

Topology in Magnetism – a phenomenological account

Wednesday: vortices Friday: skyrmions

Henrik Moodysson Rønnow Laboratory for Quantum Magnetism (LQM), Institute of Physics, EPFL Switzerland Many figures copied from internet

Topology in Magnetism

- 2016 Nobel Prize: Kosterlitz, Thouless and Haldane
- The Kosterlitz-Thouless transition
 - Phase transitions: Broken symmetry, Goldstone mode
 - Mermin-Wagner theorem
 - Kosterlitz-Thouless transition
 - Correlation lengths and neutron scattering
- The Haldane chain
 - Quantum fluctuations suppress order
 - S=1/2 chain: Bethe solution, spinons
 - S=1 chain: Haldane gap, hidden order
 - Inelastic neutron scattering
- Hertz-Millis

The Nobel Prize in Physics 2016

Photo: A. Mahmoud **David J. Thouless** Prize share: 1/2

Photo: A. Mahmoud F. Duncan M. Haldane Prize share: 1/4

Photo: A. Mahmoud J. Michael Kosterlitz Prize share: 1/4

The Nobel Prize in Physics 2016 was awarded with one half to David J. Thouless, and the other half to F. Duncan M. Haldane and J. Michael Kosterlitz *"for theoretical discoveries of topological phase transitions and topological phases of matter"*.

Aspen Center for Physics 2000: Workshop on Quantum Magnetism

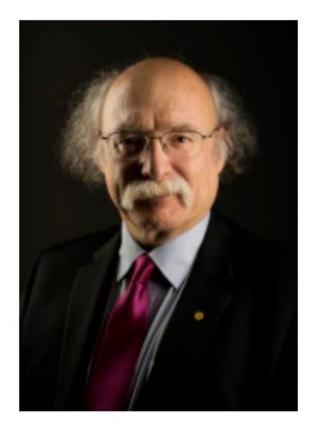
 David Thouless: Transition without broken symmetry

• My laptop, just broken

ICCMP Brasilia 2009: Workshop on Heisenberg Model (80+1 year anniversary)

• Duncan Haldane

• 4h bus ride with Bethe chatter





The Nobel Prize in Physics 2016

Photo: A. Mahmoud **David J. Thouless** Prize share: 1/2

Photo: A. Mahmoud F. Duncan M. Haldane Prize share: 1/4

Photo: A. Mahmoud J. Michael Kosterlitz Prize share: 1/4

The Nobel Prize in Physics 2016 was awarded with one half to David J. Thouless, and the other half to F. Duncan M. Haldane and J. Michael Kosterlitz *"for theoretical discoveries of topological phase transitions and topological phases of matter"*.

Topological phase transitions

Topological phases of matter

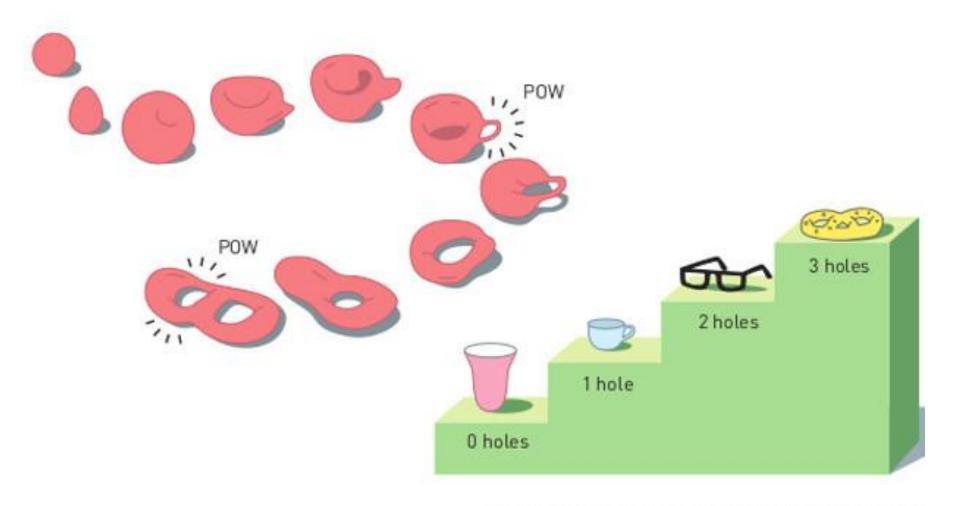


Illustration: @Johan Jannestad/The Royal Swedish Academy of Sc

Topology

- In mathematics, **topology** (from the Greek tó $\pi o \zeta$, *place*, and $\lambda o \gamma o \zeta$, study) is concerned with the properties of space that are preserved under continuous deformations.
- Euler
 - 1736: 7 bridges of Konigsberg
 - 1750: Polyhedara: vertices+faces=edges+2

octahedron

cube

icosahedron

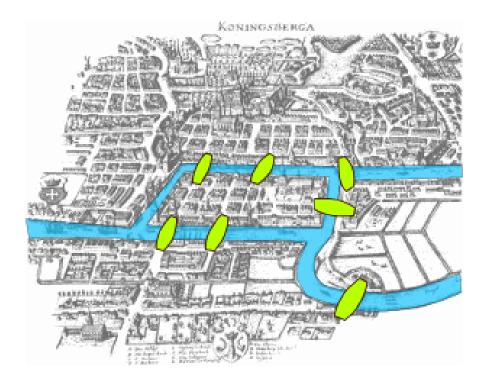
4+4=6+2

6+8=12+2

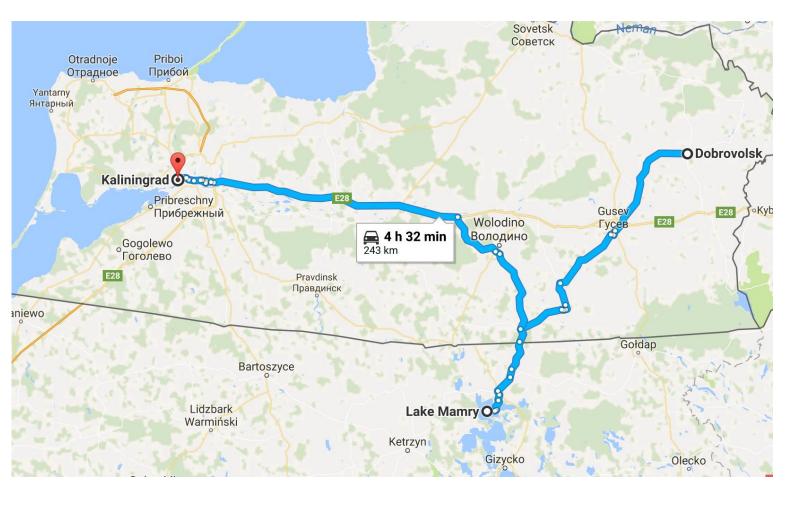
8+6=12+2

https://en.wikipedia.org/wiki/Topology

Proof that Euler was wrong !

