
effect, and other important effects such as magnetocrystalline
anisotropy arise from relativistic interactions of electronic
orbitals with the lattice, which are the province of ab initio

models. In addition to these properties at the electronic level,
the properties of magnetic materials are heavily influenced
by thermal effects which are typically difficult to incorporate
into standard density functional theory approaches. Therefore
models of magnetic materials should combine the quantum
mechanical properties with a robust thermodynamic formal-
ism. The simplest model of magnetism using this approach is
the Ising model [1], which allows the atomic moments one of
two allowed states along a fixed quantization axis. Although
useful as a descriptive system, the forced quantization is
equivalent to infinite anisotropy, limiting the applicability of
the Ising model in relation to real materials. In the classical
description the direction of the atomic moment is a continuous
variable in 3D space allowing for finite anisotropies and
dynamic calculations. In some sense the classical spin model is
analogous to Molecular Dynamics, where the energetics of the
system are determined primarily from quantum mechanics, but
the time evolution and thermodynamic properties are treated
classically.

2.1. The classical spin Hamiltonian

The extended Heisenberg spin model encapsulates the essen-
tial physics of a magnetic material at the atomic level, where
the energetics of a system of interacting atomic moments is
given by a spin Hamiltonian (which neglects non-magnetic
effects such the as the Coulomb term). The spin Hamiltonian
H typically has the form:

H =Hexc +Hani +Happ (1)

denoting terms for the exchange interaction, magnetic
anisotropy, and externally applied magnetic fields respectively.

The dominant term in the spin Hamiltonian is the Heisen-
berg exchange energy, which arises due to the symmetry of the
electron wavefunction and the Pauli exclusion principle [60]
which governs the orientation of electronic spins in over-
lapping electron orbitals. Due to its electrostatic origin, the
associated energies of the exchange interaction are around
1–2 eV, which is typically up to 1000 times larger than the
next largest contribution and gives rise to magnetic ordering
temperatures in the range 300–1300 K. The exchange energy
for a system of interacting atomic moments is given by the
expression

Hexc = �

X

i 6= j

Ji j Si · S j (2)

where Ji j is the exchange interaction between atomic sites
i and j , Si is a unit vector denoting the local spin moment
direction and S j is the spin moment direction of neighbouring

atoms. The unit vectors are taken from the actual atomic mo-
ment µs and given by Si = µs/|µs|. It is important to note here
the significance of the sign of Ji j . For ferromagnetic materials
where neighbouring spins align in parallel, Ji j > 0, and for
antiferromagnetic materials where the spins prefer to align
anti-parallel Ji j < 0. Due to the strong distance dependence
of the exchange interaction, the sum in equation (2) is often
truncated to include nearest neighbours only. This significantly
reduces the computational effort while being a good approxi-
mation for many materials of interest. In reality the exchange
interaction can extend to several atomic spacings [29, 30],
representing hundreds of pairwise interactions.

In the simplest case the exchange interaction Ji j is
isotropic, meaning that the exchange energy of two spins
depends only on their relative orientation, not their direction.
In more complex materials, the exchange interaction forms a
tensor with components:
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which is capable of describing anisotropic exchange interac-
tions, such as two-ion anisotropy [29] and the Dzyaloshinskii–
Moriya interaction (off-diagonal components of the exchange
tensor). In the case of tensorial exchange H
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Obtaining the components of the exchange tensor may be
done phenomenologically, or via ab initio methods such as
the relativistic torque method [62–65] or the spin-cluster
expansion technique [30, 66–68]. The above expressions
for the exchange energy also exclude higher-order exchange
interactions such as three-spin and four-spin terms. In most
materials the higher-order exchange terms are significantly
smaller than the leading term and can safely be neglected.

While the exchange energy gives rise to magnetic ordering
at the atomic level, the thermal stability of a magnetic material
is dominated by the magnetic anisotropy, or preference for the
atomic moments to align along a preferred spatial direction.
There are several physical effects which give rise to anisotropy,
but the most important is the magnetocrystalline anisotropy
(namely the preference for spin moments to align with particu-
lar crystallographic axes) arising from the interaction of atomic
electron orbitals with the local crystal environment [69, 70].

The simplest form of anisotropy is of the single-ion
uniaxial type, where the magnetic moments prefer to align
along a single axis, e, often called the easy axis and is an
interaction confined to the local moment. Uniaxial anisotropy
is most commonly found in particles with elongated shape
(shape anisotropy), or where the crystal lattice is distorted
along a single axis as in materials such as hexagonal Cobalt and
L10 ordered FePt. The uniaxial single-ion anisotropy energy
is given by the expression:
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the spin-orbit coupling of the electrons. The anisotropy
of a material determines its long term magnetic stability,
which can result in dynamic behaviour over the timescale
of nanoseconds to millions of years. The simplest form of
anisotropy is single ion uniaxial, where the magnetic mo-
ments prefer to align along a single axis, e, often called
the easy axis. Such an anisotropy exists where the crys-
tal lattice is distorted along a single axis, as in materials
such as hexagonal Cobalt and L10 FePt. The uniaxial
single ion anisotropy energy is given by:

H
uni
ani = �ku

X

i

(Si · e)
2 (5)

where Ku is the anisotropy energy per atom. Mate-
rials with a cubic crystal structure, such as Iron and
Nickel, have a di↵erent form of anisotropy known as cu-
bic anisotropy. Cubic anisotropy is a much weaker e↵ect
than in uniaxial anisotropy, and has three principal di-
rections which energetically are easy, hard and very hard
magnetisation directions respectively. This is defined in
terms of the value of the directional cosines of the spin
moment relative to the cartesian axes, such that, to first
order, the anisotropy energy density of a single spin is
given by
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where Kc is the cubic anisotropy energy per atom, and
Sx,Sy, and Sz are the x,y, and z components of the spin
moment Si respectively.

Most magnetic problems also involve interactions be-
tween the system and external applied fields, Happlied.
External fields can arise in many ways, for example a
nearby magnetic material, or as an e↵ective field from an
electric current. In all cases the applied field energy is
simply given by:

Happ = �

X

i

µsSi ·Happ. (7)

An important consideration when modeling magnetic
materials is the e↵ect of the de-magnetising or dipolar
field. However, for isolated nanoparticles with spherical
geometries the de-magnetising field is largely isotropic
and much weaker than other contributions, and so can
generally be neglected. This is fortunate as its calculation
is computationally costly. Although the de-magnetising
field arises due to the atomistic magnetic moments, its
e↵ect is not significant over atomic lengthscales, and so
can be safely neglected. For thin films and multi-granular
materials the e↵ect of the demagnetisation field becomes
significant, inducing domain states in su�ciently large
films, or complex inter-grain interactions in the case of
granular systems. For systems where this is important,
the dipolar interactions are calculated with a micromag-
netic approximation, by creating magnetic cells, each
consisting of several atoms. These cells then interact with

the usual dipolar interaction, and its implementation in
the code is described in detail under computational meth-
ods.

A note on magnetic units

The subject of magnetic units is controversial due to
the existence of multiple competing standards and histor-
ical origins. Starting from the atomic level however the
dimensionality of units is relatively transparent. Atomic
moments are usually accounted for in multiples of the
Bohr magneton (µB), the magnetic moment of an isolated
electron, with units of Joules/Tesla. Given a number of
atoms of moment µ in a volume, the moment per unit
volume is in units of J/T/m3, which is identical to the
SI unit of A/m. However, the dimensionality (moment
per unit volume) of the unit A/m is not as transparent
as JT�1m�3, and so the latter form is used herein.

Applied magnetic fields are defined in Tesla, which
comes naturally from the derivative of the Hamiltonian
with respect to the local moment. The unit of Tesla for
applied field is also beneficial for hysteresis loops, since
the area enclosed a typical M-H loop is then given as an
energy density (Joules/m3). A list of key magnetic pa-
rameters and their units are shown in Tab. ??, and a list
of relevant atomic constants and their units are shown in
Tab. ??.

