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Spin Hamiltonian

Describes the energetics of a complete system
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II. THE ATOMISTIC SPIN MODEL

Magnetism on the atomic scale presents two natural
limits: the discrete limit of continuum micromagnetics
and the classical limit for the quantum mechanical elec-
tron spin. The essential model of atomic scale magnetism
was devised by Heisenberg in 192824 for molecular hy-
drogen. The so-named Heisenberg model describes the
atomic scale exchange interaction with a local moment
theory, considering the interaction between two electron
spins on neighbouring atomic sites. By applying the
Heitler-London approximation25 for the linear combina-
tion of electron orbitals, Heisenberg developed a model
which describes the energy of neighbouring atoms with
spin, given by:

< H >= �JijS̃i · S̃j (1)

where S̃i and S̃j are the quantum mechanical spins on
atomic sites i and j respectively, and Jij is the interaction
energy arising from the probability of the two electrons
exchanging atomic sites. The quantum mechanical na-
ture of the electron spins leads to quantization of the elec-
tron energy, which for a single spin was demonstrated by
the Stern-Gerlach experiment26. In the above case, how-
ever, the quantum e↵ects are far more complex due to the
coupling of the electronic spin moments. In the limit of
infinite spin angular momentum, the quantisation e↵ects
vanish, and the spin moments have continuous degrees of
freedom. Such spins are said to be classical, leading to
the classical Heisenberg spin model. It should be pointed
out that there is a fundamental assumption within the
Heisenberg model, namely that the electrons are closely
bound to the atomic sites. In general this is not the case
for most magnetic materials, since the magnetic interac-
tions usually arise from unpaired outer electrons, which
in metals are loosely bound. The band theory of fer-
romagnetism proposed by Stoner27 successfully explains
why the usual magnetic atoms possess non-integer spin
moments by describing the exchange splitting of the spin-
up and spin-down energy bands. However, the band the-
ory reveals little about the fundamental magnetic prop-
erties due to its complexity, and so an assumption that
on some, very short, timescale the local moment approx-
imation is valid is not unreasonable, provided that it
is acknowledged that in fact electrons are not confined
to the atomic sites over longer timescales. Collectively
this leads to an e↵ective Heisenberg classical spin model,
where the spins have some non-integer, time-averaged,
value of the spin moment which is assumed constant.
Discussion, Hubbard model

A. The Classical Spin Hamiltonian

The Heisenberg spin model incorporates all the pos-
sible magnetic interactions into a single convenient for-

malism which can be used to investigate a myriad of
magnetic phenomena at the natural atomic scale. The
principal component of the model is the formation of the
spin Hamiltonian, describing the fundamental energetics
of any magnetic system. Such a Hamiltonian is formed
from a summation of contributions, each of which de-
scribes an interaction between an atomic spin moment
and neighbouring moments or external magnetic fields.
The spin Hamiltonian typically takes the form:

H = Hexc +Hani +Happ (2)

The dominant contribution to the spin Hamiltonian for
the vast majority of magnetic materials comes from the
exchange or Weiss field, which attempts to align the
atomic spin moments. The Weiss field in fact originates
from the quantum mechanical exchange interaction, aris-
ing from the probability of an electron moving from one
atomic site to another. The exchange interaction, as it is
called, leads to very strong alignment of spin moments to
their neighbours in ferromagnetic metals. The total ex-
change energy for each atom, i, is described by the sum
over all neighbouring atomic spin moments:

Hexchange =
X

i<j

JijSi · Sj (3)

where Jij is the exchange interaction between the sites i
and j, Si is the local spin moment and Sj are the spin
moments of neighbouring atoms. The spin moments are
expressed here as unit vectors Si = µi/|µi|. In the sim-
plest case the exchange interaction is single valued, and
the interaction is only between nearest neighbours. In
this case a negative value of Jij results in a ferromagnetic
interaction between spins and attempts to align the spins,
while a positive value results in an anti-ferromagnetic
interaction between spins, which attempts to align the
spins anti-parallel. In more complex materials, the ex-
change interaction forms a tensor with components:

Jij =

2

4
Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

3

5 (4)

which is capable of describing anisotropic exchange in-
teractions, such as two-ion anisotropy (Oleg) and the
Dzyaloshinskii-Moriya interaction (o↵-diagonal compo-
nents of the exchange tensor). Additionally the exchange
interaction can extend to several atomic spacings, rep-
resenting hundreds of atomic interactions. Such com-
plex interactions generally result from Density Functional
Theory parameterisation of magnetic materials, where
the electronic interactions can extend far away from the
local spin.

After the exchange interaction, the most important pa-
rameter in a magnetic system is generally the magneto-
crystalline anisotropy, namely the preference for spin mo-
ments to align with particular crystallographic axes, aris-
ing from the e↵ect of the local crystal environment on
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Anisotropy energy

The atomistic magnetocrystalline anisotropy ku is de-
rived from the macroscopic anisotropy constant Ku by
the expression:

ku =
Kua

3

nat
(10)

where Ku in given in J/m3. In addition to the atom-
istic parameters, it is also worth noting the analogous
expressions for the anisotropy field Ha for a single do-
main particle:

Ha =
2Ku

Ms
=

2ku
µs

(11)

where symbols have their usual meaning.

Temperature dependent Hc?

Applying the preceding operations, parameters for the
key ferromagnetic elements are given in Tab. III.

