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10 octobre 2017

European School on Magnetism Laurent Ranno (laurent.ranno@neel.cnrs.fr)Fields, Units, Magnetostatics



Motivation

Magnetism is around us and magnetic materials are widely used

Magnet Attraction (coins, fridge)

Contactless Force (hand)

Repulsive Force : Levitation

Magnetic Energy - Mechanical Energy (Magnetic Gun)

Magnetic Energy - Electrical Energy (Induction)

Magnetic Liquids

A device full of magnetic materials : the Hard Disk drive
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reminders

  

Disk

Write Head

Discrete Components :
Transformer
Filter
Inductor

Flat 
Rotary Motor

Voice Coil 
Linear Motor

Read Head

European School on Magnetism Laurent Ranno (laurent.ranno@neel.cnrs.fr)Fields, Units, Magnetostatics



Magnetostatics

How to describe Magnetic Matter ?

How Magnetic Materials impact field maps, forces ?

How to model them ?

Here macroscopic, continous model

Next lectures :
Atomic magnetism, microscopic details (exchange
mechanisms, spin-orbit, crystal field ...)
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Magnetostatics w/o magnets : Reminder

Up to 1820, magnetism and electricity were two subjects not
experimentally connected

H.C. Oersted experiment (1820 - Copenhagen)
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Magnetostatics induction field B

Looking for a mathematical expression
Fields and forces created by an electrical circuit (C1, I)

Elementary ~dB induction field created at M

Biot and Savart law (1820) ~dB(M) = µ0I ~dl∧~u
4πr2
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Magnetostatics : Vocabulary

~dB(M) =
µ0I ~dl ∧ ~u

4πr2

~B is the magnetic induction field
~B is a long-range vector field ( 1

r2 becomes 1
r3 for a closed circuit).
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Magnetostatics : Force

Force created by (C1, I) on (C2, I’)

M

(C1) (C2)

dl
dl’

dB

u

I I’

r

Laplace Law ~dF (M) = I ′ ~dl ′ ∧ ~B(M)

What is the Force between 2 parallel wires carrying the same
current I : attractive/repulsive ?

definition for Ampère :
1 A if 2 parallel wires 1m apart and force is f=2 10−7N/m.
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Magnetostatics : Motor

Origin of the electric-mechanical transducer = motors (linear and
rotary motors)

Synchronous Motor (dc current rotor, ac current stator).
Downsizing, Mechanical Torque, Energy Yield,

Move to permanent magnet rotors.
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Magnetostatics : units

~dF (M) = I ′ ~dl ′ ∧ ~B(M)

Using SI units :

Force F Newton(N)
Intensity Ampère (A)
Magnetic Induction B Tesla (T)

so 1 T = 1 NA−1m−1 and µo = 4π10−7 NA−2 exact value
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Magnetic Induction ~B

Some magnetic induction ~B properties

(S)

(V)

n
dS

∫∫
S

~B · ~dS = 0

~B flux is conservative
B lines never stop (closed B loops) !

B flux is conserved. It is a relevant quantity with a name :
Wb(Weber) = T.m2

(B-field is sometimes called the magnetic flux density)
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Magnetostatics : ~B

~B flux conservation is equivalent to one of the local Maxwell
equation :

~∇ · ~B = 0

~B can be derived from a vector potential ~A so that ~B = ~∇× ~A

For the preceding circuit :

~A =
µ0I

4π

∫
(C1)

~dl

r

applying the curl operator one comes back to ~B
Note : ~A is not unique. ~A(~r) + ~gradφ(~r) is also solution
A gauge can be chosen (i.e. ~∇ · ~A = 0, Coulomb gauge)
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Magnetostatics : ~A

This is equivalent to the role of the electric potential V in
electrostatics with ~E = − ~gradV
(numerical simulation interest)

European School on Magnetism Laurent Ranno (laurent.ranno@neel.cnrs.fr)Fields, Units, Magnetostatics



Magnetostatics : B is an pseudo-vector

Mirror symmetry for a current loop :

~B is a axial vector.
~B is NOT time-reversal invariant, unlike electrostatics.

