# Magnetic interactions



### Ingrid Mertig

#### Martin-Luther-Universität Halle-Wittenberg



# Outline



- Introduction
- Interactions
- Models
- STONER model
- HEISENBERG model

# Introduction

# Quantum mechanical description of solids







$$\hat{H} = \hat{T}_{I} + \hat{T}_{e} + V_{II} + V_{ee} + + V_{eI}$$

Adiabatic approximation

# Electrons: $\hat{H}(\mathbf{R}) = \hat{T}_e(\mathbf{R}) + V_{ee}(\mathbf{R}) + +V_{eI}(\mathbf{R})$

lons:

$$\hat{H} = \hat{T}_I + V_{II} + E(\mathbf{R})$$

 $\mathbf{R} = \{\mathbf{R_1}, \mathbf{R_2}, \mathbf{R_3}, \ldots\}$ 



$$\hat{H}(\mathbf{R}) = \hat{T}_e(\mathbf{R}) + V_{ee}(\mathbf{R}) + +V_{eI}(\mathbf{R})$$

Many-electron Schrödinger equation:

$$\hat{H}(\mathbf{R})\Phi(\mathbf{r},\mathbf{R}) = E(\mathbf{R})\Phi(\mathbf{r},\mathbf{R})$$

**Electron coordinates:** 

$$\mathbf{r} = \{\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3}, ...\}$$

Fixed ion coordinates:

$$\mathbf{R} = \{\mathbf{R_1}, \mathbf{R_2}, \mathbf{R_3}, \ldots\}$$



# Many-electron Schrödinger equation:

# $\hat{H}(\mathbf{R})\Phi(\mathbf{r},\mathbf{R}) = E(\mathbf{R})\Phi(\mathbf{r},\mathbf{R})$

- Free electrons
- Hartree approximation
- Hartree-Fock approximation
- Density functional theory

**One-electron Schrödinger equation:** 

$$\hat{H}\varphi(\mathbf{r}) = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial\mathbf{r}^2} + V(\mathbf{r})\right)\varphi(\mathbf{r}) = \varepsilon\varphi(\mathbf{r})$$

# Magnetic interactions

# Interactions

#### There is no elementary magnetic interaction!

Dipol-dipol interaction between magnetic moments:

$$E_{DD}(\mathbf{R}) = \frac{1}{R^3} (\mathbf{M_1} \cdot \mathbf{M_2} - 3(\mathbf{M_1} \cdot \hat{\mathbf{R}})(\mathbf{M_2} \cdot \hat{\mathbf{R}}))$$

$$E_{DD} \sim 10^{-5} eV$$

$$M \sim 1\mu_B$$

$$\mu_B = \frac{e\hbar}{2mc}$$

т л

1



Exchange interaction caused by Pauli principle:

Ansatz for the wave function:

$$\Phi_{HF}(\mathbf{r}_1...\mathbf{r}_i...\mathbf{r}_N) = \frac{1}{\sqrt{N!}} \det |\varphi_{\alpha_i}(\mathbf{r}_i)|$$

Hartee-Fock energy:

$$E_{HF}[\varphi_{\alpha}] = \sum_{i}^{N} \int d^{3}r \varphi_{\alpha_{i}}^{*}(\mathbf{r}) \hat{H}(\mathbf{r}) \varphi_{\alpha_{i}}(\mathbf{r})$$
$$+ \frac{1}{2} \sum_{i \neq j} \int d^{3}r d^{3}r' \frac{\epsilon^{2}}{|\mathbf{r} - \mathbf{r}'|} [\varphi_{\alpha_{i}}^{*}(\mathbf{r}) \varphi_{\alpha_{i}}(\mathbf{r}) \varphi_{\alpha_{j}}^{*}(\mathbf{r}') \varphi_{\alpha_{j}}(\mathbf{r}')$$
$$- \varphi_{\alpha_{j}}^{*}(\mathbf{r}) \varphi_{\alpha_{i}}(\mathbf{r}) \varphi_{\alpha_{i}}^{*}(\mathbf{r}') \varphi_{\alpha_{j}}(\mathbf{r}')]$$

Exchange of two electrons!