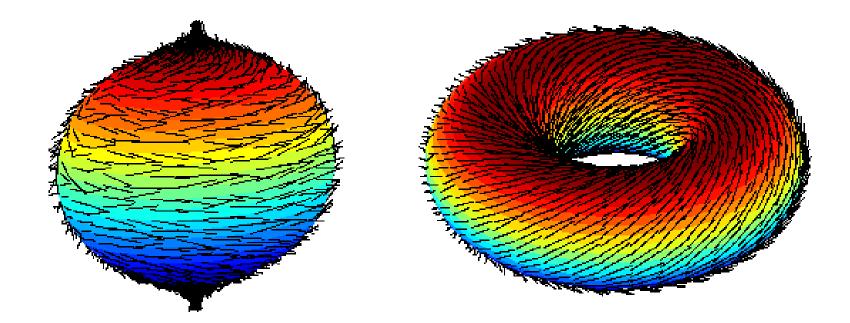


But, need long distance and long time !



The hairy ball theorem

 "you can't comb a hairy ball flat without creating a cowlick"



• Topology concern non-local properties !

Topological phase transitions

• Driven by topological defects

- Vortices (for spins rotating on 2D circle)
 - The Kosterlitz Thouless transition in 2D XY model
 - Superfluid films
 - Josephson junction arrays
- Skyrmions (for spins rotating on 3D sphere)

– Lecture on Friday

Mean field theory of magnetic order

Kittel's Solid State Physics, for pedagogic introduction

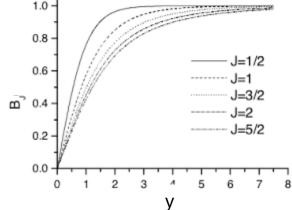
• **GS** of a many-body Hamiltonian $H=-\sum_{ij}$

$$H = -\sum_{ij} J_{ij} S_i \cdot S_j + g \mu_B S_i \cdot B$$

• Mean-field approx.

 $\sum J_{ij}S_i \cdot S_j \approx S_i \cdot (\sum_j J_{ij} < S_j >) \Longrightarrow \qquad \qquad H = g\mu_B \sum_i S_i \cdot B_{eff} \quad \text{where} \quad B_{eff} = B + \sum_j J_{ij} < S_j > /g\mu_B = B + \lambda M$

- Solution Eigen states $H|S^z=m>=E_m|S^z=m>$, $E_m=g\mu_BmB_{eff}$ Magnetization $M=N<S^z>=\sum_m m e^{-E_m/k_BT} / \sum_m e^{-E_m/k_BT}$ $\Rightarrow B_J$ Brillouin function
- Self-consistency



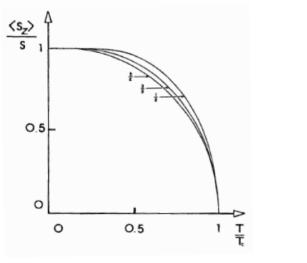
 $M=M_sB_J(g\mu_BB+\lambda M / k_BT)$

Order in Ferromagnet

 $M=M_{s}B_{J}(g\mu_{B}B+\lambda M / k_{B}T),$ self-consistency equation

 $B_{I}(y) \approx (J+1)y/3J$ for y<<1

T<T_c: solution M>0, $k_BT_c=2zJS(S+1)/3$



T near 0: $M(T) \sim M_s - e^{-2Tc/T}$ T near T_c: M(T)~(T_c-T)^{β}

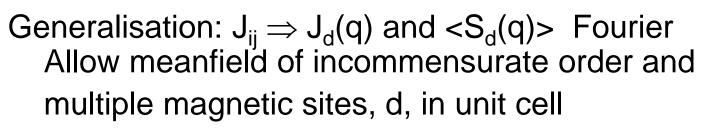
 $T_c < T$: solution M=0

Susceptibility: $\chi = \lim_{B \to 0} \mu_0 M/B$

 \Rightarrow $\chi \sim C/(T-T_c)$

Curie Weiss susceptibility Diverge at Tc

Order in Antiferromagnet Two sublattices with $\langle S_a \rangle = -\langle S_b \rangle$ selfconsistency $\Rightarrow M = M_s B_J (g \mu_B B - \lambda M / k_B T)$ Same solutions: antiferromagnetic order at $k_B T_N = 2z J S (S+1)/3$ Susceptibility $\chi \sim 1/(T+T_N)$ General: $\chi \sim 1/(T-\theta)$, $\theta = 0$ Paramagnet



 $\chi_q \sim 1/(T-\theta)$ diverges at T_c So always order at finite T? No, mean-field neglects fluctuations !