European School on Magnetism Laurent Ranno (laurent.ranno@neel.cnrs.fr)Fields, Units, Magnetostatics



Magnetostatics : Ampere ’s theorem

(S)

( )G
dS

dl

j

Ampere Theorem∫
(Γ)

~B · ~dl = µ0I no magnet

Note : with magnetic materials it becomes :
∫

(Γ)
~H · ~dl = I
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Magnetostatics : Ampère theorem

Similar to ~B flux conservation
Ampère theorem has a local equivalent (Maxwell)

~∇× ~B = µ0
~j

where ~j is the volume current density (A/m2 !)
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Magnetostatics : Application Ampere theorem

Application to the infinite straight wire∫
(Γ)

~B · ~dl = µ0I

~B =
µ0I

2πr
~uθ
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Magnetostatics : magnetic moment

Current Carrying Loop Magnetic Moment

n

I

r

M

S

Circular Loop (radius R), carrying current I, oriented surface ~S
Its magnetic moment is ~m = ~S · I unit A.m2
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Magnetostatics : Dipolar Approximation

n

I

r

M

S

When r >> R, ~B created by the loop becomes

~B =
µ0

4πr3
(2mcosθ~ur + msinθ~uθ)
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Magnetostatics : Dipolar Approximation

~B =
µ0

4πr3
(2mcosθ~ur + msinθ~uθ)

can also be written along ~r and ~m :

~B =
µ0

4π
(

3( ~m · ~r)~r

r5
−

~m

r3
)

Earth Field = Dipolar Field (good approximation).
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Magnetostatics : Earth Field

Geographic North Pole

is 

Magnetic South Pole

online model : www.ngdc.noaa.gov
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Magnetostatics : Earth Field

The magnetic pole moves up toward Russia. Presently (86◦N,
159◦W), its speed is 55 km/year to N-NW.
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Magnetostatics : Electrostatics Analogy

The magnetic dipolar field is equivalent to the electric dipolar field
One defines an electric dipole ~p = q~l and

~E =
1

4πε0r3
(2pcosθ~ur + psinθ~uθ)

For an elementary loop ~m is the loop magnetic dipole .
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Magnetostatics : Field lines

E B

+

- +

Fields around an electric dipole and a magnetic dipole
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Reciprocity Theorem

How to optimise the signal sensed by a coil close to the sample ?

~m = I2. ~S2

Signal = flux of induction created by sample ~m through C1

φ21 = ~B2(1).~S1

Mutual inductance M12 equals M21
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Reciprocity Theorem

φ21 = ~B2(1).~S1

φ21 = M.I2 et φ12 = M.I1

φ21 = φ12.I2/I1 = ~B1(2).~S2.I2/I1 = ~B1(2). ~m/I1

The sample ~m creates a B-flux in the detection coil equal to the
scalar product ~m and ~B at ~m assuming 1 A in the detection coil.
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Magnetostatics with Magnets : Magnetisation

Experimental Facts :
So-called magnetic materials produce effects similar to the ones
created by electric circuits.

Iron filings + magnet equivalent to Iron filing (or compass) and
solenoid
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Magnetostatics : Magnetisation

A magnetic material will be modeled as a set of magnetic dipoles.

∆ ~m =
∑
i

~mi

Magnetisation ~M is the magnetic moment per unit volume :

~M =
∆ ~m

∆V

Average over 1 nm to smoothen the atomic contributions
(continuous model).

Magnetic Moment ~m = I · ~S unit is A ·m2

Magnetisation M = ∆m
∆V unit is A ·m−1
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Magnetostatics : Current Analogy

Summing all atomic dipole contributions :

OK for atomistic model AND small volume.
For large sample OR continuous model

Equivalent Current Distribution
Amperian Approach for magnetisation.