Ferrimagnets and antiferromagnets

In the case of ferrimagnets and anti-ferromagnets the
above methods for anisotropy and moment determina-
tion do not work due to the lack of macroscopic measure-
ments, although the estimated exchange energies apply
equally well to the Néel temperature provided no mag-
netic frustration (due to lattice symmetry) is present.
In general, other theoretical calculations or formalisms
are required to determine parameters, such as mean-field
approaches1 or density functional theory calculations20.

Atomistic System Generation

Besides providing a comprehensive collection of meth-
ods for the simulation of magnetic materials, another key
component of the vampire software package is the abil-
ity to generate and model a wide variety of systems, in-
cluding single crystals, thin films, multilayers, nanopar-
ticles, core-shell systems and granular films. In addition
to these structural parameters each system may comprise
several di↵erent materials, each with a distinct set of ma-
terial properties such as exchange, anisotropy and mag-
netic moments. This naturally allows the simulation of
alloys at the atomic level and atomistic details such as
interface roughness and intermixing. In addition to the
built-in system generation, vampire can also import any
arbitrary set of atomic positions and interactions allow-
ing to to deal with almost any kind of magnetic structure.
However in the following we shall restrict ourselves to the
generation of a generic system with nearest neighbor in-
teractions only.

The first step is to generate a crystal lattice of the
desired type and dimensions su�ciently large to incorpo-
rate the complete system. vampire uses the unit cell as
the essential building block of the atomic structure, since
the exchange interactions of atoms between neighboring
unit cells are known before the structure is generated.
The global crystal is generated by replicating the basic
unit cell on a grid in x,y and z.
This bare crystal structure is then cut into the de-

sired geometry, for example a single nanoparticle, voronoi
granular structure, or a user defined 2D geometry by
removing atoms from the complete generated crystal.
Atoms within this geometry are then assigned to one
or more materials as desired, generating the complete
atomic system.
The final step is determining the exchange interactions

for all atoms in the defined system. Since each cell on the
grid contains a fixed number of atoms, and the exchange
interactions of those atoms with other neighboring cells
is known relative to the local cell, the interaction list is
trivial to generate. For computational e�ciency the final
interaction list is then stored as a linked list, completing
the setup of the atomistic system ready for integration.
parallel implementation.

IV. INTEGRATION METHODS

Although the spin Hamiltonian describes the energet-
ics of the magnetic system, it provides no information
regarding its time evolution, thermal fluctuations, or the
ability to determine the ground state for the system. In
the following the commonly utilized integration methods
for atomistic spin models are introduced.

Spin Dynamics

The first understanding of spin dynamics came from
ferromagnetic resonance experiments, where the time de-
pendent behavior of a magnetic materials is described
by the equation derived by Landau and Lifshitz31. The
phenomenological damping parameter ↵ in the Landau-
Lifshitz equation describes the coupling of the magneti-
zation to the heat bath causing relaxation of the magne-
tization toward the applied field direction. In the first
approximation the relaxation rate was assumed a lin-
ear function of the damping parameter. Subsequently
Gilbert introduced a critical damping parameter, with a
maximum e↵ective damping for � = 1, to arrive at the
Landau-Lifshitz-Gilbert (LLG) equation32.
The modern form of the LLG at the atomistic level is

given by:

@Si

@t
= �

�

(1 + �2)
[Si ⇥H

i
e↵ + �Si ⇥ (Si ⇥H

i
e↵)] (12)



Stochastic Landau-Lifshitz-Gilbert
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TABLE III. Table of derived constants for the ferromagnetic elements Fe, Co and Ni.

Fe Co Ni Unit
Crystal structure BCC HCP FCC -
Unit cell size a 2.5 2.5 2.5 Å
Coordination number z 8 12 12 -
Curie Temperature Tc 1043 1388 600 K
Atomic spin moment µs 2.2 1.44 0.6 µB

Exchange Energy Jij 4.5 ⇥10�21 4.5 ⇥10�21 5.6 ⇥10�21 J/link
Anisotropy Energy ku 4.5 ⇥10�26 4.5 ⇥10�24 4.5 ⇥10�25 J/atom

where Si is a unit vector representing the direction of the
magnetic spin moment of site i, � is the gyromagnetic ra-
tio, � is the Gilbert damping parameter, and H

i
e↵ is the

net magnetic field on each spin. The LLG equation de-
scribes the interaction of an atomic spin moment i with
an e↵ective magnetic field, which is obtained from the
negative first derivative of the complete spin Hamilto-
nian, such that:

H
i
e↵ = �

1

µs

@H

@Si
(13)

where µs is the local spin moment. The inclusion of the
spin moment within the e↵ective field is significant, in
that the field is then expressed in units of Tesla, given
a Hamiltonian in Joules. Given typical energies in the
Hamiltonian of 10 µeV - 100 meV range. This gives fields
typically in the range 0.1 - 1000 Tesla, given a spin mo-
ment of the same order as the Bohr magneton (µB).

The LLG equation has two distinct parts, the first part,
Si ⇥H

i
e↵ induces spin precession around the net field di-

rection H
i
e↵ , while the second, �Si⇥(Si⇥H

i
e↵) describes

spin relaxation towards Hi
e↵ . The phenomenological mi-

croscopic damping constant, �, determines the rate of
relaxation towards the net field direction, representing
the coupling of the spin system to a heat bath. It should
be noted that the intrinsic damping � is di↵erent to the
extrinsic damping ↵ measured experimentally. The in-
trinsic damping arises due to microscopic e↵ects such
as spin-lattice33 and electron-spin interactions34, while
the macroscopic damping ↵ has additional contributions
from temperature, disorder, defects, and magnetostatic
interactions.