χ(Ι)

 $\Theta = 0$

0

 $\Theta = T_c$

 $\Theta = T_N$

C/N

Spin waves in ferromagnet

Ordered ground state, all spin up: $H|g\rangle = E_a|g\rangle$, $E_a=-zNS^2J$

Single spin flip not eigenstate: $|r\rangle = (2S)^{-\frac{1}{2}}S_r|g\rangle$, $S_rS_r'r'|r\rangle = 2S|r'\rangle$

 $H|r > = (-zNS^2J + 2zSJ)|r > - 2SJ\Sigma_d|r + d >$

 $H = -\sum_{rr'} J_{rr'} S_r \cdot S_{r'} = -J \sum_{< r, r' = r+d>} S^z_r S^z_{r'} + \frac{1}{2} (S^+_r S^-_{r'} + S^-_r S^+_{r'})$

Periodic linear combination: $|k\rangle = N^{-\frac{1}{2}}\Sigma_r e^{ikr}|r\rangle$

Is eigenstate: $H|k> = E_a + E_k|k>$, $E_k = SJ\Sigma_d 1 - e^{ikd}$

Time evolution: $|k(t)\rangle = e^{iHt}|k\rangle = e^{iE_kt}|k\rangle$

Dispersion: relation between time- and spacemodulation period

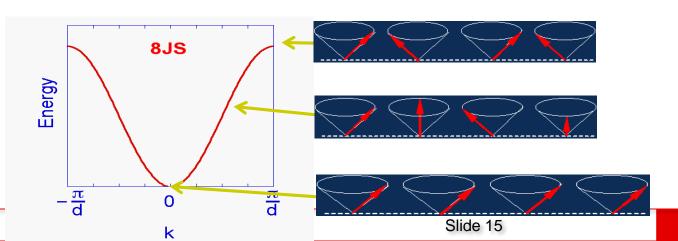
↑ nearest neighbour ↑

Same result in classical calculation \Rightarrow precession: plane wave

dispersion = 2SJ (1-cos(kd)) in 1D

flipped spin moves to neighbours

sliding wave



Magnetic order - Against all odds

- Bohr van Leeuwen theorem:
 No FM from classical electrons
- (cf Kenzelmann yesterday)

<M>=0 in equilibrium (cf Canals yesterday)

- Mermin Wagner theorem:
 - No order at T>0 from continuous symmetry in D \leq 2
- No order even at T=0 in 1D

Bohr – van Leeuwen theorem

 "At any finite temperature, and in all finite applied electrical or magnetical fields, the net magnetization of a collection of electrons in thermal equilibrium vanishes identically."

$$Z \propto \int \prod_{i} d^{3}r_{i} d^{3}p_{i} \exp\left(-\beta H(\mathbf{r}_{1},\ldots;\mathbf{p}_{1},\ldots)\right) \qquad \qquad H = \frac{1}{2m} \sum_{i} \left(\mathbf{p}_{i} + e\mathbf{A}(\mathbf{r}_{i})\right)^{2} + V(\mathbf{r}_{1},\ldots)$$

 $\mathbf{p}_i \rightarrow \tilde{\mathbf{p}}_i = \mathbf{p}_i + e\mathbf{A}(\mathbf{r}_i)$ Allowed because p is integrated to infinity

 $Z \propto \int \prod_{i} d^{3}r_{i} d^{3}\tilde{p}_{i} \exp\left[-\beta\left(\frac{1}{2m}\sum_{i}\tilde{p}_{i}^{2}+V\right)\right] \qquad \text{Z does not depend on A (and hence not B)}$ $F = -\frac{1}{\beta}\ln Z, \qquad M = -\frac{\partial F}{\partial B} = 0$

https://en.wikipedia.org/wiki/Bohr%E2%80%93van_Leeuwen_theorem

Mermin, Wagner, Berezinskii (Stat Phys); Coleman (QPT)

ABSENCE OF FERROMAGNETISM OR ANTIFERROMAGNETISM IN ONE- OR TWO-DIMENSIONAL ISOTROPIC HEISENBERG MODELS*

N. D. Mermin[†] and H. Wagner[‡] Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York (Received 17 October 1966)

It is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-S Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic. The method of proof is capable of excluding a variety of types of ordering in one and two dimensions.

• Generalized to:

"Continuous symmetries cannot be spontaneously broken at finite temperature in systems of dimension $d \le 2$ with sufficiently short-range interactions "

General Mermin Wagner

For the proof of the Mermin-Wagner Theorem we will use the Bogoliubov inequality

$$\frac{1}{2}\beta\left\langle \left[A,A^{\dagger}\right]_{+}\right\rangle \left\langle \left[[C,H]_{-},C^{\dagger}\right]_{-}\right\rangle \geq \left|\left\langle [C,A]_{-}\right\rangle\right|^{2}\right\rangle \qquad A=S \quad (-\mathbf{k}+\mathbf{K})$$

$$C=S^{+}(\mathbf{k})$$

$$S(S+1) \geq rac{m^2 v_d \Omega_d}{eta(2\pi)^d g_j^2 \mu_B^2} \int_0^{k_0} rac{k^{d-1} dk}{|B_0 M| + k^2 \hbar^2 Q S(S+1)}$$

$$|m(T, B_0)| \leq const. \left(T \ln\left(\frac{const.' + |B_0m|}{|B_0m|}\right)\right)^{-1/2}$$

https://itp.uni-frankfurt.de/~valenti/TALKS_BACHELOR/mermin-wagner.pdf

Specific case of ferromagnet in 2D:

Magnetization reduced by thermally excited spin waves

$$M(T) \sim \int_0^\infty N(E) [1/(e^{E/k_B T} - 1)] dE$$
$$M(T) = M(T = 0) - \Delta M(T)$$

 Δ

- Dispersion: $E \sim k^n \implies k^{d-1} \sim E^{d-1/n}$
- Volume element in d-dimensional k space: $k^{d-1}dk = E^{(d-n)/n}dE$
- Density of states: $N(E) \sim E^{(d-n)/n}$ For n=2 and d=2 N(E) = constant

$$\Delta M(T) \sim \int_0^\infty const \ [1/(e^{E/k_B T} - 1)]dE \qquad \text{near the lower boundary (small x) using} \qquad \int_0^\infty (1/x)dx \\ \sim T \int_0^\infty [1/(e^x - 1)]dx \qquad e^x - 1 = x + \dots$$

- Diverges logarithmically \Rightarrow M(T)=M(T=0)- Δ M(T) \rightarrow 0 for any T>0
- Also works for anti-ferromagnet ; Does not diverge for d>n

So how does the system behave at finite temperature?