Equivalent Charge Distribution
Coulombian Approach for magnetisation.
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Magnetostatics with Magnets : Amperian View Point

When ~M = ~M(~r),
determining ~B field ~A vector field everywhere is mathematically
equivalent to a magnetostatics w/o magnets problem, where
beside the real currents ones adds :

volume current density due to M : ~jV = ~∇× ~M

and a surface current density due to M ~jS = ~M × ~n
(uniform M, no volume current)
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Proof for Amperian approach

From Biot-Savart :
~A =

µ0

4π

~m × ~u
r2

~A(Q) =
µ0

4π

∫∫∫
(D)

~M(P)× ~u
r2

dv

~A(Q) =
µ0

4π

∫∫∫
(D)

~M(P)× ~gradP(
1

r
) dv

Since we have ~∇× (f · ~g) = f · ~∇× ~g + ~gradf × ~g thnn

~A(Q) = −µ0

4π

∫∫∫
(D)

~∇× (
~M(P)

r
) dv +

µ0

4π

∫∫∫
(D)

~∇× ~M

r
dv

Since ∫∫∫
(V )

~∇× ~g dv =

∫∫
(S)

~n × ~g dS

~A(Q) =
µ0

4π

∫∫
(S)

~M × ~n
r

dS +
µ0

4π

∫∫∫
(D)

~∇× ~M

r
dv

⇒ ~A(Q) =
µ0

4π

∫∫
(S)

~jS
r

dS +
µ0

4π

∫∫∫
(D)

~jv
r

dv

QED.
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Magnetostatics in Matter : Amperian Approach

A uniformly magnetised cylindrical magnet is equivalent to ?
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Magnetostatics : Magnet - Solenöıd

M

j
S

surface currents ~jS ~M ∧ ~n A.m−1

volume currents ~jV ~∇× ~M A.m−1

m ≡ A.m−2
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Magnetostatics : Magnetic Field H

In vacuum : ~∇× ~B = µ0
~j

When Magnetic material is present : ~j = ~j0 + ~jv
with ~j0 the real current density and ~jv = ~∇× ~M

⇒ ~∇× ~B = µ0
~j0 + µ0

~jv

⇒ ~∇× (
~B

µ0
− ~M) = ~j0

One defines ~H =
~B
µ0
− ~M

one gets : ~∇× ~H = ~j0
With equation ~B = µ0( ~H + ~M)
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Magnetostatics : Magnetic Field H

~H is named Magnetic Field
~B = µ0( ~H + ~M)

Replacing ~M by ~js , ~Jv
allows to calculate ~B everywhere

In the absence of ~j0
~∇× ~H = ~0, whatever ~M
looks like ~∇× ~E = ~0 for electrostatics

A magnetic scalar potential φ can be introduced :
~H = − ~gradφ
Good for calculations
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Magnetostatics : Coulomb Point of View

There is no magnetic charge.

No magnetic monopole

Using an electrostatic analogy, magnetic matter is represented
by a distribution of virtual magnetic charges, which allows to
calculate the H-field created by magnetisation.
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Magnetostatics : Coulomb Point of View

2nd point of view : Coulomb Analogy

+ +
+ + +

+

- - - - - --

M

Pseudo ChargesAimant
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Magnetostatics : Coulombian approach

Magnetostatics Electrostatics
magnetic dipole Electric dipole

~m = I · ~S = qm · ~l ~p = q · ~l
~Hm = − ~gradVm

~E = − ~gradV
~Hm = −1

4π
~grad ~m·~u

r2
~E = −1

4πε0

~grad ~p·~u
r2

Vm = 1
4π

~m·~u
r2 V = 1

4πε0

~p·~u
r2

magnetic charges are called also magnetic poles or magnetic
masses
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Magnetostatics : Coulombian approach

~H created by a magnetic charge qm is :

~H =
1

4π

qm
r2
~u avec ~u =

~r

|~r |

+
++
+
++

-
-
-
-
-
-

-

+
++
+
++

-
-
-
-
-
-

-
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Magnetostatics : Coulombian approach

+
++
+
++

-
-
-
-
-
-

-

+
++
+
++

-
-
-
-
-
-

-
the force between two magnetic charges :

~f = µ0q
′
m
~H =

1

4π

q′mqm
r2

~u

European School on Magnetism Laurent Ranno (laurent.ranno@neel.cnrs.fr)Fields, Units, Magnetostatics



Coulomb Approach

To get the mathematics right :
~H created by ~M(~r) is correct if we use :

Volume charge density ρ = −~∇ · ~M
Surface charge density σ = ~M · ~n
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Coulombian/Amperian Approaches

Amperian approach gives ~B
Coulombian gives ~H.
We use only one approach since ~B = µ0( ~H + ~M) True Everywhere
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SI system of units : Gaussian cgs system

Please only use the S.I. system of units : M.K.S.A

In the past centuries, several subjects were developed independently
and then several ways to rationalise units were proposed.