Langevin Dynamics

In its standard form the LLG equation is strictly only
applicable to simulations at zero temperature. Ther-
mal e↵ects cause thermodynamic fluctuations of the spin
moments which at su�ciently high temperatures are
stronger than the exchange interaction and giving rise
to the ferromagnetic-paramagnetic transition. The ef-
fects of temperature can be taken into account by using
Langevin Dynamics, an approach developed by Brown35.

The basic idea behind Langevin Dynamics is to assume
that the thermal fluctuations on each atomic site can
be represented by a Gaussian white noise term. As the
temperature is increased, the width of the Gaussian dis-
tribution increases, thus representing stronger thermal
fluctuations. In reality the thermal and magnetic fluctu-
ations are correlated at the atomic level, arising from the
dynamic interactions between the atoms and electrons.
New approaches such as colored noise36 and combined
magnetic and molecular dynamics simulations37,38 aim
to better understand the underlying physics of the ther-
mal interactions at the atomic level.

Nevertheless the established Langevin Dynamics
method is widely used for spin dynamics simulations and
incorporates an e↵ective thermal field into the LLG equa-
tion to simulate thermal e↵ects39–41. The thermal fluctu-
ations are represented by a gaussian distribution �(t) in
three dimensions with a mean of zero. At each time step
the instantaneous thermal field on each spin i is given by:

H
i
th = �(t)

s
2�kBT

�µs�t
(14)

where kB is the Boltzmann constant, T is the system
temperature, � is the Gilbert damping parameter, � is
the absolute value of the gyromagnetic ratio, µs is the
magnitude of the atomic magnetic moment, and�t is the
integration time step. The e↵ective field for application
in the LLG equation with Langevin Dynamics then reads:

H
i
e↵ = �

1

µs

@H

@Si
+H

i,�
th . (15)

Given that for each time step three Gaussian dis-
tributed random numbers are required for every spin, ef-
ficient generation of such numbers is essential. vampire
therefore makes use the Mersenne Twister42 uniform ran-
dom number generator and the Ziggurat method43 for
generating the Gaussian distribution.
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Setting up a simulation in Vampire

input file 
(program control) 

material file 
(material properties)

#------------------------------------------ 
# Creation attributes: 
#------------------------------------------ 
create:crystal-structure=fcc 
create:periodic-boundaries-x 
create:periodic-boundaries-y 
create:periodic-boundaries-z 
#------------------------------------------ 
# System Dimensions: 
#------------------------------------------ 
dimensions:unit-cell-size = 3.524 !A 
dimensions:system-size-x = 4.0 !nm 
dimensions:system-size-y = 4.0 !nm 
dimensions:system-size-z = 4.0 !nm 
…

#--------------------------------------------------- 
# Number of Materials 
#--------------------------------------------------- 
material:num-materials=1 
#--------------------------------------------------- 
# Material 1 Nickel Generic 
#--------------------------------------------------- 
material[1]:material-name=Ni 
material[1]:damping-constant=0.01 
material[1]:exchange-matrix[1]=2.757e-21 
material[1]:atomic-spin-moment=0.606 !muB 
material[1]:uniaxial-anisotropy-constant=0.0 
material[1]:material-element=Ni



Spin Hamiltonian for Ni

Ultrafast thermally induced magnetic switching in synthetic ferrimagnets

Richard F. L. Evans,1,a) Thomas A. Ostler,1 Roy W. Chantrell,1 Ilie Radu,2 and Theo Rasing3
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Synthetic ferrimagnets are composite magnetic structures formed from two or more anti-
ferromagnetically coupled magnetic sublattices with different magnetic moments. Here, we
report on atomistic spin simulations of the laser-induced magnetization dynamics on such
synthetic ferrimagnets and demonstrate that the application of ultrashort laser pulses leads to
sub-picosecond magnetization dynamics and all-optical switching in a similar manner as in
ferrimagnetic alloys. Moreover, we present the essential material properties for successful laser-
induced switching, demonstrating the feasibility of using a synthetic ferrimagnet as a high
density magnetic storage element without the need of a write field. VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4867015]

The dynamic response of magnetic materials to ultra-
short laser pulses is currently an area of fundamental and
practical importance that is attracting a lot of attention. Since
the pioneering work of Beaurepaire et al.,1 it has been known
that the magnetization can respond to a femtosecond laser
pulse on a sub-picosecond timescale. However, studies of
magnetic switching are more recent. In this context, an espe-
cially intriguing phenomenon is that of all-optical switching,
which uses the interaction of short, intense pulses of light
with a magnetic material to alter its magnetic state without
the application of an external magnetic field.2,3 Recent
experiments4– 6 and theoretical calculations5,7– 9 have demon-
strated that the origin of all-optical switching in ferrimagnetic
alloys is due to ultrafast heating of the spin system. The mag-
netic switching arises due to a transfer of angular momentum
between the two sublattices within the material7,8 and the
resulting exchange-field induced precession.7 Remarkably,
this effect occurs in the absence of any symmetry breaking
magnetic field,5 and can be considered as Thermally Induced
Magnetic Switching (TIMS). So far, TIMS has only been
demonstrated experimentally in the rare-earth transition metal
(RE-TM) alloys GdFeCo and TbCo which, in addition to
their strong magneto-optical response, have two essential
properties for heat-induced switching: antiferromagnetic cou-
pling between the RE and TM sublattices10 and distinct
demagnetization times of the two sublattices.4 The antiferro-
magnetic coupling allows for inertial magnetization dynam-
ics, while the distinct demagnetization times under the action
of a heat pulse allow a transient imbalance in the angular mo-
mentum of the two sublattices, which initiates a mutual high
speed precession enabling ultrafast switching to occur.