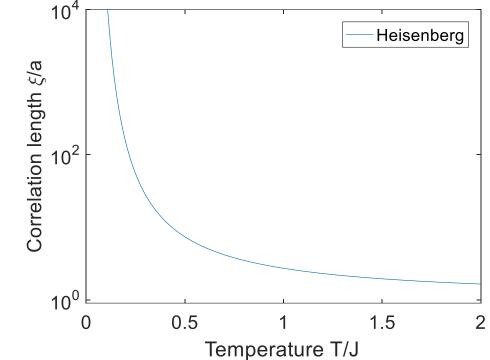
Example: 2D Heisenberg anti-ferromagnet

 $\mathcal{H} = J \sum \mathbf{S}_i \cdot \mathbf{S}_j$

Correlations decay exponentially with r

$$\langle S_{\boldsymbol{r}'}(t) S_{\boldsymbol{r}}(t) \rangle \propto e^{-|\boldsymbol{r}-\boldsymbol{r}'|/\xi}$$

Correlation length diverge as $T \rightarrow 0$ $\xi(T) \propto \exp(J/T)$



Lets look at 2D XY model: spins rotate only in the plane

- Mermin-Wagner: No ordered symmetry broken state for T>0
- Calculations of correlation function

For high T: For low T: (assuming smooth rotations) $<S_0S_r>\propto exp(-r/\xi)$ $< S_0 S_r > \propto r - \eta$ $\langle \mathbf{S}(\mathbf{r})\mathbf{S}(0) \rangle \simeq \begin{cases} e^{-\operatorname{const.}T} & \text{for } d > 2\\ \left(\frac{r}{L}\right)^{-\eta} & \text{for } d = 2\\ \exp(-\frac{T}{2 J a} r) & \text{for } d = 1. \end{cases}$ • What happens in between?

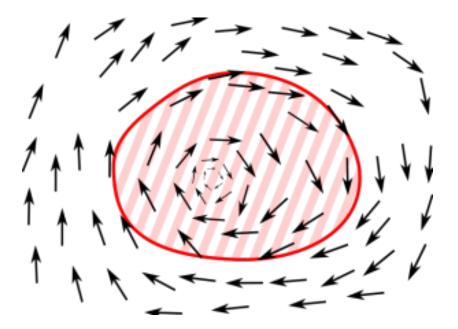
Different types of defects

2D XY – spins live in the plane

• How does a defect in almost ordered system look?

"Repairable" smooth

"non-repairable" singular



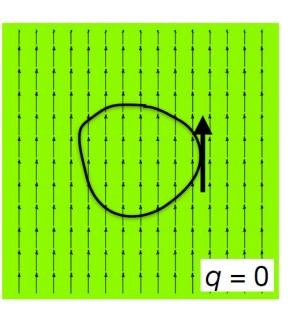
A vortex changes the phase also far from the defect.

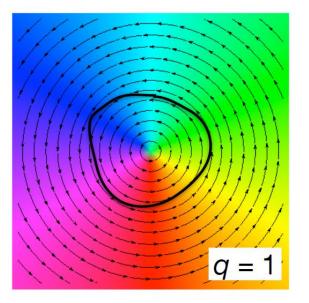
https://abeekman.nl

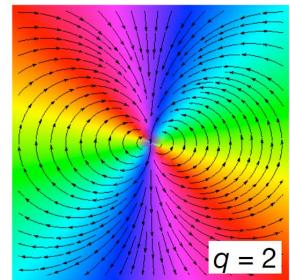
Slide 26

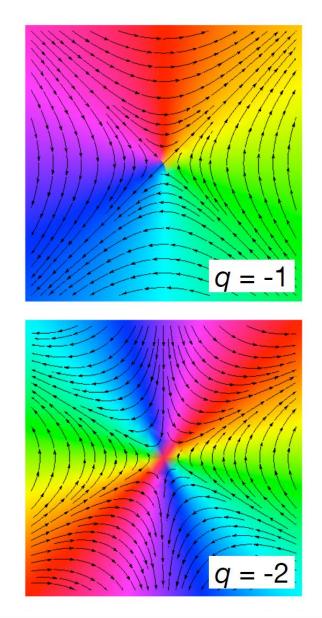
Topological defects

- The topological charge (q) is a winding number.
- Consider rotation of magnetisation along closed loop around core.









Energy of a vortex

Energy of a vortex

Free energy of a vortex

Free energy of a vortex

Energy of a vortex

$$H = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j)$$

If we assume that the direction of the rotors varies smoothly from site to site, we approximate $\cos(\theta_i - \theta_j)$ by the first two terms $1 - \frac{1}{2}(\theta_i - \theta_j)^2$ in the Taylor expansion of

$$H = E_0 + \frac{J}{2} \int d\mathbf{r} (\nabla \theta)^2$$

$$E_{vor} - E_0 = \frac{J}{2} \int d\mathbf{r} [\nabla \theta(\mathbf{r})]^2$$
$$= \frac{Jn^2}{2} \int_0^{2\pi} \int_a^L r dr \frac{1}{r^2}$$
$$= \pi n^2 J \ln(\frac{L}{a}).$$

F = E - TS

the entropy from the number of places where we can position the vortex centre, namely on each of the L^2 plaquette of the square lattice, i.e., $S = k_B \ln(L^2/a^2)$. Accordingly the free energy is given by

$$F = E_0 + (\pi J - 2k_B T) \ln(L/a).$$
(30)

For $T < \pi J/2k_B$ the free energy will diverge to plus infinity as $L \to \infty$

For all paths that don't encircle the vortex position \mathbf{r}_0

$$\oint \nabla \theta(\mathbf{r}) \cdot d\mathbf{l} = 0.$$

For all closed curves encircling the position \mathbf{r}_0 of the centre of the vortex