TABLE I. Table of key variables and their units

Varible Symbol Unit
Atomic magnetic moment µs Joules/Tesla [JT�1]
Unit cell size a Angstroms [Å]
Exchange energy Jij Joules/link [J]
Anisotropy energy ku Joules/atom [J]
Applied Field H Tesla [T]
Temperature T Kelvin [K]
Time t Seconds [s]

TABLE II. Table of key parameters and their values

Parameter Symbol Value
Bohr Magneton µB 9.2740 ⇥10�24 JT�1

Gyromagnetic Ratio � 1.76 ⇥1011 T�1s�1

Permeability of Free Space µ0 4⇡ ⇥ 10�7 T2J�1m3

Boltzmann Constant kB 1.3807⇥ 10�23 JK�1

Magnetic anisotropy energy
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which can result in dynamic behaviour over the timescale
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ments prefer to align along a single axis, e, often called
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where Kc is the cubic anisotropy energy per atom, and
Sx,Sy, and Sz are the x,y, and z components of the spin
moment Si respectively.

Most magnetic problems also involve interactions be-
tween the system and external applied fields, Happlied.
External fields can arise in many ways, for example a
nearby magnetic material, or as an e↵ective field from an
electric current. In all cases the applied field energy is
simply given by:

Happ = �
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µsSi ·Happ. (7)

An important consideration when modeling magnetic
materials is the e↵ect of the de-magnetising or dipolar
field. However, for isolated nanoparticles with spherical
geometries the de-magnetising field is largely isotropic
and much weaker than other contributions, and so can
generally be neglected. This is fortunate as its calculation
is computationally costly. Although the de-magnetising
field arises due to the atomistic magnetic moments, its
e↵ect is not significant over atomic lengthscales, and so
can be safely neglected. For thin films and multi-granular
materials the e↵ect of the demagnetisation field becomes
significant, inducing domain states in su�ciently large
films, or complex inter-grain interactions in the case of
granular systems. For systems where this is important,
the dipolar interactions are calculated with a micromag-
netic approximation, by creating magnetic cells, each
consisting of several atoms. These cells then interact with

the usual dipolar interaction, and its implementation in
the code is described in detail under computational meth-
ods.

A note on magnetic units

The subject of magnetic units is controversial due to
the existence of multiple competing standards and histor-
ical origins. Starting from the atomic level however the
dimensionality of units is relatively transparent. Atomic
moments are usually accounted for in multiples of the
Bohr magneton (µB), the magnetic moment of an isolated
electron, with units of Joules/Tesla. Given a number of
atoms of moment µ in a volume, the moment per unit
volume is in units of J/T/m3, which is identical to the
SI unit of A/m. However, the dimensionality (moment
per unit volume) of the unit A/m is not as transparent
as JT�1m�3, and so the latter form is used herein.

Applied magnetic fields are defined in Tesla, which
comes naturally from the derivative of the Hamiltonian
with respect to the local moment. The unit of Tesla for
applied field is also beneficial for hysteresis loops, since
the area enclosed a typical M-H loop is then given as an
energy density (Joules/m3). A list of key magnetic pa-
rameters and their units are shown in Tab. ??, and a list
of relevant atomic constants and their units are shown in
Tab. ??.

TABLE I. Table of key variables and their units

Varible Symbol Unit
Atomic magnetic moment µs Joules/Tesla [JT�1]
Unit cell size a Angstroms [Å]
Exchange energy Jij Joules/link [J]
Anisotropy energy ku Joules/atom [J]
Applied Field H Tesla [T]
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TABLE II. Table of key parameters and their values

Parameter Symbol Value
Bohr Magneton µB 9.2740 ⇥10�24 JT�1

Gyromagnetic Ratio � 1.76 ⇥1011 T�1s�1

Permeability of Free Space µ0 4⇡ ⇥ 10�7 T2J�1m3

Boltzmann Constant kB 1.3807⇥ 10�23 JK�1
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where ku is the anisotropy energy per atom. Materials with
a cubic crystal structure, such as iron and nickel, have a
different form of anisotropy known as cubic anisotropy. Cubic
anisotropy is generally much weaker than uniaxial anisotropy,
and has three principal directions which energetically are
easy, hard and very hard magnetization directions respectively.
Cubic anisotropy is described by the expression:
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where kc is the cubic anisotropy energy per atom, and Sx , Sy ,
and Sz are the x , y, and z components of the spin moment S

respectively.
Most magnetic problems also involve interactions be-

tween the system and external applied fields, denoted as Happ.
External fields can arise in many ways, for example a nearby
magnetic material, or as an effective field from an electric
current. In all cases the applied field energy is simply given by:

Happ = �

X

i

µsSi · Happ. (7)

2.2. A note on magnetic units

The subject of magnetic units is controversial due to the
existence of multiple competing standards and historical ori-
gins [60]. Starting from the atomic level however, the dimen-
sionality of units is relatively transparent. Atomic moments
are usually accounted for in multiples of the Bohr magneton
(µB), the magnetic moment of an isolated electron, with units
of J T�1. Given a number of atoms of moment µs in a volume,
the moment per unit volume is naturally in units of J T m�3,
which is identical to the SI unit of A m�1. However, the
dimensionality (moment per unit volume) of the unit A m�1

is not as obvious as J T�1m�3, and so the latter form is used
herein.

Applied magnetic fields are hence defined in Tesla, which
comes naturally from the derivative of the spin Hamiltonian
with respect to the local moment. The unit of Tesla for applied
field is also beneficial for hysteresis loops, since the area
enclosed a typical M–H loop is then given as an energy density
(J m�3). A list of key magnetic parameters and variables and
their units are shown in table 1.

3. System parameterization and generation

Unlike micromagnetic simulations where the magnetic system
can be partitioned using either a finite difference or finite
element discretization, atomistic simulations generally require
some a priori knowledge of atomic positions. Most simple
magnetic materials such as Fe, Co or Ni form regular crystals,
while more complex systems such as oxides, antiferromagnets
and Heusler alloys possess correspondingly complex atomic
structures. For ferromagnetic metals, the details of atomic
positions are generally less important due to the strong parallel
orientation of moments, and so they can often (but not always)
be represented using a simple cubic discretization. In contrast,
the properties of ferrimagnetic and antiferromagnetic materials

Table 1. Table of key variables and their units.

Variable Symbol Unit

Atomic magnetic moment µs Joules/Tesla (J T�1)

Unit cell size a Angstroms (Å)
Exchange energy Ji j Joules/link (J)
Anisotropy energy ku Joules/atom (J)
Applied field H Tesla (T)
Temperature T Kelvin (K)
Time t Seconds (s)

Parameter Symbol Value

Bohr magneton µB 9.2740 ⇥ 10�24 J T�1

Gyromagnetic ratio � 1.76 ⇥ 1011 T�1 s�1

Permeability of free space µ0 4⇡ ⇥ 10�7 T2 J�1 m3

Boltzmann constant kB 1.3807 ⇥ 10�23 J K�1

are inherently tied to the atomic positions due to frustration
and exchange interactions, and so simulation of these materials
must incorporate details of the atomic structure.

In addition to the atomic structure of the material, it is also
necessary to parameterize the terms of the spin Hamiltonian
given by equation (1), principally including exchange and
anisotropy values but also with other terms. There are generally
two ways in which this may be done: using experimentally
determined properties or with a multiscale approach using
ab initio density functional theory calculations as input to the
spin model.

3.1. Atomistic parameters from ab initio calculations

Ab initio density functional theory (DFT) calculations utilize
the Hohenberg–Kohn–Sham theory [71, 72] which states that
the total energy E of a system can be written solely in terms the
electron density, ⇢. Thus, if the electron density is known then
the physical properties of the system can be found. In practice,
the both electron density and the spin density are used as
fundamental quantities in the total energy expression for spin-
polarized systems [73]. In many implementations DFT-based
methods only consider the outer electrons of a system, since
the inner electrons play a minimal role in the bonding and also
partially screen the effect of the nuclear core. These effects
are approximated by a pseudopotential which determines the
potential felt by the valence electrons. In all-electron methods,
however, the core electron density is also relaxed. By energy
minimization, DFT enables the calculation of a wide range
of properties, including lattice constants, and in the case of
magnetic materials localized spin moments, magnetic ground
state and the effective magnetocrystalline anisotropy. Standard
software packages such as VASP [74], CASTEP [75, 76] and
SIESTA [77] make such calculations readily accessible. At
present determining site resolved properties such as anisotropy
constants and pairwise exchange interactions is more involved
and requires ab initio Green’s functions techniques such as
the fully relativistic Korringa–Kohn–Rostoker method [78,
79] or the LMTO method [80, 81] in conjunction with the
magnetic force theorem [62]. An alternative approach for
the calculation of exchange parameters is the utilization

4
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Ising model253 

Beitrag zur Theorie  des  F e r r o m a g n e t i s m u s  D. 
Von Ernst Ising in Hamburg. 