Although GdFeCo has excellent switching properties, its
potential use in magnetic data storage is limited by its low an-
isotropy and amorphous structure, precluding the use of sin-
gle magnetic domains typically less than 10 nm in size,
required for future high density magnetic recording media.

One intriguing possibility, and the focus of this paper, would
be the use of a synthetic ferrimagnet (SFiM), consisting of
two transition metal ferromagnets anti-ferromagnetically
exchange coupled by a non-magnetic spacer,11 shown sche-
matically in Fig. 1. The important but as yet unanswered
question is whether all-optical switching would also work in
such an artificial structure and what essential physical proper-
ties of the design are required. Such a composite magnet also
has a number of distinct advantages over intrinsic rare-earth-
transition metal ferrimagnets: the dynamic properties of each
sublattice may be separately selected by choice of material,
nano-patterning is possible in the sub-10 nm size range due to
their crystalline nature and the omission of costly rare-earth
metals. Importantly the composite design has the advantage
of allowing the use of high anisotropy materials such as FePt
or CoPt to enhance the thermal stability of the medium.
These advantages could make such synthetic structures very
promising candidates for magnetic data storage applications.

In this Letter we present dynamic studies of such a syn-
thetic ferrimagnet using an atomistic spin model. We investi-
gate the dynamic properties of the separate layers and show
that the demagnetization time is determined primarily by the
local atomic spin moment and the intrinsic Gilbert damping
of the material. We finally consider an exchange-coupled
Fe/FePt synthetic ferrimagnet and show that a short heat-
pulse is sufficient to induce ultrafast heat-induced switching
of the material.

The dynamic properties of the SFiM are studied using an
atomistic spin model using the VAMPIRE software package.12,13

The energetics of the system are described using a
Heisenberg spin Hamiltonian, which in condensed form reads

H ¼ "
X

i<j

JijSi # Sj "
X

i

kuS2
i;z; (1)

where Jij is the exchange energy between nearest neighboring
spins, Si and Sj are unit vectors describing the spin directions
for local sites i and nearest neighbor sites j, respectively, and
ku is the uniaxial anisotropy constant. There are three distincta)richard.evans@york.ac.uk

0003-6951/2014/104(8)/082410/4/$30.00 VC 2014 AIP Publishing LLC104, 082410-1
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Ni.mat

#--------------------------------------------------- 
# Number of Materials 
#--------------------------------------------------- 
material:num-materials=1 
#--------------------------------------------------- 
# Material 1 Nickel Generic 
#--------------------------------------------------- 
material[1]:material-name=Ni 
material[1]:damping-constant=0.01 
material[1]:exchange-matrix[1]=2.757e-21 
material[1]:atomic-spin-moment=0.606 !muB 
material[1]:uniaxial-anisotropy-constant=5.47e-26 
material[1]:material-element=Ni 



input
#------------------------------------------ 
# Creation attributes: 
#------------------------------------------ 
create:crystal-structure=fcc 
create:periodic-boundaries-x 
create:periodic-boundaries-y 
create:periodic-boundaries-z 
#------------------------------------------ 
# System Dimensions: 
#------------------------------------------ 
dimensions:unit-cell-size = 3.524 !A 
dimensions:system-size-x = 4.0 !nm 
dimensions:system-size-y = 4.0 !nm 
dimensions:system-size-z = 4.0 !nm 
#------------------------------------------ 
# Material Files: 
#------------------------------------------ 
material:file=Ni.mat 
#------------------------------------------ 
# Simulation attributes: 
#------------------------------------------ 
sim:temperature=300 
sim:minimum-temperature=0 
sim:maximum-temperature=800 
sim:temperature-increment=25 
sim:time-steps-increment=1 
sim:equilibration-time-steps=1000 
sim:loop-time-steps=1000 

#------------------------------------------ 
# Program and integrator details 
#------------------------------------------ 
sim:program=curie-temperature 
sim:integrator=monte-carlo 
#------------------------------------------ 
# Data output 
#------------------------------------------ 
output:real-time 
output:temperature 
output:magnetisation 
output:magnetisation-length 
output:mean-magnetisation-length 



Getting and compiling vampire

• Need to get code from source repository

• This creates a directory ‘vampire

• Checkout release version of the code

• Compile

git clone https://github.com/richard-evans/vampire.git 

git checkout release 

make serial 

cd vampire 



Running vampire

• Each simulation should be in a separate directory

• Copy in the input files and executable

• Now run the executable

cd .. 
mkdir Co 
cd Co 

./vampire-serial 

cp ../vampire/Co.mat . 
cp ../vampire/input . 
cp ../vampire/vampire-serial . 



Curie temperature calculation
Calculate phase transition in Ni 

Essential temperature dependent property of a magnetic 
material 
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sults. For a recent extensive comparison between classical and
quantum Heisenberg Hamiltonians see (? ). For the classical
statistics

mc(T ) = 1− kBT
J0

1
N ∑

kkk

1
1− γkkk

≈ 1− 1
3

T
Tc
, (1)

where T is the temperature, kB is the Boltzmann constant and
Tc is the Curie temperature and we have used the RPA relation
to relate W and Tc (J0/3 ≈ WkBTc)? (exact for the spherical
model? ), where W = (1/N ∑kkk

1
1−γkkk

) is the Watson integral.
Under the same conditions in the quantum Heisenberg case

one obtains the T 3/2 Bloch law,

mq(T ) = 1− 1
3

s
(

T
Tc

)3/2
(2)

where s is a slope factor and defined as

s = S1/2 (2πW )−3/2 ζ (3/2). (3)

where S is the spin value and ζ (x) the well-known Riemann
ζ function, and RPA relation (3kBTc = J0S2/W ) has been
used. We note that Kuz’min22 utilized semi-classical linear
spin wave theory to determine s, and so use the experimen-
tally measured magnetic moment of the studied metals.