$$\oint \nabla \theta(\mathbf{r}) \cdot d\mathbf{l} = 2\pi n.$$

$$\theta(\mathbf{r}) = \theta(r)$$

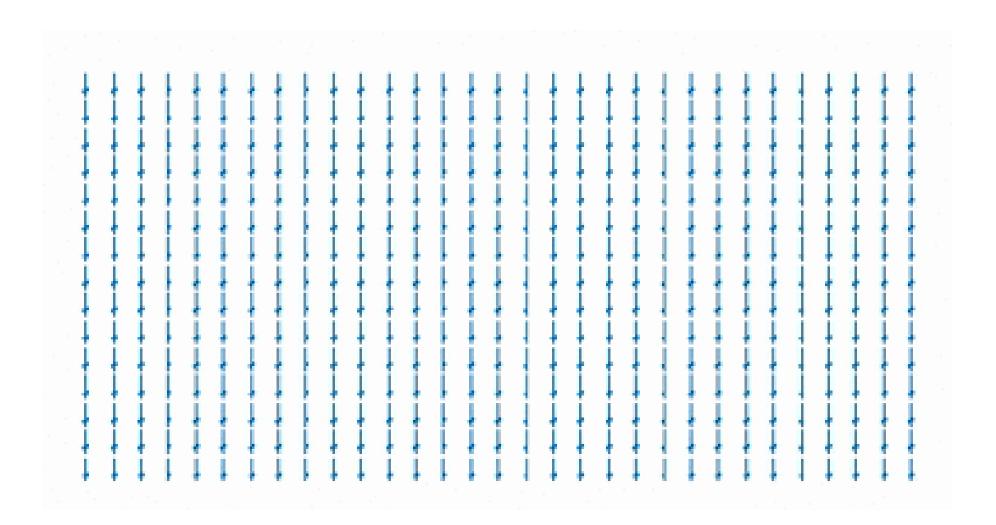
$$2\pi n = \oint \nabla \theta(\mathbf{r}) \cdot d\mathbf{l} = 2\pi r |\nabla \theta|$$

$$|\nabla \theta(r)| = n/r$$

 $T > \pi J/2k_B$ the system can lower its free energy by producing vortices

Vortex anti-vortex pairs

Does not destroy algebraic correlations <S0Sr>∞



Vortex anti-vortex pairs

Vortex anti-vortex pairs

- Are created already T<T_{KT},
- But does not destroy algebraic correlations $< S_0 S_r > \propto r^{-\eta}$

Unbound vortices create global disorder: $<S_RS_{R+r} > \propto exp(-r/\xi)$

The Kosterlitz-Thouless transition
 occur when vortices bind/unbind

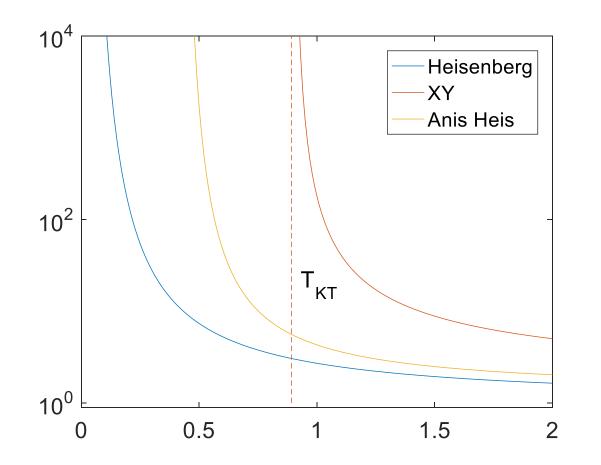
Kosterliz-Thouless

unbound vortexgas of pairs T=0 LRO vortices antivortex pair * + * * * * * + + ****** *********** ***** ***** * * * * * * * * * * * * ********* ******* * * * ****** × + ******* * * * * * ******** * * + * * * * + + * + * * * * * * * * * * * * * * * * * * ************* **** **** * * * * * × × × **** * * * ******** * * * * * * * * * * ******* *********** ************** * * * * * * * * * * * * * * X + + ******* * * * ********** + + + * * * * * * * * * * * * * * * ************ ****** ***** * * * * * * * * * * * ***** * * * **** ***** * * * * * * * * * * * * * ****** * * * ****** ******** ***** * * * * * **** * * * * + + K + + + + K * * * * * * * * * * * * 1 ******** ******* * * * **** **** * + + + + * * * * * * * * ****** * * * * * * * * * * * * * * * ***** * * * * * * * * * * * * * * * * * * * ************** * * * * * * * * * * * * ***** * * * * * * * * * * * ******** * * * * * * * *********** **...** * * * **...** * * **** * * * * * * * * * * * * **** * * * * * ***** * * *** **** *************** ******** * * * ************ * * * * * * * * * * * * * ***** * * * * * * * ************* * * * * * * * * * * * * + + + X + + X + + X + + * * * * * * * * * * * * * * * * ***** * * * * * * * * * * * * * * * * ******* ********* X * X \$ X X *********** * * * * * * * * * * * * *

* *

T_{KT}

Correlation lengths



Heisenberg $\xi(T) \propto e^{J/T}$

Kosterlitz-Thouless: $\xi(T) \propto e^{b/\sqrt{t}}$ $t=(T-T_{KT})/T_{KT}$

Anisotropic Heisenbergcross-over : $\xi(T) \propto e^{b/\sqrt{t}}$ for $\xi > 100$, $\xi(T) \propto e^{b/t}$ for $\xi < 100$,

Measuring correlations with neutrons

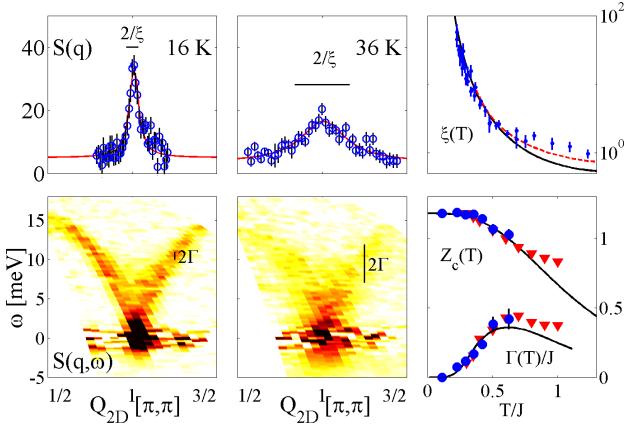
Dynamic structure factor

$$S^{\alpha\beta}(Q,\omega) = \frac{1}{2\pi} \sum_{RR'} \int dt e^{iQ(R-R')-i\omega t} \langle S^{\alpha}_{R}(0) S^{\beta}_{R'}(t) \rangle$$

Instantaneous equal-time structure factor:

$$S(\mathbf{Q}) = \int d\omega S(\mathbf{Q}, \omega)$$
$$\propto \int_{-\infty}^{\infty} dt \delta(t - t') \langle S_{\mathbf{r}'}(t) S_{\mathbf{r}}(t') \rangle = \langle S_{\mathbf{r}'}(t) S_{\mathbf{r}}(t) \rangle$$