(Eingegangen am 9. Dezember 1924.) 

Es wird im wesentlichen das thermische Verhalten eines linearen, aus Elementar- 
magneten bestehendea KSrpers untersueht, wobei im Gegensatz zur Weissschen 
Theorie des Ferromagaetismus keia molekulares Feld, somlern nur eine (nicht 
magnetisehe) Wechse[wirkung benachbarter Elemcatarmagnete aagenommeu wird. 
Es wird gezeigt, dull tin sotehes Modell noch keine ferromagnetisehen Eigenschaften 

hcsitzt und diese Aussage auch auf das dreidimensionate )[odetl ausgedehnt. 

1. A n n a h m e n .  Die Erklarung,  die P. W e i s s  ~) ftir den Ferro-  
magneti~mus geg'eben hat, is t  zwar formal befriedigend, doch Ial]t sie 
besanders die Frage nach einer physikalischen Erklarung der Hypothese 
des molekularen Fehles o[fen. Nach dieser Theorie wirkt  au~ jeden 
E]ementarmagneten, abgesehen yon dem ~iul~eren 3[agnetfeld, ein inneres 
Fehl, das der ieweiligenMagne~isierungsinteasiti~t proportional ist. Es lieg't 
nahe. fiir die Wirkungen der einzelnen Elemente ( ~  Elementarmagnete) 
elektrische Dipolwirkungen anzuset, zen. Dann ergiiben sieh aber durch 
Summation der sehr langsam abnehmenden Dipolfelder sehr betrachtliche 
elektrische Feldst~rken, die dureh die Leitf~higkeit  des Materials zerstSrt  
wCirden. Im Gegensatz zu P. W e i s s  nehmen wir  daher an, daft die 
Kr~ifte, die die Elemente atdeinander ausiiben, mit tier Entfernung raseh 
abklingen, so dal3 in erster N~herung sich nur benaehbarte Atome be- 
einflussen. 

Zweitens setzen wir  an, dal~ die Elemente nur wenige der Kr i s ta l l -  
, t r uk tu r  entsprechende, energetiseh ausgezeichnete Orientierungen ein- 
nehmen. Infolge der W~rmebeweg'ung gehen die Elemente aus einer 
mggliehen Lage in eine andere tiber. W i r  setzen an. dal~ die inhere 
Energie am kleins~en ist, wenn alle Elemente gleiehgerichtet  sind. Diese 
Annahmen sind im wesentliehen zuerst  yon W. L e n z  s) aufgestell t  und 
n~her begrtindet worden. 

2. D i e  e i n f a c h e  l i n e a r e  K e t t e .  Die gemaehtenVoraussetzungen 
wollen M r  aM ein miiglichst einfaches Modell anwenden. W i t  bereehnen 
das mittlere 3~oment $ e i n e s  l inearen 3lagneten, bestehend aus n Elemen~en. 
.ledes dieser n Elemente soll  nur die zwei Stellungen einnehmen ktinnen, 

1) Auszug aus der Hamburger Dissertation. 
'~) P. Weiss ,  Journ. de phys. (4) 6, 661, 1907, und Phys. ZS. 9, 358. 1908. 
:~) W. Lenz,  Phys. ZS. 21, 613, [920. 
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this suggests that the bonding electrons are unpolarized, and
after taking into account the bonding charge the remaining
d-electrons form a well-defined effective localized moment on
the atomic sites.

Magnetic systems are fundamentally quantum mechani-
cal in nature since the electron energy levels are quantized,
the exchange interaction is a purely quantum mechanical
effect, and other important effects such as magnetocrystalline
anisotropy arise from relativistic interactions of electronic
orbitals with the lattice, which are the province of ab initio

models. In addition to these properties at the electronic level,
the properties of magnetic materials are heavily influenced
by thermal effects which are typically difficult to incorporate
into standard density functional theory approaches. Therefore
models of magnetic materials should combine the quantum
mechanical properties with a robust thermodynamic formal-
ism. The simplest model of magnetism using this approach is
the Ising model [1], which allows the atomic moments one of
two allowed states along a fixed quantization axis. Although
useful as a descriptive system, the forced quantization is
equivalent to infinite anisotropy, limiting the applicability of
the Ising model in relation to real materials. In the classical
description the direction of the atomic moment is a continuous
variable in 3D space allowing for finite anisotropies and
dynamic calculations. In some sense the classical spin model is
analogous to Molecular Dynamics, where the energetics of the
system are determined primarily from quantum mechanics, but
the time evolution and thermodynamic properties are treated
classically.

2.1. The classical spin Hamiltonian

The extended Heisenberg spin model encapsulates the essen-
tial physics of a magnetic material at the atomic level, where
the energetics of a system of interacting atomic moments is
given by a spin Hamiltonian (which neglects non-magnetic
effects such the as the Coulomb term). The spin Hamiltonian
H typically has the form:

H =Hexc +Hani +Happ (1)

denoting terms for the exchange interaction, magnetic
anisotropy, and externally applied magnetic fields respectively.

The dominant term in the spin Hamiltonian is the Heisen-
berg exchange energy, which arises due to the symmetry of the
electron wavefunction and the Pauli exclusion principle [60]
which governs the orientation of electronic spins in over-
lapping electron orbitals. Due to its electrostatic origin, the
associated energies of the exchange interaction are around
1–2 eV, which is typically up to 1000 times larger than the
next largest contribution and gives rise to magnetic ordering
temperatures in the range 300–1300 K. The exchange energy
for a system of interacting atomic moments is given by the
expression

Hexc = �

X

i 6= j

Ji j Si · S j (2)

where Ji j is the exchange interaction between atomic sites
i and j , Si is a unit vector denoting the local spin moment
direction and S j is the spin moment direction of neighbouring

atoms. The unit vectors are taken from the actual atomic mo-
ment µs and given by Si = µs/|µs|. It is important to note here
the significance of the sign of Ji j . For ferromagnetic materials
where neighbouring spins align in parallel, Ji j > 0, and for
antiferromagnetic materials where the spins prefer to align
anti-parallel Ji j < 0. Due to the strong distance dependence
of the exchange interaction, the sum in equation (2) is often
truncated to include nearest neighbours only. This significantly
reduces the computational effort while being a good approxi-
mation for many materials of interest. In reality the exchange
interaction can extend to several atomic spacings [29, 30],
representing hundreds of pairwise interactions.

In the simplest case the exchange interaction Ji j is
isotropic, meaning that the exchange energy of two spins
depends only on their relative orientation, not their direction.
In more complex materials, the exchange interaction forms a
tensor with components:

J
M
i j

=

"
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

#

, (3)

which is capable of describing anisotropic exchange interac-
tions, such as two-ion anisotropy [29] and the Dzyaloshinskii–
Moriya interaction (off-diagonal components of the exchange
tensor). In the case of tensorial exchange H

M
exc, the exchange

energy is given by the product:
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Obtaining the components of the exchange tensor may be
done phenomenologically, or via ab initio methods such as
the relativistic torque method [62–65] or the spin-cluster
expansion technique [30, 66–68]. The above expressions
for the exchange energy also exclude higher-order exchange
interactions such as three-spin and four-spin terms. In most
materials the higher-order exchange terms are significantly
smaller than the leading term and can safely be neglected.

While the exchange energy gives rise to magnetic ordering
at the atomic level, the thermal stability of a magnetic material
is dominated by the magnetic anisotropy, or preference for the
atomic moments to align along a preferred spatial direction.
There are several physical effects which give rise to anisotropy,
but the most important is the magnetocrystalline anisotropy
(namely the preference for spin moments to align with particu-
lar crystallographic axes) arising from the interaction of atomic
electron orbitals with the local crystal environment [69, 70].