Electrons in isolated atoms:

Mostly magnetic, Hund's rule

Electrons in an ideal Fermi gas:

Mostly non-magnetic





# Localisation of the electrons



### Atomic orbitals:

localised



#### delocalised





s

р<sub>у</sub>

dyz

pz

 $d_{x^{2}-y^{2}}$ 

p<sub>x</sub>

 $d_{xz}$ 

d<sub>xy</sub>



d <sub>z</sub> 2



Degree of electron localisation causes magnetism or not!

- Simple metals and semiconductors: non-magnetic
- Rare earth atoms: atomic magnetic moments
- Transition metals and actinide: weakly localised electrons

# Interatomic exchange



# Direct exchange:



# Indirect exchange:



Superexchange:



Itinerant exchange: magnetism of delocalised electrons





 $\begin{aligned} & \text{Mean field approximation} \\ & < \hat{A}\hat{B} >= \hat{A} < \hat{B} > + < \hat{A} > \hat{B} - < \hat{A} > < \hat{B} > \\ & \text{WEISS} & \text{STONER} \end{aligned}$ 





One-electron Schrödinger equation for spin-dependent potential:

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial\mathbf{r}^2} + V^{\pm}(\mathbf{r})\right)\varphi_m^{\pm}(\mathbf{r}) = \varepsilon_m^{\pm}\varphi_m^{\pm}(\mathbf{r})$$

Charge density:

$$n(\mathbf{r}) = n^{+}(\mathbf{r}) + n^{-}(\mathbf{r}) = \sum_{m} |\varphi_{m}^{+}(\mathbf{r})|^{2} + \sum_{m} |\varphi_{m}^{-}(\mathbf{r})|^{2}$$

Magnetization density:

$$m(\mathbf{r}) = n^{+}(\mathbf{r}) - n^{-}(\mathbf{r}) = \sum_{m} |\varphi_{m}^{+}(\mathbf{r})|^{2} - \sum_{m} |\varphi_{m}^{-}(\mathbf{r})|^{2}$$

# Magnetization density and magnetization



$$m(\mathbf{r}) = n^{+}(\mathbf{r}) - n^{-}(\mathbf{r}) = \sum_{m} |\varphi_{m}^{+}(\mathbf{r})|^{2} - \sum_{m} |\varphi_{m}^{-}(\mathbf{r})|^{2}$$



Local magnetic moment per unit cell **M** 

$$M = \int_{V_Z} d^3 r \ m(\mathbf{r})$$



One-electron Schrödinger equation for spin-dependent potential:

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial\mathbf{r}^2} + V^{\pm}(\mathbf{r})\right)\varphi_m^{\pm}(\mathbf{r}) = \varepsilon_m^{\pm}\varphi_m^{\pm}(\mathbf{r})$$

Spin-dependent potential:

$$V^{\pm}(\mathbf{r}) = V(\mathbf{r}) \mp \frac{1}{2}IM$$

$$M = \int_{V_Z} d^3 r \ m(\mathbf{r})$$



Wave function unchanged by spin polarization, constant potential:

$$\varphi_m^{\pm}(\mathbf{r}) = \varphi_m(\mathbf{r})$$

Splitting of the eigenvalues:





# Spin-polarized density of states





#### Number of electrons:

$$N = \int^{E_F} dE \{ D_0(E + IM/2) + D_0(E - IM/2) \}$$

Magnetic moment:

$$M = \int^{E_F} dE \{ D_0(E + IM/2) - D_0(E - IM/2) \}$$

Fixed:  $N, D_0(E)$  To be determined:  $E_F, M$ 

$$F(M) = \int^{E_F(M)} dE \{ D_0(E + IM/2) - D_0(E - IM/2) \}$$

Self-consistent solution





# Properties of F(M):

• 
$$F(0) = 0$$

• 
$$F(-M) = -F(M)$$
 bzw.  $E_F(-M) = E_F(M)$ 

- $F(\pm\infty) = \pm M_{\infty}$  and  $-M_{\infty} \le F(M) \le M_{\infty}$
- $F'(M) \ge 1$  monotonically increasing





$$F(M) = \int^{E_F(M)} dE \{ D_0(E + IM/2) - D_0(E - IM/2) \}$$

$$\frac{dF}{dM} = \int^{E_F(M)} dE \left[ \frac{d}{dM} \{ D_0(E + IM/2) - D_0(E - IM/2) \} + \{ D_0(E + IM/2) - D_0(E - IM/2) \} \frac{dE_F}{dM} \right]$$

$$F'(M) = \int^{E_F(M)} dE[\{D_0(E + IM/2) + D_0(E - IM/2)\} + \{D_0(E + IM/2) - D_0(E - IM/2)\} \frac{dE_F}{dM}]$$