Width \Rightarrow Correlation length ξ



Slide 40

tľtl

J. Mag. Mag. Mat. 236, 4 (2001) PRL 82, 3152 (1999); 87, 037202 (2001)

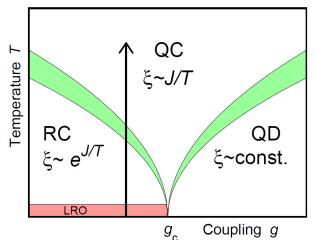
Heisenberg system

$Cu(DCO_2)_2 \cdot 4D_2O$

• Scales as predicted

$$\xi = \frac{e}{8} \frac{v_s}{2\pi\rho_s} \exp\left(\frac{2\pi}{k_B T}\right) \left[1 - \frac{1}{2} \frac{k_B T}{2\pi\rho_s} + O\left(\frac{k_B T}{2\pi\rho_s}\right)^2\right]$$

 No cross-over to Quantum Critical yet



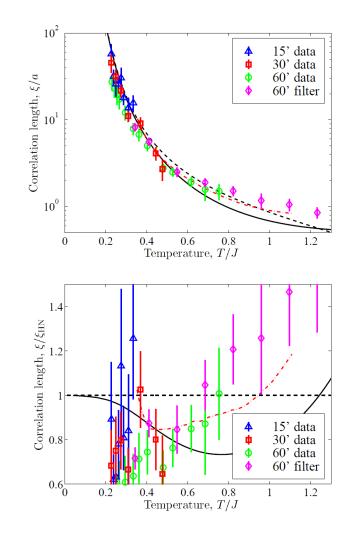


Figure 4.25. The measured correlation length $\xi(T)$ for each of the four configurations. The data are compared to the $NL\sigma M$ predictions (Hasenfratz and Niedermayer, 1991, dashed black) and (Hasenfratz, 1999, solid black) and the PQSCHA result (dot-dashed red). PRL 82, 3152 (1999);

Ronnow – ESM Cargese 2017

Slide 41

XY system

$$\xi_{\rm KT} = A e^{b(T_{\rm KT}/(T - T_{\rm KT}))^{1/2}}$$

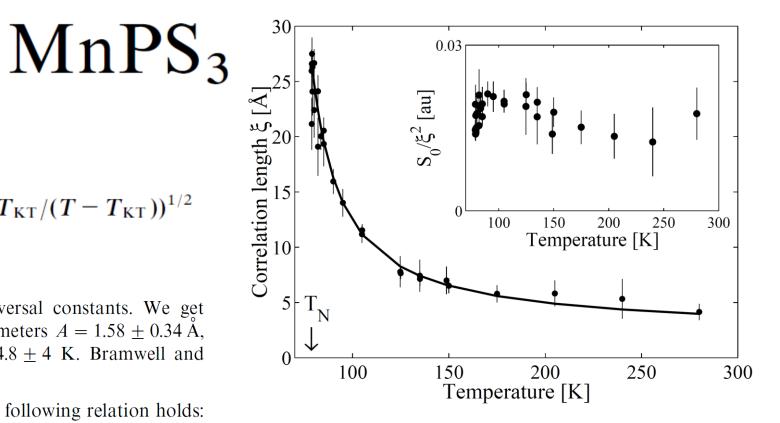
where A and b are non-universal constants. We get an excellent fit with the parameters $A = 1.58 \pm 0.34$ Å, $b = 1.87 \pm 0.36$ and $T_{\rm KT} = 54.8 \pm 4$ K. Bramwell and

size $L = \sqrt{J/J'}$, for which the following relation holds:

$$\frac{T_{\rm N} - T_{\rm KT}}{T_{\rm KT}} = \frac{b^2}{(\ln L)^2}.$$
 (2)

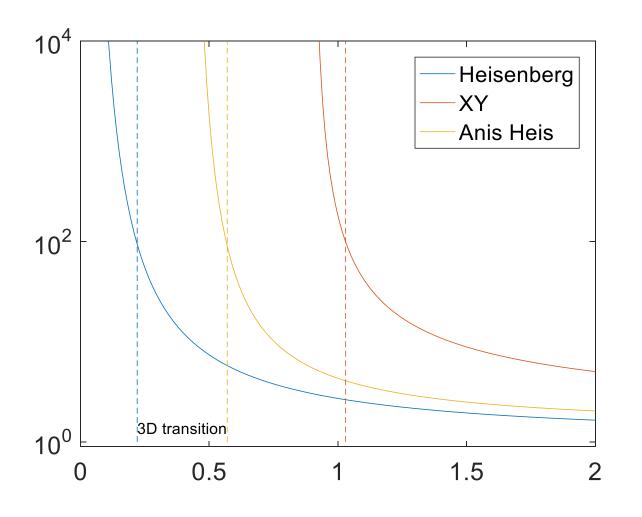
Solving for b and using the KT expression for $\xi(T_{\rm N}) = 27.5$ Å gives A = 1.37 Å and b = 1.98. These values are quite close to those obtained from the fit to the KT expression for $\xi(T)$, which shows that the description is consistent.

Physica B 276-278 (2000) 676-677



Conclusion: We can see KT scaling of ξ But in quasi-2D TKT always forestalled by 3D order

Correlation lengths



Real materials are quasi-2D:

Interlayer coupling J'<<J

3D order:
$$T_N \sim J' \xi(T_N)^2 \Rightarrow$$

$$\xi(T_N) \sim 100 \text{ if } J' = 10^{-4} J$$

So Kosterlitz-Thouless transition never really reached in magnetic materials !