Mapping between the classical and quantum m(T ) expres-
sions is done simply by equalizing Eqs. (1) and (2) yield-
ing τcl = sτ3/2

q . This expression therefore relates the ther-
mal fluctuations between the classical and quantum Heisen-
berg models at low temperatures. At higher temperatures
more terms are required to describe m(T ) for both approaches,
making the simple identification between temperatures cum-
bersome. At temperatures close to and above Tc, βεkkk → 0
is a small parameter and thus the thermal Bose distribu-
tion 1/(exp(βεkkk)− 1) ≈ βεkkk tends to the Boltzmann distri-
bution, thus the effect of the spin quantization is negligible
here. For this temperature region, a power law is expected,
m(τ)≈ (1− τ)β , where β = 1/3 for the Heisenberg model in
both cases.

The existence of a simple relation between classical and
quantum temperature dependent magnetization at low temper-
atures leads to the question - does a similar scaling quantita-
tively describe the behavior of elemental ferromagnets for the
whole range of temperatures? Our starting point is to repre-
sent the temperature dependent magnetization in the simplest
form arising from a straightforward interpolation of the Bloch
law and critical behavior24 given by the Curie-Bloch equation

m(τ) = (1− τα)β (4)

where α is an empirical constant and β ≈ 1/3 is the critical
exponent. We will demonstrate that this simple expression is
sufficient to describe the temperature dependent magnetiza-
tion in elemental ferromagnets with a single fitting parameter
α .

An alternative to the Curie-Bloch equation was proposed
by Kuz’min22 which has the form

m(τ) = [1− sτ3/2 − (1− s)τ p]1/3. (5)

The parameters s and p are taken as fitting parameters, where
it was found that p = 5/2 for all ferromagnets except for Fe
and s relates to the shape of the m(T ) curve and corresponds
to the extent that the magnetization follows Bloch’s law at low
temperatures. In the case of a pure Bloch ferromagnet where
p = 3/2 and α = p equations (4) and (5) are identical, demon-
strating the same physical origin of these phenomenological
equations. At low temperatures these functions are related by
τα = sτ3/2 which can be used to estimate α from s?

While Kuz’min’s equation quantitatively describes the
shape of the magnetization curve, it does not link the macro-
scopic Curie temperature to microscopic exchange interac-
tions. These exchange interactions can be conveniently de-
termined by ab-initio first principles calculations? . Exchange
interactions calculated from first principles are often long
ranged and oscillatory in nature and so analytical determi-
nation of the Curie temperature can be done with a number
of different standard approaches such as mean-field (MFA)
or random phase approximations (RPA), neither of which are
particularly accurate due to the approximations involved. A
much more successful method is incorporating the micro-
scopic exchange interactions into a multiscale atomistic spin
model which has been shown to yield Curie temperatures
much closer to experiment21. The clear advantage of this ap-
proach is the direct linking of electronic scale calculated pa-
rameters to macroscopic thermodynamic magnetic properties
such as the Curie temperature. What is interesting is that the
classical spin fluctuations give the correct Tc for a wide range
of magnetic materials21? , suggesting that the particular value
of the exchange parameters and the shape of the m(T ) curve
are largely independent quantities, as suggested by Eq. (3).
The difficulty with the classical model is that the shape of the
curve is intrinsically wrong when compared to experiment.

To obtain accurate data for the classical temperature depen-
dent magnetization for the elemental ferromagnets Co, Fe, Ni
and Gd we proceed to simulate them using the classical atom-
istic spin model. The energetics of the system are described
by the classical spin Hamiltonian15 of the form

H =−∑
i< j

Ji jSi ·S j (6)

where Si and S j are unit vectors describing the direction of the
local and nearest neighbor magnetic moments at each atomic
site and Ji j is the nearest neighbor exchange energy given by?

Ji j =
3kBTc

γz
(7)

where γ(W ) gives a correction factor from the MFA and which
for RPA γ = 1/W . The numerical calculations have been car-
ried out using the VAMPIRE software package25. The sim-
ulated system for Co, Ni, Fe and Gd consists of a cube 20
nm3 in size with periodic boundary conditions applied to re-
move any surface effects. The equilibrium temperature depen-
dent properties of the system are calculated using the Hinzke-
Nowak Monte Carlo algorithm15,26 resulting in the calculated
temperature dependent magnetization curves for each element
shown in Fig. 1.
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input
#------------------------------------------ 
# Creation attributes: 
#------------------------------------------ 
create:crystal-structure=fcc 
create:periodic-boundaries-x 
create:periodic-boundaries-y 
create:periodic-boundaries-z 
#------------------------------------------ 
# System Dimensions: 
#------------------------------------------ 
dimensions:unit-cell-size = 3.524 !A 
dimensions:system-size-x = 4.0 !nm 
dimensions:system-size-y = 4.0 !nm 
dimensions:system-size-z = 4.0 !nm 
#------------------------------------------ 
# Material Files: 
#------------------------------------------ 
material:file=Ni.mat 
#------------------------------------------ 
# Simulation attributes: 
#------------------------------------------ 
sim:temperature=300 
sim:minimum-temperature=0 
sim:maximum-temperature=800 
sim:temperature-increment=25 
sim:time-steps-increment=1 
sim:equilibration-time-steps=1000 
sim:loop-time-steps=1000 

#------------------------------------------ 
# Program and integrator details 
#------------------------------------------ 
sim:program=curie-temperature 
sim:integrator=monte-carlo 
#------------------------------------------ 
# Data output 
#------------------------------------------ 
output:real-time 
output:temperature 
output:magnetisation 
output:magnetisation-length 
output:mean-magnetisation-length 
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the dominant atomic species in Nd2Fe14B, it is expected
that the magnetization is dominated by the Fe sublattice.