The simplest form of anisotropy is of the single-ion
uniaxial type, where the magnetic moments prefer to align
along a single axis, e, often called the easy axis and is an
interaction confined to the local moment. Uniaxial anisotropy
is most commonly found in particles with elongated shape
(shape anisotropy), or where the crystal lattice is distorted
along a single axis as in materials such as hexagonal Cobalt and
L10 ordered FePt. The uniaxial single-ion anisotropy energy
is given by the expression:

H
uni
ani = �ku

X

i

(Si · e)2 (5)

3
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Figure 3. Schematic showing the three principal Monte Carlo
moves: (a) spin flip; (b) Gaussian; and (c) random.

requires that the transition probability between two states is
invariant, explicitly P(Si ! S

0
i
) = P(S0

i
! Si ). From equa-

tion (22) reversibility is obvious since the probability of a
spin change depends only on the initial and final energy.
Ergodicity is easy to satisfy by moving the selected spin
to a random position on the unit sphere, however this has
an undesirable consequence at low temperatures since large
deviations of spins from the collinear direction are highly
improbable due to the strength of the exchange interaction.
Thus at low temperatures a series of trial moves on the unit
sphere will lead to most moves being rejected. Ideally a move
acceptance rate of around 50% is desired, since very high and
very low rates require significantly more Monte Carlo steps to
reach a state representative of true thermal equilibrium.

One of the most efficient Monte Carlo algorithms for clas-
sical spin models was developed by Hinzke and Nowak [123],
involving a combinational approach using a mixture of dif-
ferent trial moves. The principal advantage of this method
is the efficient sampling of all available phase space while
maintaining a reasonable trial move acceptance rate. The
Hinzke–Nowak method utilizes three distinct types of move:
spin flip, Gaussian and random, as illustrated schematically in
figure 3.

The spin flip move simply reverses the direction of the
spin such that S

0
i
= �Si to explicitly allow the nucleation of a

switching event. The spin flip move is identical to a move in
Ising spin models. It should be noted that spin flip moves do not
by themselves satisfy ergodicity in the classical spin model,
since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other
ergodic trial moves this is quite permissible. The Gaussian trial
move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position
according to the expression

S
0
i
=

Si + �g0

|Si + �g0|
(23)

where 0 is a Gaussian distributed random number and �g is the
width of a cone around the initial spin Si . After generating the
trial position S

0
i

the position is normalized to yield a spin of unit
length. The choice of a Gaussian distribution is deliberate since
after normalization the trial moves have a uniform sampling
over the cone. The width of the cone is generally chosen to be
temperature dependent and of the form

�g =
2
25

✓
kBT

µB

◆1/5
. (24)

Figure 4. Visualization of Monte Carlo sampling on the unit sphere
for (a) random and (b) Gaussian sampling algorithms at T = 10 K.
The dots indicate the trial moves. The random algorithm shows a
uniform distribution on the unit sphere, and no preferential biasing
along the axes. The Gaussian trial moves are clustered around the
initial spin position, along the z-axis.

The Gaussian trial move thus favours small angular changes
in the spin direction at low temperatures, giving a good
acceptance probability for most temperatures.

The final random trial move picks a random point on the
unit sphere according to

S
0
i
=

0

|0|
(25)

which ensures ergodicity for the complete algorithm and
ensures efficient sampling of the phase space at high tem-
peratures. For each trial step one of these three trial moves is
picked randomly, which in general leads to good algorithmic
properties.

To verify that the random sampling and Gaussian trial
moves give the expected behaviour, a plot of the calculated
trial moves on the unit sphere for the different algorithms is
shown in figure 4. The important points are that the random
trial move is uniform on the unit sphere, and that the Gaussian
trial move is close to the initial spin direction, along the z-axis
in this case.

At this point it is worthwhile considering the relative
efficiencies of Monte Carlo and spin dynamics for calcu-
lating equilibrium properties. Figure 5 shows the simulated
temperature-dependent magnetization for a test system using
both LLG spin dynamics and Monte Carlo methods. Agree-
ment between the two methods is good, but the spin dynamics
simulation takes around twenty times longer to compute due to
the requirements of a low time step and slower convergence to
equilibrium. However, Monte Carlo algorithms are notoriously
difficult to parallelize, and so for larger systems LLG spin
dynamic simulations are generally more efficient than Monte
Carlo methods.

5. Test simulations

Having outlined the important theoretical and computational
methods for the atomistic simulation of magnetic materials,
we now proceed to detail the tests we have refined to ensure
the correct implementation of the main components of the
model. Such tests are particularly helpful to those wishing to
implement these methods. Similar tests developed for micro-
magnetic packages [124] have proven an essential benchmark
for the implementation of improved algorithms and codes with
different capabilities but the same core functionality.

10

Use a combination of different trial moves



Temperature dependent  
magnetization for different particle sizes

J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

5.3. Curie temperature

Tests such as the Stoner–Wohlfarth hysteresis or Boltzmann
distribution are helpful in verifying the mechanical implemen-
tation of an algorithm for a single spin, but interacting systems
of spins present a significant challenge in that no analytical
solutions exist. Hence it is necessary to calculate some well-
defined macroscopic property which ensures the correct imple-
mentation of interactions in a system. The Curie temperature
Tc of a nanoparticle is primarily determined by the strength of
the exchange interaction between spins and so makes an ideal
test of the exchange interaction. As discussed previously the
bulk Curie temperature is related to the exchange coupling by
the mean-field expression given in equation (9). However, for
nanoparticles with a reduction in coordination number at the
surface and a finite number of spins, the Curie temperature and
criticality of the temperature-dependent magnetization will
vary significantly with varying size [57].

To investigate the effects of finite size and reduction in
surface coordination on the Curie temperature, the equilibrium
magnetization for different sizes of truncated octahedron
nanoparticles was calculated as a function of temperature. The
Hamiltonian for the simulated system is

H = �

X

i 6= j

Ji j Si · S j (28)

where Ji j = 5.6 ⇥ 10�21 J/link, and the crystal structure is
face-centred-cubic, which is believed to be representative
of Cobalt nanoparticles. Given the relative strength of the
exchange interaction, anisotropy generally has a negligible
impact on the Curie temperature of a material, and so the
omission of anisotropy from the Hamiltonian is purely for
simplicity. The system is simulated using the Monte Carlo
method with 10 000 equilibration and 20 000 averaging steps.
The system is heated sequentially in 10 K steps, with the
final state of the previous temperature taken as the starting
point of the next temperature to minimize the number of steps
required to reach thermal equilibrium. The mean temperature-
dependent magnetization for different particle sizes is plotted
in figure 8.

From equation (9) the expected Curie temperature is
1282 K, which is in agreement with the results for the 10 nm
diameter nanoparticle. For smaller particle sizes the magnetic
behaviour close to the Curie temperature loses its criticality,
making Tc difficult to determine. Traditionally the Curie point
is taken as the maximum of the gradient dm/dT [57], however
this significantly underestimates the actual temperature at
which magnetic order is lost (which is, by definition, the Curie
temperature). Other estimates of the Curie point such as the
divergence in the susceptibility are probably a better estimate
for finite systems, but this is beyond the scope of the present
article. Another effect visible for very small particle sizes is
the appearance of a magnetization above the Curie point, an
effect first reported by Binder [126]. This arises from local
moment correlations which exist above Tc. It is an effect only
observable in nanoparticles where the system size is close to
the magnetic correlation length.

Figure 8. Calculated temperature-dependent magnetization and
Curie temperature for truncated octahedron nanoparticles with
different size. A visualization of a 3 nm diameter particle is inset.

5.4. Demagnetizing fields

For systems larger than the single domain limit [33] and
systems which have one dimension significantly different
from another, the demagnetizing field can have a dominant
effect on the macroscopic magnetic properties. In micromag-
netic formalisms implemented in software packages such as
OOMMF [37], MAGPAR [38] and NMAG [39], the calculation of
the demagnetization fields is calculated accurately due to
the routine simulation of large systems where such fields
dominate. Due to the long-ranged interaction the calculation
of the demagnetization field generally dominates the compute
time and so computational methods such as the fast-Fourier-
transform [127, 128] and multipole expansion [129] have been
developed to accelerate their calculation.