Topological phase transitions

• Driven by topological defects

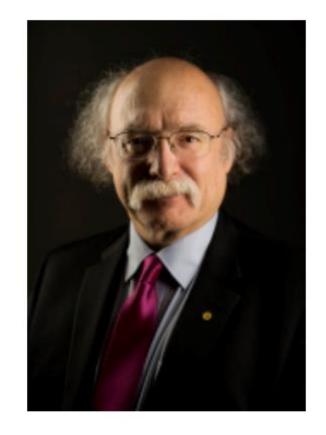
- Vortices (for spins rotating on 2D circle)
 - The Kosterlitz Thouless transition in 2D XY model
 - Superfluid films
 - Josephson junction arrays
- Skyrmions (for spins rotating on 3D sphere)

– Lecture on Friday

What about Duncan ? – T=0 and quantum states

Topological phases of matter

- The Haldane S=1 chain
- Quantum Hall states
- Topological Quantum Spin Liquids



AFM spin waves

Spin waves in antiferromagnet

• Up sites (A) and down sites (B) – bipartite lattice

$$S^{\pm} = S^x \pm iS^y$$

Holstein-Primakoff bosonisation

• Linearization $f(S) \simeq 1 - c^{\dagger}c/4S$

 $S_A \cdot S_B \simeq -S^2 + S(a^{\dagger}a + b^{\dagger}b + a^{\dagger}b^{\dagger} + ab)$ Hamiltonian still mix A and B, r and r'

• Fourier transformation: decouple from r,r' to q $\mathcal{H}^{(2)} = -\frac{z}{2}NJS^{2} + zJS\sum_{q}[a_{q}^{\dagger}a_{q} + b_{q}^{\dagger}b_{q} + \gamma_{q}(a_{q}^{\dagger}b_{q}^{\dagger} + a_{q}b_{q})]$ $\gamma_{q} = \frac{1}{z}\sum_{\delta} e^{i\mathbf{q}\cdot\delta}$ Ronnow - ESM Cargese 2017

$$\mathcal{H}^{(2)} = -\frac{z}{2}NJS^2 + zJS\sum_q \left[a_q^{\dagger}a_q + b_q^{\dagger}b_q + \gamma_q (a_q^{\dagger}b_q^{\dagger} + a_q b_q)\right] \qquad \gamma_q = \frac{1}{z}\sum_{\delta} e^{i\boldsymbol{q}\cdot\boldsymbol{\delta}}$$

- Bogoluibov trans. $a_q^{\dagger} = u_q \alpha_q^{\dagger} v_q \beta_q$ $b_q^{\dagger} = -v_q \alpha_q + u_q \beta_q^{\dagger}$ to decouple a,b $a_q = u_q \alpha_q - v_q \beta_q^{\dagger}$ $b_q = -v_q \alpha_q^{\dagger} + u_q \beta_q$
- Diagonalise: $2\theta_q = \gamma_q$ $u_q = \cosh \theta_q$ $v_q = \sinh \theta_q$

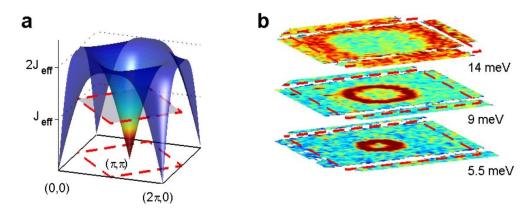
$$\mathcal{H} = -\frac{z}{2}NJS(S+\eta) + zJS\sum_{q}\sqrt{1-\gamma_{q}^{2}}(\alpha_{q}^{\dagger}\alpha_{q} + \beta_{q}^{\dagger}\beta_{q})$$

Ground state excitations = spin waves

$$\omega_q = zJS\sqrt{1-\gamma_q^2}$$
 dispersion

AFM spin wave dispersion

$$\omega_q = zJS\sqrt{1-\gamma_q^2} \qquad \gamma_q = \frac{1}{z}\sum_{\delta} e^{i\boldsymbol{q}\cdot\boldsymbol{\delta}}$$



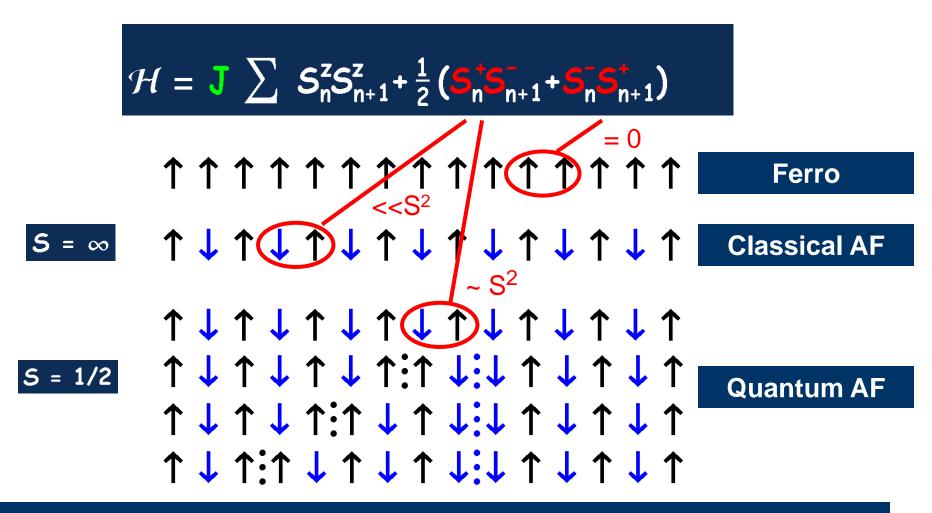
Average spin-wave population = zero point fluctuations

$$\epsilon \equiv \frac{1}{N} \sum_{q} \langle c_q^{\dagger} c \rangle = \frac{1}{N} \sum_{q} \left(\frac{1}{(1 - \gamma_q^2)^{1/2}} - 1 \right)$$

reduced moment: 60% left in 2D $m \equiv \frac{1}{N} \sum (-1)^r \langle S_r^z \rangle \simeq \frac{1}{2} - \epsilon = 0.303$ ≈0.078 <<1 in D=3 ≈0.197 in D=2 Diverges in D=1 !