Fe exchange interactions

The first approach in classical spin models is to calcu-
late an e↵ective pairwise nearest neighbor exchange inter-
action, derived from the Curie temperature of the system
using a molecular field approximation. For Nd2Fe14B this
approach is complicated by the complex crystal struc-
ture which makes a global nearest neighbor distance is a
poorly defined quantity, leading to di↵erent numbers of
interactions for di↵erent atomic sites. As a first approxi-
mation we therefore utilize the results of ab-initio calcu-
lations of exchange interactions in bcc Fe7. The range
dependence of the calculated exchange interactions con-
veniently fit to an exponential function for the first five
coordination shells, and so the fitted function gives JFe(r)
is given by

JFe(r) = J0 + Jr exp(�r/r0) (7)

where r is the interatomic separation, r0 is a characteris-
tic distance, and J0 and Jr are fitting constants. The ex-
change interactions are truncated to zero for interatomic
separations greater than 5Å. The fitted function is shown
in Fig. 2. Applying the fitted exchange interactions to the
Nd2Fe14B system yields a simulated Curie temperature
of around 800K. Already the greater interatomic sepa-
ration reduces the Curie temperature compared to bulk
bcc Fe, but this value is still higher than the experimen-
tal value of 585K. Given the significantly lower density
of the Fe sublattice compared with bcc Fe, it is not un-
reasonable to expect reduced overlap of atomic orbitals
of the Fe sites, with a corresponding reduction in the ex-
change interactions. To approximate this e↵ect we treat
the reduction in the pairwise exchange interactions by
straightforward scaling of the ab-initio values so that the
calculated Curie temperature agrees better with experi-
ment. The scaled curve and values are shown in Fig. 2,
and the values used for the scaled fitted function are pre-
sented in Tab. I. This crude scaling is not particularly
satisfactory, but has the advantage of at least maintain-
ing the long range nature and distance dependence of
the exchange interactions and is at least as good as the
nearest neighbor approximation commonly employed.

Nd exchange interactions

The Nd sublattice is known to couple ferromagnetically
to the Fe sublattice at higher temperatures, and experi-
mental measurements8 show a high degree of ordering of
the Nd sublattice at room temperature. This ordering
at significant fractions of the Curie temperature necessi-
tates a relatively strong exchange coupling between the
Fe and Nd sites, at least compared with bulk Nd. In con-
trast crystal field calculations suggest a weak exchange
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FIG. 2. Range dependence of the exchange interactions from
ab-initio calculations7. Scaled data arising from reduced over-
lap of atomic orbitals is used to calculate the Fe-Fe interac-
tions in the Nd crystal. Color Online.

coupling9 and so the strength of the Nd-Fe exchange in-
teraction is an open question. We therefore treat the
Fe-Nd exchange is a variable parameter in the model in
order to best fit the available experimental data. The
nearest neighbor distance is better defined for the Fe-
Nd interactions, and so a cut o↵ distance of 4Åis chosen
in the nearest neighbor approach, where all interactions
have the same strength. The Nd-Nd interactions are as-
sumed to be negligible, and are consequently ignored in
the model.

Temperature dependent magnetization

Using the derived exchange parameters described pre-
viously, we now present atomistic calculations of the tem-
perature dependent magnetization of the Fe sublattice
using the Monte Carlo method and shown in Fig. 3(a).
By empirical interpolation of the Bloch law and critical
behavior10, the reduced temperature dependent magne-
tization is given by the expression:

m(T ) =


1�

✓
T

Tc

◆↵��
(8)

where T is the temperature, Tc is the Curie tempera-
ture, ↵ is an empirical constant and � is the critical ex-
ponent. Since classical systems do not follow Bloch’s
Law (low temperatures always have finite fluctuations in
m), ↵ = 1, and so fitting to the calculated tempera-
ture dependent magnetization yields a critical exponent
of � = 0.343 ± 0.002 and Curie temperature of 581 K.
Due to the long range nature of the exchange interac-
tions, the critical exponent � is slightly lower than the
3D Heisenberg model, also seen in calculations of FePt11.
Due to the neglect of quantum e↵ects within the clas-

sical spin model, the calculated temperature dependent
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FIG. 1. (a) Experimental pump-probe setup allowing dynamic
longitudinal Kerr effect and transient transmissivity or reflectiv-
ity measurements. (b) Typical Kerr loops obtained on a 22 nm
thick Ni sample in the absence of pump beam and for a delay
Dt ≠ 2.3 ps between the pump and probe pulses. The pump
fluence is 7 mJ cm22. (c) Transient transmissivity [same exper-
imental condition as (b)].