In large-scale atomistic calculations, it is generally suffi-
cient to adopt a micromagnetic discretization for the demag-
netization fields, since they only have a significant effect on
nanometre length scales [7]. Additionally due to the generally
slow variation of magnetization, the timescales associated
with the changes in the demagnetization field are typically
much longer than the time step for atomistic spins. Here we
present a modified finite difference scheme for calculating the
demagnetization fields, described as follows.

The complete system is first discretized into macrocells
with a fixed cell size, each consisting of a number of atoms,
as shown in figure 9(a). The cell size is freely adjustable
from atomistic resolution to multiple unit cells depending on
the accuracy required. The position of each macrocell pmc is
determined from the magnetic ‘centre of mass’ given by the
expression

p
↵
mc =

P
n

i
µi p

↵
iP

n

i
µi

(29)

where n is the number of atoms in the macrocell, µi is the
local (site-dependent) atomic spin moment and ↵ represents
the spatial dimension x, y, z. For a magnetic material with the
same magnetic moment at each site, equation (29) corrects for
partial occupation of a macrocell by using the mean atomic
position as the origin of the macrocell dipole, as shown in
figure 9(b). For a sample consisting of two materials with
different atomic moments, the ‘magnetic centre of mass’ is
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Anisotropy energy

The atomistic magnetocrystalline anisotropy ku is de-
rived from the macroscopic anisotropy constant Ku by
the expression:

ku =
Kua

3

nat
(10)

where Ku in given in J/m3. In addition to the atom-
istic parameters, it is also worth noting the analogous
expressions for the anisotropy field Ha for a single do-
main particle:

Ha =
2Ku

Ms
=

2ku
µs

(11)

where symbols have their usual meaning.

Temperature dependent Hc?

Applying the preceding operations, parameters for the
key ferromagnetic elements are given in Tab. III.

Ferrimagnets and antiferromagnets

In the case of ferrimagnets and anti-ferromagnets the
above methods for anisotropy and moment determina-
tion do not work due to the lack of macroscopic measure-
ments, although the estimated exchange energies apply
equally well to the Néel temperature provided no mag-
netic frustration (due to lattice symmetry) is present.
In general, other theoretical calculations or formalisms
are required to determine parameters, such as mean-field
approaches1 or density functional theory calculations20.

Atomistic System Generation

Besides providing a comprehensive collection of meth-
ods for the simulation of magnetic materials, another key
component of the vampire software package is the abil-
ity to generate and model a wide variety of systems, in-
cluding single crystals, thin films, multilayers, nanopar-
ticles, core-shell systems and granular films. In addition
to these structural parameters each system may comprise
several di↵erent materials, each with a distinct set of ma-
terial properties such as exchange, anisotropy and mag-
netic moments. This naturally allows the simulation of
alloys at the atomic level and atomistic details such as
interface roughness and intermixing. In addition to the
built-in system generation, vampire can also import any
arbitrary set of atomic positions and interactions allow-
ing to to deal with almost any kind of magnetic structure.
However in the following we shall restrict ourselves to the
generation of a generic system with nearest neighbor in-
teractions only.

The first step is to generate a crystal lattice of the
desired type and dimensions su�ciently large to incorpo-
rate the complete system. vampire uses the unit cell as
the essential building block of the atomic structure, since
the exchange interactions of atoms between neighboring
unit cells are known before the structure is generated.
The global crystal is generated by replicating the basic
unit cell on a grid in x,y and z.
This bare crystal structure is then cut into the de-

sired geometry, for example a single nanoparticle, voronoi
granular structure, or a user defined 2D geometry by
removing atoms from the complete generated crystal.
Atoms within this geometry are then assigned to one
or more materials as desired, generating the complete
atomic system.
The final step is determining the exchange interactions

for all atoms in the defined system. Since each cell on the
grid contains a fixed number of atoms, and the exchange
interactions of those atoms with other neighboring cells
is known relative to the local cell, the interaction list is
trivial to generate. For computational e�ciency the final
interaction list is then stored as a linked list, completing
the setup of the atomistic system ready for integration.
parallel implementation.

IV. INTEGRATION METHODS

Although the spin Hamiltonian describes the energet-
ics of the magnetic system, it provides no information
regarding its time evolution, thermal fluctuations, or the
ability to determine the ground state for the system. In
the following the commonly utilized integration methods
for atomistic spin models are introduced.

Spin Dynamics

The first understanding of spin dynamics came from
ferromagnetic resonance experiments, where the time de-
pendent behavior of a magnetic materials is described
by the equation derived by Landau and Lifshitz31. The
phenomenological damping parameter ↵ in the Landau-
Lifshitz equation describes the coupling of the magneti-
zation to the heat bath causing relaxation of the magne-
tization toward the applied field direction. In the first
approximation the relaxation rate was assumed a lin-
ear function of the damping parameter. Subsequently
Gilbert introduced a critical damping parameter, with a
maximum e↵ective damping for � = 1, to arrive at the
Landau-Lifshitz-Gilbert (LLG) equation32.
The modern form of the LLG at the atomistic level is

given by:

@Si

@t
= �

�

(1 + �2)
[Si ⇥H

i
e↵ + �Si ⇥ (Si ⇥H

i
e↵)] (12)
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VAMPIRE: State of the art atomistic modeling of magnetic nanomaterials

R. F. L. Evans,
⇤

W. J. Fan, J. Barker, P. Chureemart, T. Ostler, and R. W. Chantrell

Department of Physics, The University of York, York, YO10 5DD, UK

(Dated: October 30, 2017)

I. INTRODUCTION

II. THEORETICAL METHODS

H =�1

2
Â
i, j

Ji jSi ·S j �Â
i

ku (Si · ei)
2 �Â

i

µiSi ·Bi (1)

∂Si

∂ t
=� gi

(1+l 2

i
)
[Si ⇥Bi +liSi ⇥ (Si ⇥Bi)] (2)

Bi = zi(t)�
1

µi

∂H

∂Si

(3)

zi = hz a

i
(t)z b

j
(t)i= 2di jdab(t � t

0)
µilikBT

gi

(4)

hz a

i
(t)i= 0 (5)

⇤
richard.evans@york.ac.uk

Si ⨉ Bi

Si ⨉ [Si ⨉ Bi]

Si

Bi



Stochastic Landau-Lifshitz-Gilbert equation

VAMPIRE: State of the art atomistic modeling of magnetic nanomaterials

R. F. L. Evans,
⇤

W. J. Fan, J. Barker, P. Chureemart, T. Ostler, and R. W. Chantrell

Department of Physics, The University of York, York, YO10 5DD, UK

(Dated: October 30, 2017)

I. INTRODUCTION

II. THEORETICAL METHODS

H =�1

2
Â
i, j

Ji jSi ·S j �Â
i

ku (Si · ei)
2 �Â

i

µiSi ·Bi (1)

∂Si

∂ t
=� gi

(1+l 2

i
)
[Si ⇥Bi +liSi ⇥ (Si ⇥Bi)] (2)

Bi = zi(t)�
1

µi

∂H

∂Si

(3)

zi = hz a

i
(t)z b

j
(t)i= 2di jdab(t � t

0)
µilikBT

gi

(4)

hz a

i
(t)i= 0 (5)

⇤
richard.evans@york.ac.uk

VAMPIRE: State of the art atomistic modeling of magnetic nanomaterials

R. F. L. Evans,
⇤

W. J. Fan, J. Barker, P. Chureemart, T. Ostler, and R. W. Chantrell

Department of Physics, The University of York, York, YO10 5DD, UK

(Dated: December 8, 2017)

I. INTRODUCTION

II. THEORETICAL METHODS

H =�Â
i< j

Ji jSi ·S j �Â
i

ku (Si · ei)
2 �Â

i

µiSi ·Bi (1)

∂Si

∂ t
=� gi

(1+l 2

i
)
[Si ⇥Bi +liSi ⇥ (Si ⇥Bi)] (2)

Bi = zi(t)�
1

µi

∂H

∂Si

(3)

zi = hz a

i
(t)z b

j
(t)i= 2di jdab(t � t

0)
likBT

µigi

(4)

hz a

i
(t)i= 0 (5)

III. TWO TEMPERATURE MODEL

✓
TeCe

∂Te

∂ t

◆
=�Ge (Te �Tl)+P(t) (6)

Cl

∂Tl

∂ t
= Ge (Te �Tl) (7)

P(t) =
P0p
2p

exp

 
�(t � t0)

t2
p

!
(8)

M(T ) = M0

✓
1� T

Tc

◆b
(9)

Bi

dp
=

µ0

4p

 

Â
i6= j

3(S j · r̂)r̂�S j

|r|3

!
(10)

Di

dp
=

µ0

4p

 

Â
i6= j

3(S j · r̂)r̂�S j

|r|3

!
(11)

⌦
Bp

dm

↵
=

µ0

4p

 

Â
p6=q

Dinter · hmq

mc
i
!
+

2µ0

3

Dintra ·
⌦
mp

mc

↵

V
p

mc

.