Quantum fluctuations destroy order in 1D

antiferromagnetic spin chain

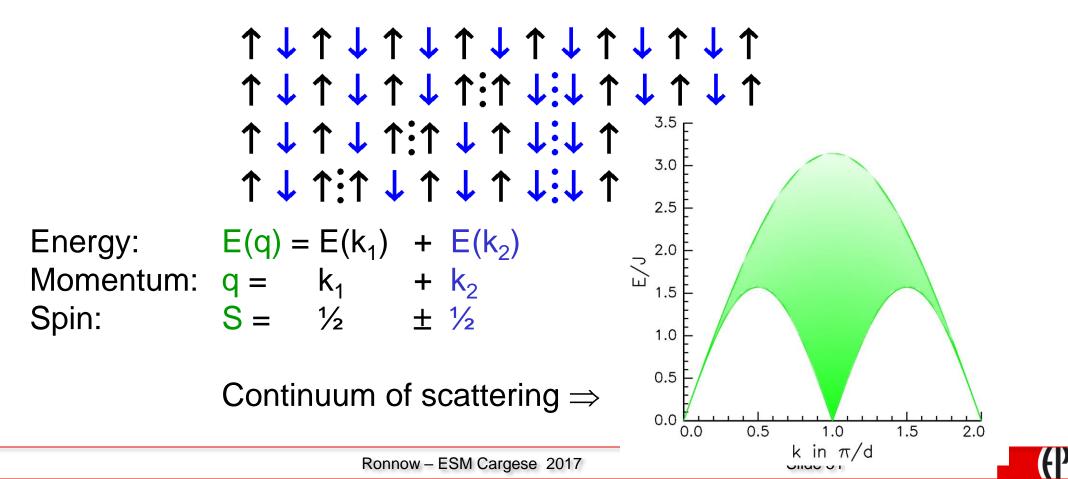


Ground state (Bethe 1931) – a soup of domain walls

Spinon excitations

Elementary excitations:

- "Spinons": spin S = $\frac{1}{2}$ domain walls with respect to local AF 'order'
- Need 2 spinons to form S=1 excitation we can see with neutrons



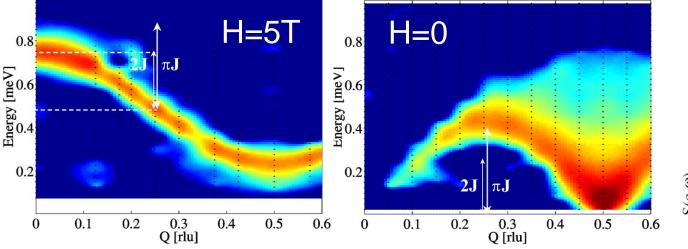
The antiferromagnetic spin chain

FM: ordered ground state (in 5T mag. field)

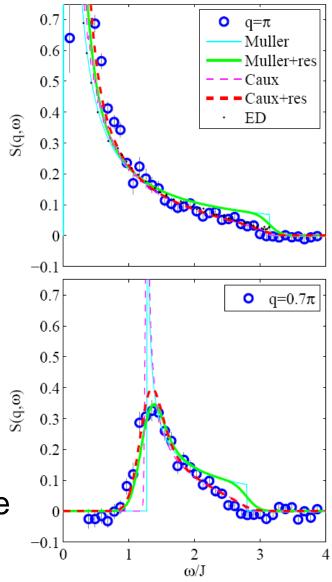
semiclassical spin-wave excitations

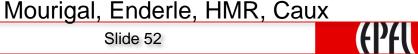
AFM: quantum disordered ground state

- Staggered and singlet correlations
- Spinon excitations



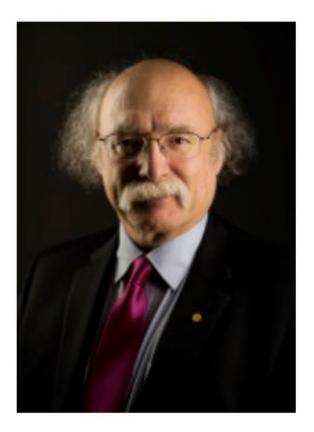
- Agebraic Bethe ansatz for inelastic lineshape
- Beyond Müller-conjecture \Rightarrow



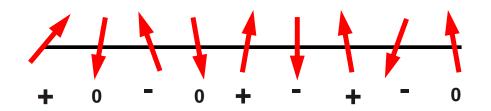


Surprise: 1D S=1 chain has a gap !

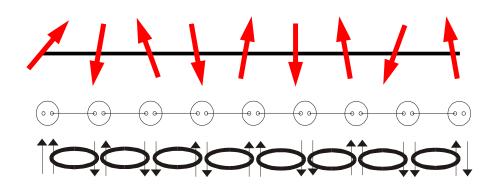
• Haldane's conjecture 1983: "Integer spin chains have a gap"



- No classical order
- Hidden topological order



coupled S=1 model with string order



• See lecture by Kenzelmann

Hertz-Millis

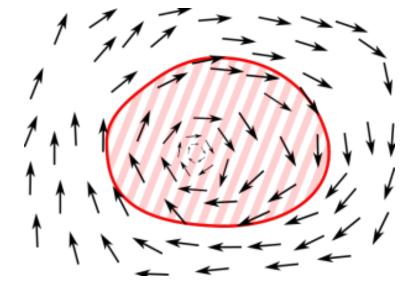
• A quantum system in D dimensions

€

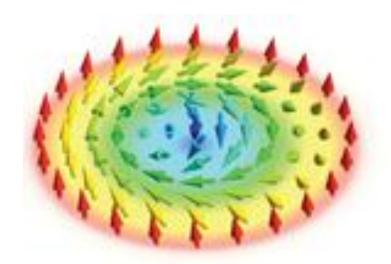
• A classical system in D+1 dimensions

Topological phases transition

- Topological defects
- 2D XY model, BKT transition
- **Topological phases**



- The Haldane S=1 chain confirmed by neutron spectroscopy
- Quantum Hall states theory and experiments
- 2D and 3D topological spin liquids?
 - Found in constructed models
 - Can we find them in real materials?
- Friday: Skyrmions
 - Local topological defects



The Nobel Prize in Physics 2016

Photo: A. Mahmoud **David J. Thouless** Prize share: 1/2

Photo: A. Mahmoud F. Duncan M. Haldane Prize share: 1/4

Photo: A. Mahmoud J. Michael Kosterlitz Prize share: 1/4

The Nobel Prize in Physics 2016 was awarded with one half to David J. Thouless, and the other half to F. Duncan M. Haldane and J. Michael Kosterlitz *"for theoretical discoveries of topological phase transitions and topological phases of matter"*.