In magnetism, cgs units are still found (some modern equipment,
litterature).
c.g.s : no µ0, no ε0. c and 4π appear in Maxwell equations.

c.g.s. and S.I. equivalent quantities do not always have the same
dimension !
~f (Newton) = q1q2

4πε0r2 is ~f (dyne) = q1q2

r2

Charge unit is directly related to mechanical units in cgs. Need for
A in S.I.
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SI system of units : Gaussian cgs system

In c.g.s B and H have the same dimension and in vacuum the same
numerical value.

1 Gauss (B) = 1 Oersted (H). It prevents their rapid disapearance !

Conversion :
1 Tesla = 10 000 Gauss
103

4π A/m = 1 Oersted
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SI-cgs : moment and susceptibility

m = I .S = 1cgsA.1cm2

m = 10A.10−4m2 = 10−3A.m2

1000 emu = 1 A.m2 (1 e.m.u./g = 1 Am2/kg)

cgs : ~B = ~H + 4π ~M
cgs susceptibility is 4π larger
The sum of the demag coefficient is not 1 but 4π in cgs
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Demagnetising Field

Let s look at a cylindrical magnet with zero applied H-field

M

H

+
+

+

+

+

+

+

+

-
-

-

-

-
-
-
-

-
- -

~H inside the magnetic material is not zero, is antiparallel to ~M
~H is called the demagnetising field ~Hd

~H = ~H0 + ~Hd
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Demagnetising field

Application to Material Characterisation :
~M = f ( ~H) is a characteristic curve for a material.

Most measurements give ~M = f ( ~H0)
Mathematical result
For an ellipsöıd, magnetised uniformly ( ~M(~r) = constant, ∀~r)
~B and ~Hd are uniform and :

~Hd = −[D] ~M

[D] is the demagnetising coefficient tensor
(named [N] in some texts)
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Demagnetising Coefficients

Choosing the symmetry axes, the tensor can be represented as a
3x3 matrix :

[D] =

Dx 0 0
0 Dy 0
0 0 Dz


and the following relation is true :
The matrix trace is 1 i.e.
Dx + Dy + Dz = 1.
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Demagnetising Coefficients

For a sphere, Dx = Dy = Dz = 1
3

For a very flat disk (axis Oz), Dx = Dy = 0 et Dz = 1

For an elongated wire, Dx = Dy = 1
2 and Dz = 0

For a less symmetrical shape, an educated guess is to consider the
ellipsoid with the same aspect ratio.
However uniformly magnetised BUT not ellipsoidal shapes produce
non uniform ~Hd !

It is the time consuming step for micromagnetics.
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Demagnetising Coefficients

For ellipsöıds, there are analytical expressions for Demag
Coefficients.
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Magnetic Behaviours

Magnetic behaviours under field :
To characterise a material : ~M = f ( ~H) or sometimes ~M = f (~B)
Usually the measurement gives Mz

For anisotropic materials (films, single crystals) ~M = f ( ~H) is
measured along different crystallographic axes (see magnetic
anisotropy lecture)

M

M

H

H

1

2

4

3
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Susceptibility

For linear responses (2 et 3) one can define ~M = χ~H.
~M and ~H are parallel.
χ is the magnetic susceptibility .
Unitless scalar in S.I. for an isotropic material.
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Susceptibility

Since ~B = µ0( ~H + ~M)

~B = µ0(1 + χ) ~H = µ ~H

where µ = µ0(1 + χ) is the permeability
and µr = µ

µ0
= 1 + χ the relative permeability

χ > 0 for paramagnetism
χ < 0 for diamagnetism
χ ranges from −10−5 to 106
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Susceptibility : demag correction

One measures : M = χ0H0

However H = H0 + Hd = H0 − DM
So : M = χ0(H + D.M)
Finally : M = χ0

1−Dχ0
H

Or : M = χ
1+DχH0

What happens for very soft materials ?
(χ0 is limited to 1

D , need for closed circuit (D=0) to measure large
χ)

European School on Magnetism Laurent Ranno (laurent.ranno@neel.cnrs.fr)Fields, Units, Magnetostatics



Magnetic Susceptibility

For nonlinear materials (1) a differential susceptibility at a specific
field ~H0.