(12)

⌦
Bp

dm

↵
=

µ0

4p

 

Â
p6=q

3(mq

mc · r̂)r̂�mq

mc

r3

!
� µ0

3

mp

mc

V
p

mc

(13)

JT

i j
=

2

4
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

3

5 , (14)

H =�Â
i< j

⇥
S

i
x
,Si

y
,Si

z

⇤
2

4
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

3

5

2

4
S

j

x

S
j

y

S
j

z

3

5 . (15)

T =�
⌧

∂F

∂q

�
=

*

Â
i

Si ⇥Bi

+
(16)

T =�
⌧

∂F

∂f

�
=

*

Â
i

Si ⇥Bi

+
(17)

⇤
richard.evans@york.ac.uk

VAMPIRE: State of the art atomistic modeling of magnetic nanomaterials

R. F. L. Evans,
⇤

W. J. Fan, J. Barker, P. Chureemart, T. Ostler, and R. W. Chantrell

Department of Physics, The University of York, York, YO10 5DD, UK

(Dated: December 8, 2017)

I. INTRODUCTION

II. THEORETICAL METHODS

H =�Â
i< j

Ji jSi ·S j �Â
i

ku (Si · ei)
2 �Â

i

µiSi ·Bi (1)

∂Si

∂ t
=� gi

(1+l 2

i
)
[Si ⇥Bi +liSi ⇥ (Si ⇥Bi)] (2)

Bi = zi(t)�
1

µi

∂H

∂Si

(3)

zi = hz a

i
(t)z b

j
(t)i= 2di jdab(t � t

0)
likBT

µigi

(4)

hz a

i
(t)i= 0 (5)

III. TWO TEMPERATURE MODEL

✓
TeCe

∂Te

∂ t

◆
=�Ge (Te �Tl)+P(t) (6)

Cl

∂Tl

∂ t
= Ge (Te �Tl) (7)

P(t) =
P0p
2p

exp

 
�(t � t0)

t2
p

!
(8)

M(T ) = M0

✓
1� T

Tc

◆b
(9)

Bi

dp
=

µ0

4p

 

Â
i6= j

3(S j · r̂)r̂�S j

|r|3

!
(10)

Di

dp
=

µ0

4p

 

Â
i6= j

3(S j · r̂)r̂�S j

|r|3

!
(11)

⌦
Bp

dm

↵
=

µ0

4p

 

Â
p6=q

Dinter · hmq

mc
i
!
+

2µ0

3

Dintra ·
⌦
mp

mc

↵

V
p

mc

.

(12)

⌦
Bp

dm

↵
=

µ0

4p

 

Â
p6=q

3(mq

mc · r̂)r̂�mq

mc

r3

!
� µ0

3

mp

mc

V
p

mc

(13)

JT

i j
=

2

4
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

3

5 , (14)

H =�Â
i< j

⇥
S

i
x
,Si

y
,Si

z

⇤
2

4
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

3

5

2

4
S

j

x

S
j

y

S
j

z

3

5 . (15)

T =�
⌧

∂F

∂q

�
=

*

Â
i

Si ⇥Bi

+
(16)

T =�
⌧

∂F

∂f

�
=

*

Â
i

Si ⇥Bi

+
(17)

⇤
richard.evans@york.ac.uk



Magnetostatics in atomistic spin models

• Magnetostatics a weak effect at short distances, particularly at the atomic 
scale


• We therefore use a micromagnetic approach to the demagnetizing field: 
macrocell approximation


• Local moments are summed into a cell and the continuum approximation 
applied


• Interaction between cells encapsulated in a dipole tensor, built from 
atomistic dipole-dipole interactions, dipole field at large ranges

J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

Figure 9. (a) Visualization of the macrocell approach used to
calculate the demagnetization field, with the system discretized into
cubic macrocells. Each macrocell consists of several atoms, shown
schematically as cones. (b) Schematic of the macrocell
discretization at the curved surface of a material, indicated by the
dashed line. The mean position of the atoms within the macrocell
defines the centre of mass where the effective macrocell dipole is
located. (c) Schematic of a macrocell consisting of two materials
with different atomic moments. Since the magnetization is
dominated by one material, the magnetic centre of mass moves
closer to the material with the higher atomic moments.

closer to the atoms with the higher atomic moments, as shown
in figure 9(c). This modified micromagnetic scheme gives
a good approximation of the demagnetization field without
having to use computationally costly atomistic resolution
calculation of the demagnetization field.

The total moment in each macrocell mmc is calculated
from the vector sum of the atomic moments within each cell,
given by

m
↵
mc =

nX

i

µi S
↵
i
. (30)

Depending on the particulars of the system, the macrocell
moments can vary significantly depending on position, com-
position and temperature. At elevated temperatures close to
the Curie point, the macrocell magnetization becomes small,
and so the effects of the demagnetizing field are much less
important. Similarly in compensated ferrimagnets consisting
of two competing sublattices the overall macrocell magnetiza-
tion can also be small again leading to a reduced influence of
the demagnetizing field.

The demagnetization field within each macrocell p is
given by

H
mc,p

demag =
µ0

4⇡

0

@
X

p 6=q

3(mmc
q · r̂)r̂ � mmc

q

r3

1

A �
µ0

3
mmc

p

V
p

mc

(31)
where r is the separation between dipoles p and q , r̂ is a unit
vector in the direction p ! q , and V

p

mc is the volume of the
macrocell p. The first term in equation (31) is the usual dipole
term arising from all other macrocells in the system, while the
second term is the self-demagnetization field of the macrocell,
taken here as having a demagnetization factor 1/3. Strictly
this is applicable only for the field at the centre of a cube.
However, the non-uniformity of the field inside a uniformly
magnetized cube is not large and the assumption of a uniform
demagnetization field is a reasonable approximation. The self-
demagnetization term is often neglected in the literature, but
in fact is essential when calculating the field inside a magnetic
material. Once the demagnetization field is calculated for each
macrocell, this is applied uniformly to all atoms as an effective
field within the macrocell. It should be noted however that
the macrocell size cannot be larger than the smallest sample
dimension, otherwise significant errors in the calculation of
the demagnetizing field will be incurred.

The volume of the macrocell Vmc is an effective volume
determined from the number of atoms in each cell and given
by

Vmc = n
a
mcVatom = n

a
mc

Vuc

na
uc

(32)

where n
a
mc is the number of atoms in the macrocell, n

a
uc is the

number of atoms in the unit cell and Vuc is the volume of the
unit cell. The macrocell volume is necessary to determine the
magnetization (moment per volume) in the macrocell. For unit
cells much smaller than the system size, equation (32) is a good
approximation, however for a large unit cell with significant
free space, for example a nanoparticle in vacuum, the free
space contributes to the effective volume which reduces the
effective macrocell volume.

5.4.1. Demagnetizing field of a platelet. To verify the im-
plementation of the demagnetization field calculation it is
necessary to compare the calculated fields with some analytic
solution. Due to the complexity of demagnetization fields
analytical solutions are only available for simple geometric
shapes such cubes and cylinders [130], however for an infinite
perpendicularly magnetized platelet the demagnetization field
approaches the magnetic saturation �µ0 Ms. To test this limit
we have calculated the demagnetizing field of a 20 nm ⇥

20 nm ⇥ 1 nm platelet as shown in figure 10. In the centre
of the film agreement with the analytic value is good, while at
the edges the demagnetization field is reduced as expected.