Calculation of 
$$\frac{dE_F}{dM}$$
 from  $dN = 0$ 

$$dN = \frac{dN}{dE_F}dE_F + \frac{dN}{dM}dM = 0$$

$$N = \int^{E_F} dE \{ D_0(E + IM/2) + D_0(E - IM/2) \}$$

$$0 = (D_0^+ + D_0^-)dE_F + \frac{I}{2}(D_0^+ - D_0^-)dM \qquad \frac{dE_F}{dM} = \frac{I}{2}\frac{(D_0^+ - D_0^-)}{(D_0^+ + D_0^-)}$$







$$F'(M) = \int^{E_F(M)} dE[\{D_0(E + IM/2) + D_0(E - IM/2)\} + \{D_0(E + IM/2) - D_0(E - IM/2)\} \frac{dE_F}{dM}]$$

$$\frac{dE_F}{dM} = \frac{I}{2} \frac{(D_0^+ - D_0^-)}{(D_0^+ + D_0^-)}$$

$$F'(M) = \frac{I}{2}(D_0^+ + D_0^-)\{1 - \frac{(D_0^+ - D_0^-)^2}{(D_0^+ + D_0^-)^2}\} \ge 0$$



# Paramagnetic solution:

trivial solution M=0









#### Ferromagnetic solution:

- trivial solution M=0
- two solutions with spontaneous magnetization  ${}_+M_{S}$



**STONER criterion:**  $F'(0) = ID_0(E_F) > 1$ 



# **STONER criterion:** $F'(0) = ID_0(E_F) > 1$

|    | $D_0(E_F) \left[ eV^{-1} \right]$ | $I \; [eV]$ | $ID_0(E_F)$ | $M \; [\mu_B/atom]$ |
|----|-----------------------------------|-------------|-------------|---------------------|
| Na | 0.23                              | 1.82        | 0.41        |                     |
| Al | 0.21                              | 1.22        | 0.25        |                     |
| Cr | 0.35                              | 0.76        | 0.27        |                     |
| Mn | 0.77                              | 0.82        | 0.63        |                     |
| Fe | 1.54                              | 0.93        | 1.434       | 2.22                |
| Со | 1.72                              | 0.99        | 1.70        | 1.71                |
| Ni | 2.02                              | 1.01        | 2.04        | 0.61                |
| Cu | 0.14                              | 0.73        | 0.11        |                     |
| Pd | 1.14                              | 0.68        | 0.78        |                     |
| Pt | 0.79                              | 0.63        | 0.5         |                     |

# Density of states for bulk ferromagnets





13.10.2017

Cargèse

# HEISENBERG model

# Magnons and second quantization





Dispersion relation of spin waves in ferromagnets:

 $arepsilon(m{k})=2Js\left(1-\cos(ka)
ight)$  (only one basis atom)

 $n\,$  basis atoms lead to  $n\,$  magnon branches  $arepsilon_i(m{k})\,$  .



# Magnons in second quantization



Hamiltonian: 
$$H = -J \sum_{\langle ij \rangle} s_i \cdot s_j = -J \sum_{\langle ij \rangle} \left[ s_i^z s_j^z + \frac{1}{2} \left( s_i^- s_j^+ + s_i^+ s_j^- \right) \right]$$
  
 $s_i^{\pm} = s_i^x \pm i s_i^y$   
 $[s_i^z, s_j^{\pm}] = \pm s_i^{\pm} \delta_{i,j}, \quad [s_i^+, s_j^-] = 2s_i^z \delta_{i,j}$  lowers z component raises z component

Bosonization:  $|0\rangle$  is the ground state (magnon vacuum); analyze **small** fluctuations



# Magnons in second quantization





# Topological states and magnetism



#### Ingrid Mertig

#### Martin-Luther-Universität Halle-Wittenberg
#### Outline



- Introduction
- Topological electron states
- The quantum Hall effects
- The topological Hall effect
- Summary