χ = (
dM

dH
)H0

in particular initial susceptibility χi

χi = (
dM

dH
)H0=0

and High field susceptibility (residual after saturation)
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Permanent Magnets

M

M

H

H

1

2

4

3

For hysteretic materials (4) there is a remanent magnetisation.
Family of permanent magnets
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Field lines (B and H)

B-lines are closed
H-lines start from positive pseudo-charges and finish at negative
pseudo-charges.
H same as E
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Field lines across interfaces

For a linear, homogeneous isotropic material its permeability µ can
be defined.
Interface between µ1 and µ2

Continuities of field components.

~∇ · ~B = 0 gives Bnormal continuity
~∇× ~H = ~0 gives Htangent continuity
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Field lines across interfaces

Bn1 = Bn2 so µ1Hn1 = µ2Hn2

Ht1 = Ht2 so
µ1Hn1

Ht1
=
µ2Hn2

Ht2

so µ1 tan θ1 = µ2 tan θ2
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Flux Guide

µ1 tan θ1 = µ2 tan θ2

If (2) very soft (µ2 >> µ1) then
tan θ2 much smaller than tan θ1

Field lines are parallel to interface in the soft
It is the principle for Flux Guidance (soft iron cores).
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Flux Guidance

Field Map for a U-shaped Magnet.
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Flux Guidance

inserting a soft material (χ=10 ellipse)
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Flux Guides
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Magnetic Shield

Mu metal shielding for sensitive electronics.
Available volume with residual smaller than 1 nanoTesla.
Mumétal HiMu80 = Ni 80, Mo 5, Si 0.5, Cu 0.02, + Fe.
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Magnetic Energy

Energy for a fixed moment ~m in applied field ~B = µ0
~H

W = − ~m · ~B

Stable position ?
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Force

Force on a magnetic moment
Calculating on one elementary loop :

Fz = m
∂B0z

∂z
for a loop m in applied field B0z

More generally :

~F = − ~gradW = ~grad( ~m · ~B0)

Force created by a uniform field ?
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Torque

~m in applied field ~B0 experiences a torque ~Γ :

~Γ = ~m × ~B0

The torque tends to align ~m parallel to ~B0
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Energies

magnetic moments experience 2 sources of field :
- applied fields
- demagnetising fields
Both should be considered.
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Zeeman Energy

In applied field ~H0 one gets :

Ezeeman = − ~M0 · µ0
~H0V = − ~M0 · ~B0V

Ezeeman/volume = − ~M0 · µ0
~H0
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Demagnetising Energy

~Hd created by the material :

Ed = −µ0

2
~M0 · ~Hd

Do not forget the 1/2 ! ! !
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Magnetostatic Energy

The volume magnetostatic Energy is the sum :
Zeeman Energy + Demagnetising Energy.

Em = −µ0

2
~M0 · ~Hd − µ0

~M0 · ~H0
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Magnetising Work

Calculating the Work to magnetise a sample
Using a solenoid with constant current,

Insert the sample
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Magnetising Work

Since I is constant, if M varies then B-flux varies.
The current generator must work :
P = I .dφdt = I NSdBdt = µ0INS

dH+dM
dt

dW = (µ0HdH + µ0HdM)V

European School on Magnetism Laurent Ranno (laurent.ranno@neel.cnrs.fr)Fields, Units, Magnetostatics



Magnetising Work

The energy stored in the field is µ0H
2V /2 = LI 2/2

= the long solenoid inductance : L = µ0N
2S/l

The energy to magnetise the sample varies as µ0H.dM
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Magnetic Losses

When the loop M(H) is not reversible, what represents its area ?

The energy losses per loop.
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Questions

Questions

Lunch time

European School on Magnetism Laurent Ranno (laurent.ranno@neel.cnrs.fr)Fields, Units, Magnetostatics