5.4.2. Performance characteristics. In micromagnetic simu-
lations, calculation of the demagnetization field usually dom-
inates the runtime of the code and generally it is preferable to
have as large a cell size as possible. For atomistic calculations
however, additional flexibility in the frequency of updates of
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Typical simulations: hysteresis simulations
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where rx , ry , rz are the components of the unit vector in the
direction p ! q, and rpq is the separation of macrocells. Since
the matrix is symmetric along the diagonal only six numbers
need to be stored in memory. The total demagnetization field
for each macrocell p is then given by:

H
mc,p

demag =
µ0

4⇡

0

@
X

p 6=q

Mpq · mmc
q

1

A �
µ0

3
mmc

p

V
p

mc
. (34)

The relative performance of the matrix optimization is plotted
for comparison in figure 11(b), showing a significant reduction
in runtime. Where the computer memory is sufficiently large,
the recalculated matrix should always be employed for optimal
performance.

In addition to variable macrocell sizes, due to the small
time steps employed in atomistic models and that the mag-
netization is generally a slowly varying property, it is not
always necessary to update the demagnetization fields every
single time step. Hysteresis loops for different times between
updates of the demagnetization field are plotted in figure 11(c).
In general hysteresis calculations are sufficiently accurate
with a picosecond update of the demagnetizing field, which
significantly reduces the computational cost.

In general good accuracy for the demagnetizing field
calculation can be achieved with coarse discretization and
infrequent updates, but fast dynamics such as those induced
by laser excitation require much faster updates, or simulation
of domain wall processes in high anisotropy materials requires
finer discretizations to achieve correct results.

5.4.3. Demagnetizing field in a prolate ellipsoid. Since the
macrocell approach works well in platelets and nanodots, it
is also interesting to apply the same method to a slightly
more complex system: a prolate ellipsoid. An ellipsoid adds
an effective shape anisotropy due to the demagnetization
field, and so for a particle with uniaxial magnetocrystalline
anisotropy along the elongated direction (z), the calculated
coercivity should increase according to the difference in the
demagnetization field along x and z, given by:

H
shape
dm = +1Nµ0 Ms (35)

where 1N = Nz � Nx . The demagnetizing factors Nx , Ny ,
and Nz are known analytically for various ellipticities [131],
and here we assume a/c = b/c = 0.5, where a, b, and c are
the extent of the ellipsoid along x , y and z respectively.

To verify the macrocell approach gives the same expected
increase of the coercivity we have simulated a generic ferro-
magnet with atomic moment 1.5 µB, an FCC crystal structure
with lattice spacing 3.54 Å and anisotropy field of Ha = 1 T.
The particle is cut from the lattice in the shape of an ellipsoid,
of diameter 10 nm and height of 20 nm, as shown inset in
figure 12. A macrocell size of 2 unit cells is used, which is
updated every 100 time steps (0.1 ps).

As expected the coercivity increases due to the shape
anisotropy. From [131] the expected increase in the coercivity
is H

shape
dm = 0.37 T which compares well to the simulated

increase of 0.33 T.

Figure 12. Simulated hysteresis loops for an ellipsoidal nanoparticle
with an axial ratio of 2 showing the effect of the demagnetizing field
calculated with the macrocell approach. A visualization of the
simulated particle is inset.

6. Parallel implementation and scaling

Although the algorithms and methods discussed in the preced-
ing sections describe the mechanics of atomistic spin models, it
is important to note finally the importance of parallel process-
ing in simulating realistic systems which include many-particle
interactions, or nano patterned elements with large lateral
sizes. Details of the parallelization strategies which have been
adopted to enable the optimum performance of VAMPIRE for
different problems are presented in appendix C. In general
terms the parallelization works by subdividing the simulated
system into sections, with each processor simulating part of
the complete system. Spin orientations at the processor bound-
aries have to be exchanged with neighbouring processors to
calculate the exchange interactions, which for small problems
and large numbers of processors can significantly reduce
the parallel efficiency. The use of latency hiding, where the
local spins are calculated in parallel with the inter-processor
communications, is essential to ensure good scaling for these
problems.

To demonstrate the performance and scalability of VAM-

PIRE, we have performed tests for three different system sizes:
small (10 628 spins), medium (8 ⇥ 105 spins), and large (8 ⇥

106 spins). We have access to two Beowulf-class clusters; one
with 8 cores/node with an Infiniband 10 Gbps low-latency
interconnect, and another with 4 cores/node with a Gigabit
Ethernet interconnect. For parallel simulations the intercon-
nect between the nodes can be a limiting factor for increasing
performance with increasing numbers of processors, since
as more processors are added, each has to do less work per
time step. Eventually network communication will dominate
the calculation since processors with small amounts of work
require the data from other processors in shorter times, leading
to a drop in performance. The scaling performance of the
code for 100 000 time steps on both machines is presented in
figure 13.

The most challenging case for parallelization is the small
system size, since a significant fraction of the system must
be communicated to other processors during each timestep.
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Typical simulations: ultrafast spin dynamics

choose Fe due to its lower Curie temperature of 1043 K and
larger magnetic moment of 2.2 lB.

Before considering the switching properties of the
Fe/FePt synthetic ferrimagnet, we first address the demagnet-
ization dynamics of the two uncoupled layers individually.
The system consists of a 5 nm thick FePt layer and 1 nm
thick Fe layer with a lateral size of 8 nm in the shape of a
cylinder. The temporal temperature profile arising from a 20
fs laser pulse is calculated using the two temperature model
treating the electron and phonon systems separately and

coupling the magnetic system to the electrons.20 The param-
eters for the two temperature model are the same as those in
Ref. 10 and further details are provided in the supplementary
material.14 The resulting demagnetization dynamics for the
Fe and FePt layers are presented in Fig. 3. As expected, the
FePt and Fe layers exhibit “fast” and “slow” dynamics,
respectively, but the different Curie temperatures of the two
layers lead to different levels of demagnetization.

We finally consider ultrafast all-optical switching in the
SFiM nanostructure. Heat-induced switching is driven by an
intricate process involving ultrafast demagnetization, trans-
fer of angular momentum between the sublattices, and high
frequency precession via the exchange mode,7 shown sche-
matically in Fig. 4. The strength of the exchange interaction
determines the timescale of the switching process and the
rate of transfer of angular momentum between the sublattices
and so should be as strong as possible. Depending on the sys-
tem there is some disparity between the values of exchange
measured experimentally11,21 and calculated theoretically,22

and so we assume an intermediate value of the interlayer
exchange interaction of !1=5 that of the bulk FePt exchange
ðJFePt# Fe

ij ¼ # 1:635 % 10# 21 J=linkÞ. The calculated sublat-
tice magnetization dynamics resulting from a 20 fs heat pulse
is shown in Fig. 5.

FIG. 2. (a) Simulated demagnetization of a ferromagnet under the action of a
heat pulse (points) for different values of the intrinsic damping constant, a,
fitted to Eq. (2) (lines). (b) Fitted demagnetization time constants s1 and s2 as
a function of the ratio ls=a for a ferromagnetic material. The legend shows
the origin of the calculated demagnetization time for variable a ðls ¼ 1:5lBÞ
or for variable ls (a¼ 0.1), respectively. The data show that the demagnetiza-
tion time constants for the same exchange interaction depend only on the ra-
tio of ls=a, and not the individual values of ls and a.

FIG. 3. Simulated magnetization dynamics for Fe and FePt ferromagnets
under action of an ultrafast heat pulse Gaussian in time with a width of
20 fs. The magnetization is normalized to the 0 K saturation value, and so
the different Curie temperatures lead to different reduced magnetization at
the starting temperature of T¼ 300 K. The heat pulse is sufficient to demag-
netize the FePt layer, but the Fe layer remains ordered.