transient transmission curve DTyT is displayed in
Fig. 1(c). For both techniques, we used 60 fs pulses
coming from a 620 nm colliding pulse mode locked dye
laser and amplified by a 5 kHz copper vapor laser. The
temporal delays between pump and probe are achieved
using a modified Michelson interferometer. The signals
are recorded using a boxcar and a lock-in synchronous
detection. In the case of differential transmission mea-
surements, the synchronization is made by chopping the
pump beam, while for the MOKE measurements it is
done on the probe beam.
The information about the spin dynamics is contained in

the time evolution of the hysteresis loops recorded for each
time delay Dt. Typical loops obtained for Dt ≠ 2.3 ps
and in the absence of the pump beam are presented in
Fig. 1(b). Each hysteresis loop is recorded at a fixed delay
by slowly sweeping the magnetic field H. For each H

value, the MOKE signal is averaged over about 100 pulses.
The most striking feature is an important decrease of the
remanence (signal at zero field) Mr when the pump is
on. The complete dynamics MrsDtd for a laser fluence
of 7 mJ cm22 is displayed in Fig. 2. The overall behavior
is an important and rapid decrease of Mr which occurs
within 2 ps, followed by a relaxation to a long lived
plateau. This figure clearly shows that the magnetization
of the film drops during the first picosecond, indicating a
fast increase of the spin temperature. It can be noticed
that for negative delays Mr does not completely recover
its value measured in the absence of pump beam. This
permanent effect is not due to a sample damage as checked
by recording hysteresis loops without the pump beam after
the dynamical measurements. Possible explanations for
this small permanent change are either heat accumulation
or slow motion of the domain walls induced by the
pump beam.
In order to determine the temperature dynamics, we

analyze Fig. 2 using the static temperature dependence
of the magnetization found in text books. This analysis
relies on a correspondence between the variations of the

FIG. 2. Transient remanent longitudinal MOKE signal of a
Ni(20 nm)/MgF2(100 nm) film for 7 mJ cm22 pump fluence.
The signal is normalized to the signal measured in the absence
of pump beam. The line is a guide to the eye.

spontaneous and remanent magnetization, as is usually
done in thin film magnetism. This leads to the time
variation of Ts in Fig. 3(a) (dotted points). Regarding the
determination of the electronic temperature, we assume
that it is proportional to the differential transmittance
shown in Fig. 1(c) as expected for weak DTyT signals.
Let us emphasize that this procedure is valid only when
a thermalized electron population can be defined. Since
this effect was never discussed for the case of d electrons
in metals, it deserves some comments. As discussed by
various authors [4–6], the optical pulse creates in the
metal film a nascent (nonthermal) electronic distribution
that relaxes due to electron-electron interactions, leading
to a fast increase of the electron temperature. This process
can be described in the random phase approximation
(RPA) defining nonthermal and thermal (in the sense
of the Fermi-Dirac statistics) electron populations. The
nonthermal electron population is therefore created during
the pump pulse and disappears with a characteristic time
tth (¯500 fs for Au), whereas the temperature of the
thermal population increases in the same time scale. The
contribution of the nonthermal electronic distribution to
the transient optical data is therefore expected to present
a sharp peak around zero probe delay (with a rise time
given by the temporal resolution) and the thermal electron
contribution should present a delayed extremum around
tth [5]. A detailed analysis of the transient effects in Ni
for short delays is beyond the scope of the present paper
and will be presented in a future publication. Let us only
mention that with the present experimental conditions
the transient reflectivity of the Ni film presents a single
contribution which is extremum for Dt ≠ 260 fs showing
that the contribution of nonthermal populations is weak
and that the thermalization time is tth ¯ 260 fs. This
short thermalization time for Ni as compared to Au is
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Ultrafast thermally induced magnetic switching in synthetic ferrimagnets:
Supplementary Information

ADDITIONAL MODEL DETAILS

The dynamic properties are modeled using an atom-

istic spin model using the vampire software package[1,

2]. The energetics of the system are described using a

Heisenberg spin Hamiltonian of the form:

Hi,⌫ = H
i
Fe + H

⌫
FePt (1)

H
i
Fe = �JFe

X

j

Si · Sj � kFe (S
z
i )

2

�JFe�FePt

X

µ

Si · Sµ (2)

H
⌫
FePt = �JFePt

X

µ

S⌫ · Sµ � kFePt (S
z
⌫ )

2

�JFe�FePt

X

j

S⌫ · Sj (3)

where JFe is the exchange energy between nearest

neighboring Fe spins, JFePt is the exchange energy be-

tween nearest neighboring FePt spins, JFe�FePt is the ex-

change energy between nearest neighboring Fe and FePt

spins, indices i and j represent local and neighboring Fe

moments and indices ⌫ and µ represent local and neigh-

boring FePt moments respectively, S is a unit vector de-

scribing the direction of the spin moment, and kFe and

kFePt are the uniaxial anisotropy constants for Fe and

FePt atoms respectively. The system is cut from a single

body-centred-cubic crystal in the shape of a cylinder.

The dynamics of each atomic spin is given by the

Landau-Lifshitz-Gilbert equation applied at the atom-

istic level and given by:

@Si

@t
= � �

(1 + ↵2
i )
[Si ⇥H

i
e↵ + ↵iSi ⇥ (Si ⇥H

i
e↵)] (4)

where � = 1.76 ⇥ 10
11

JT
�1

s
�1

is the gyromagnetic ra-

tio, ↵i is the Gilbert damping parameter for each layer,

and H
i
e↵ is the net magnetic field. The LLG equation de-

scribes the interaction of an atomic spin moment i with
an e↵ective magnetic field, which is obtained from the

negative first derivative of the complete spin Hamilto-

nian and the addition of a Langevin thermal term, such

that the total e↵ective field on each spin is:

H
i
e↵ = � 1

µs

@H

@Si
+H

i,�
th . (5)

The thermal field in each spatial dimension � is rep-

resented by a gaussian distribution �(t) with a mean of

zero given by:

H
i
th = �(t)

s
2↵ikBT

�µs�t
(6)

where kB is the Boltzmann constant, T is the system

temperature, and �t is the integration time step. The

system is integrated using the Heun numerical scheme

and a timestep of �t = 1.0⇥ 10
�16

s.[2]

For the calculations, the system is first equilibrated

for 2 ps at room temperature before the application of a

temperature pulse, which is su�cient to thermalise the

system. The temperature of the spin system is linked

to the electron temperature, leading to a rapid increase

of the temperature inducing ultrafast magnetization dy-

namics. After a few ps the energy is transferred to the

phonon system which leaves the overall system at an el-

evated temperature.