FIG. 4. Schematic illustration of the switching process for all-optical heat-induced magnetic switching. (a) The two sublattices are initially aligned anti-
parallel, and application of a laser pulse causes rapid demagnetization of the FePt sublattice. (b) Thermal fluctuations lead to a small transverse component
which initiates a rapid precession of the FePt sublattice in the exchange field of the Fe layer and relaxation toward the Fe sublattice. (c) As the FePt layer pre-
cesses the Fe layer responds to the laser pulse and begins mutual precession leading to a transient ferromagnetic state. (d) After the system has reached thermal
equilibrium the sublattices are aligned antiparallel and relax to the easy axis direction, completing the switching process.
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Jij exchange interactions in the SFiM system, arising from the
intralayer and interlayer contributions, detailed in Table I.
Since we are considering heat-induced switching no external
field is applied during the simulations. The system of coupled
spins is integrated using the Landau-Lifshitz-Gilbert equation
with the Langevin dynamics formalism at the atomistic level
using the Heun numerical scheme.13 More details of the
model are provided in the supplementary material.14

For a synthetic ferrimagnet to exhibit thermally induced
magnetic switching it is essential to consider the physical
requirements of the structure analogous to those of intrinsic
RE-TM ferrimagnets. The first property is the anti-
ferromagnetic exchange coupling of the component layers of
the synthetic ferrimagnet, which can be engineered by a suita-
ble choice and thickness of material such as Ir or Ru.11 The
second criterion is the existence of distinct magnetization dy-
namics for the two component layers, which allows the for-
mation of a transient ferromagnetic state and drives the
switching process.4,5

Let us start with a simplistic scenario, where the effects of
exchange are ignored and the demagnetization time sd of a fer-
romagnetic material is given by the ratio of the atomic mag-
netic moment and damping,15 such that sd ! ls=a. In this
simplistic view, a variation of the damping parameter or the
local atomic spin moment will lead to a straightforward varia-
tion of the demagnetization time. To test this assertion, we
have simulated a ferromagnetic material, with an exchange
coupling the same as FePt, but with freely varied local atomic
spin moment ls and damping parameter, a, to which a
step-function increase to a temperature above the Curie tem-
perature is applied. The sudden increase in temperature leads
to a demagnetization of the material, with characteristic behav-
ior shown in Fig. 2(a) for different values of the damping pa-
rameter. The demagnetization dynamics are not generally
describable by a single demagnetization time sd, but usually it

is sufficient to describe the demagnetization dynamics by two
leading contributions.16 We therefore fit the time-dependent
demagnetization dynamics with the function4,17

mðtÞ ¼ A1 exp % t

s1

! "
þ A2 exp % t

s2

! "
þ const:; (2)

where the demagnetization time constants s1 and s2 are
intrinsic timescales and A1, A2 and the constant are fitting pa-
rameters. Since the final temperature is above the Curie point
the constant is close to zero but is treated as a free parameter
of the fitting.

A systematic variation of the Gilbert damping parameter
and local spin moment leads to a range of demagnetization
times (by fitting to Eq. (2)), shown in Fig. 2(b). The essential
result is that the demagnetization time constants, for a fixed
exchange constant, depend only on the ratio ls=a. Thus, a cer-
tain demagnetization time can be engineered through any com-
bination of the local spin moment (changeable by varying the
composition in FeCo alloys, for example), and the damping pa-
rameter (for example by using high anisotropy materials or by
introducing disorder in the form of defects and impurities).

In addition to the requirements of antiferromagnetic
coupling and distinct demagnetization times, the thickness of
the two layers is also important for synthetic ferrimagnets. In
RE-TM alloys, the antiferromagnetic exchange interactions
are a bulk effect existing between neighboring atoms. For
the synthetic structure, however, the exchange is an interface
effect, so the effective exchange field on the layer is inver-
sely proportional to the layer thickness. Hence, for large
effective coupling thin layers are preferred. For thermal sta-
bility larger volumes are preferred, and so there must be a
balance between this and the effective exchange field. In
general, it appears to be preferable for the high anisotropy
material to have a larger volume, while the other layer can
be thin to maximize the effective exchange field.

Having defined the essential physical parameters for
thermally induced switching in synthetic ferrimagnets, we
now consider specific materials which may be suitable for
applications. For devices, strong magnetocrystalline anisot-
ropy is essential, and so the obvious choice (excluding rare-
earth metals) are CoPt and FePt based alloys, currently used
in conventional magnetic recording media. The dynamic
properties of such materials can be inferred from theoretical
calculations of atomic moments and experimental results of
the effective damping. In L10 FePt, the magnetic moments
are not evenly distributed between the Fe and Pt atoms, since
pure Pt is non-magnetic.18 Ab-initio calculations18 show that
the Fe moments in FePt are significantly enhanced over bulk
Fe, with an effective moment of 3.2 lB, and so one would
normally assume relatively slow dynamics for the Fe
moments in FePt. However, the strong spin-orbit coupling in
FePt also leads to large Gilbert damping around 0.1,19 and so
FePt as a whole exhibits “fast” dynamics. The relatively low
Curie temperature of !700 K is also suitable for laser
induced switching as the threshold fluence is lower. For
heat-induced switching the two layers must exhibit distinct
magnetization dynamics, and so the other layer must be
‘slower’ than FePt. The obvious choices are elemental Fe or
Co, due to their lower damping and high moments. Here, we

FIG. 1. Visualization of a synthetic ferrimagnetic structure consisting of two
ferromagnetic layers separated by a non-magnetic spacer layer to engineer
anti-ferromagnetic coupling between them.

TABLE I. Summary table of model parameters and their units.

Fe FePt Unit

Jij 6.75 ' 10% 1 4.5 ' 10% 21 J/link

ls 2.2 3.2 lB

ku 0.0 1.61 ' 10% 22 J/atom

a 0.01 0.1 …
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The FePt layer is initially demagnetized by the heat
pulse and switches direction under the influence of the
exchange field from the Fe, while the Fe layer itself retains a
higher degree of order. As the electron system cools the FePt
recovers its order along the—z direction, i.e., it switches its
magnetization. Simultaneously the Fe sublattice begins to
precess in the increasing exchange field of the FePt layer,
and switches precessionally, as seen from the oscillations in
the Fe magnetization in Fig. 5. Finally, the system relaxes to
the usual (but reversed) antiferromagnetic state, with some
final relaxation towards the easy axis direction on a longer
timescale. The simulations demonstrate the feasibility of
ultrafast heat-induced switching in synthetic ferrimagnetic
nanostructures with the correct physical characteristics.

Although the switching is a thermally driven process,
the mechanism is itself deterministic and quite robust. To
demonstrate this, we present similar switching for a CoPt/Fe
bilayer structure in the supplementary material.14 The
exchange coupling between the two layers is an essential
component for the switching. For fast dynamics this should
ideally be as large as possible, but switching also occurs for
typical values of !6 mJ/m2 reported experimentally,11 as
presented in the supplementary material.14

To conclude, we have investigated the laser induced
dynamic properties of synthetic ferrimagnets, and demon-
strated the possibility of all-optical magnetic switching in
Fe/FePt nano structures. Material combinations other than
Fe/FePt are possible, including other alloys based on Ni, Fe,
and Co ferromagnets such as Fe/CoPt. The interlayer
exchange coupling, which drives the switching process, can
also be engineered by using different materials such as Ir or
Si, though the optimal coupling depends on the thickness of
the layers. This allows the tuning of properties such as the
Curie temperature, magnetocrystalline anisotropy and Gilbert
damping to achieve the desired dynamic behavior and switch-
ing properties, and opens the possibility of engineering high
performance magnetic data storage devices. This is highly
significant for the following reasons. First, the removal of the
necessity for the write field in magnetic recording write trans-
ducers would lead to a dramatic reduction in the complexity

of transducer design and the number of operations required
for their production. Second, it has been shown that the mag-
nitude of the write field is a major factor limiting the ultimate
density in magnetic recording.23 Essentially, the field during
writing must be sufficiently large to overcome thermally
driven back-switching of the magnetization, a factor termed
the thermal writability. In Ref. 23, it was shown that thermal
writability is a more important factor than the thermal stabil-
ity criterion in determining the limiting recording density.
The effective field in the TIMS process is the exchange field
between the sublattices, which is significantly larger than the
values accessible by today’s inductive technology, which
would essentially remove the thermal writability as a limiting
factor in magnetic recording.
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lattices leads to switching of the Fe sublattice, while the FePt sublattice is
stabilized by the high magnetocrystalline anisotropy.
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Other codes for atomistic simulations

• UppASD - good for linking to first 
principles simulations, spin wave spectra 
etc


• SPIRIT - online interactive tool        
https://spirit-code.github.io



Summary

• Covered the essential elements of micromagnetic simulations and their 
formulation


• Introduced atomistic spin models, their fundamentals