The temporal evolution of the electron temperature is

calculated using the two temperature model[3]:

Ce
@Te

@t
= �G(Te � Tl) + S(t) (7)

Cl
@Tl

@t
= �G(Tl � Te) (8)

where Ce and Cl are the electron and lattice hat ca-

pacities, Te is the electron temperature, Tl is the lattice

(phonon) temperature, G is the electron-lattice coupling

factor, and S(t) is a time-dependent Gaussian heat pulse

which adds energy to the electron system representing

the laser pulse. The time evolution of the electron tem-

perature is solved using numerical integration using a

simple Euler scheme. The parameters used in our simu-

lations are representative of a metal, with G = 9⇥10
17

W

m
�3

K
�1

, Ce = 2.25⇥ 10
2
J m

�3
K

�1
and Cl = 3.1⇥ 10

6

J m
�3

K
�1

.

DYNAMIC SWITCHING WITH LOW
EXCHANGE COUPLING

To test the robustness of the switching in the case of

lower exchange coupling, an additional simulation of the

switching was performed using an interlayer exchange

coupling of 6 mJ/m
2
, equivalent to�2.235⇥10

�22
J/link,

as presented in Fig 1.

While qualitatively similar to the case of strong ex-

change coupling, the switching dynamics are much slower

due to the lower exchange field. However, the exchange

field is su�cient to induce a transient ferromagnetic state

between the sublattices, which drives the switching pro-

cess as the two sublattices mutually precess each other.

As in the strong coupling case, the magnetic anisotropy

of the hard layer is essential to stabilise the reversed state

in the faster layer, ensuring reversal.



Input file for simulated laser pulse

sim:equilibration-time-steps=10000 
sim:total-time-steps=50000 
sim:laser-pulse-power=5.0 
sim:laser-pulse-temporal-profile=two-temperature 
sim:program=laser-pulse 
sim:integrator=llg-heun 
sim:time-step=1.0e-16 

output:real-time 
output:electron-temperature 
output:phonon-temperature 
output:magnetisation-length 



Effect of pulse power in Ni

Stronger laser pulses show more  
demagnetization and slower recovery
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Plot |m| vs time with gnuplot

p “output” u 1:4 w l

plot file name
using 

columns 1 and 4

with

lines



Thermally induced magnetic switching

T. Ostler et al, Nat. Commun.(2012)



Sublattice magnetization dynamics

I. Radu et al, Nature (2011)



GdFe ferrimagnet

Gd Fe



GdFe.mat

#--------------------------------------------------- 
# Number of Materials 
#--------------------------------------------------- 
material:num-materials=2 
#--------------------------------------------------- 
# Material 1 Fe (TM) 
#--------------------------------------------------- 
material[1]:material-name=TM 
material[1]:damping-constant=0.02 
material[1]:exchange-matrix[1]=2.835e-21 
material[1]:exchange-matrix[2]=-1.09e-21 
material[1]:atomic-spin-moment=1.92 !muB 
material[1]:uniaxial-anisotropy-constant=8.07246e-24 
material[1]:material-element=Fe 
material[1]:minimum-height=0.0 
material[1]:maximum-height=1.0 
material[1]:alloy-host 
material[1]:alloy-fraction[2]=0.25 
material[1]:initial-spin-direction=0,0,1 
#--------------------------------------------------- 
# Material 2 Gd (RE) 
#--------------------------------------------------- 
material[2]:material-name=RE 
material[2]:damping-constant=0.02 
material[2]:exchange-matrix[1]=-1.09e-21 
material[2]:exchange-matrix[2]=1.26e-21 
material[2]:atomic-spin-moment=7.63 !muB 
material[2]:uniaxial-anisotropy-constant=8.07246e-24 
material[2]:material-element=Ag 
material[2]:minimum-height=0.0 
material[2]:maximum-height=0.0 
material[2]:initial-spin-direction=0,0,-1



input file
sim:equilibration-time-steps=20000 
sim:total-time-steps=50000 
sim:temperature = 300.0 
sim:equilibration-temperature = 300.0 
sim:temperature-increment=25 
sim:time-steps-increment=10 
sim:preconditioning-steps = 200 
sim:equilibration-time-steps=1000 
sim:total-time-steps=50000 

sim:two-temperature-electron-heat-capacity=2.25e2 
sim:two-temperature-phonon-heat-capacity=3.1e6 
sim:two-temperature-electron-phonon-coupling=2.5e17 

sim:laser-pulse-temporal-profile = two-temperature 
sim:laser-pulse-time = 50 !fs 
sim:laser-pulse-power = 16.70 



input file (pt2)

sim:integrator=llg-heun 
sim:time-step=1.0e-16 

output:real-time 
output:electron-temperature 
output:phonon-temperature 
output:material-magnetisation 
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Dynamics for 7nm3 GdFe
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Summary

Simulated Curie temperature and  
demagnetization dynamics in Ni 

Simulated TIMS in GdFe 

Many different types of simulations possible 
(materials, alloys, multilayers…) 
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