#### What is a Berry phase?



Cargèse



#### Schrödinger equation and adiabatic evolution

### $H(\mathbf{R})|\varphi_n(\mathbf{R})\rangle = E_n(\mathbf{R})|\varphi_n(\mathbf{R})\rangle$

### $|\varphi_n(\mathbf{R_0})\rangle = \exp(i\gamma_n(C))|\varphi_n(\mathbf{R_0})\rangle$

M. V. Berry, Proc. R. Soc. A 392, 1802 (1984)

 $\mathbf{R}_{\mathbf{0}}$ 

Cargèse

#### What is a Berry curvature?



Berry phase:

$$\gamma_n(C) = i \oint_c dR \langle \varphi_n(\mathbf{R}) | \nabla_{\mathbf{R}} | \varphi_n(\mathbf{R}) \rangle$$

Berry connection:

$$\mathbf{A}_n(\mathbf{R}) = i \langle \varphi_n(\mathbf{R}) | \nabla_{\mathbf{R}} | \varphi_n(\mathbf{R}) \rangle$$

Berry curvature:

$$egin{aligned} oldsymbol{\Omega}_n(\mathbf{R}) &= 
abla imes \mathbf{A}_n(\mathbf{R}) \ &= i \langle 
abla_{\mathbf{R}} arphi_n(\mathbf{R}) | imes | 
abla_{\mathbf{R}} arphi_n(\mathbf{R}) | \end{aligned}$$

M. V. Berry, Proc. R. Soc. A 392, 1802 (1984)

#### Berry curvature of Bloch states







Change of momentum:

$$\begin{split} \hbar \dot{\mathbf{k}} &= -e\mathbf{E} \qquad -e\dot{\mathbf{r}} \times \mathbf{B}(\mathbf{r}) \\ \text{Change of position:} & \text{Lorentz force} \\ \dot{\mathbf{r}} &= \frac{\partial E_n(\mathbf{k})}{\hbar \partial \mathbf{k}} \underbrace{-\dot{\mathbf{k}} \times \mathbf{\Omega}_n(\mathbf{k})}_{\text{Anomalous velocity}} \end{split}$$

M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996)

#### Transversal transport coefficients

#### Ohm's law and conductivity tensor





Cargèse



The Hall trio





Lorentz force

Berry curvature $\mathbf{\Omega}_n(\mathbf{k})$ 

spin-orbit interaction:

 $\mathbf{s} \cdot \mathbf{L}$ 

Nagaosa, Sinova et al., Rev. Mod. Phys. 82, 1539 (2010)



$$\sigma_{xy}^{\pm} = \frac{e^2}{\hbar (2\pi)^3} \sum_n \int_{BZ} d^3k f_n(\mathbf{k}) \Omega_z^n(\mathbf{k})$$

$$\sigma_{xy}^{\pm} = \frac{e^2}{\hbar (2\pi)^3} \sum_n \int^{E_F} dE \Omega_z^n(E)$$

Anomalous Hall effect:

 $\sigma_{xy} = \sigma_{xy}^+ + \sigma_{xy}^-$ 

Spin Hall effect:

$$\sigma_{xy}^s = \sigma_{xy}^+ - \sigma_{xy}^-$$

#### Intrinsic spin Hall conductivity





Guo et al., PRL 100, 096401 (2008); J. Appl. Phys. 105, 07C701 (2009)

#### Diabolic points

#### Band crossing and diabolic points







Point charge field:

$$\mathbf{E}_{\pm}(\mathbf{r}) = \pm Q \frac{\mathbf{r} - \mathbf{r_0}}{|\mathbf{r} - \mathbf{r_0}|^3}$$



Magnetic monopole:

$$\mathbf{B}_{\pm}(\mathbf{r}) = \pm g \frac{\mathbf{r} - \mathbf{r_0}}{|\mathbf{r} - \mathbf{r_0}|^3}$$

Berry curvature monopole:

$$\mathbf{\Omega}_{\pm}(\mathbf{k}) = \pm g \frac{\mathbf{k} - \mathbf{k_0}}{|\mathbf{k} - \mathbf{k_0}|^3}$$

P.A.M. Dirac, Phys. Rev. 1948

#### **Dirac** quantization



Monopole field:  $\mathbf{B}_{\pm}(\mathbf{r}) = \pm g \frac{\mathbf{r} - \mathbf{r_0}}{|\mathbf{r} - \mathbf{r_0}|^3}$ 



Dirac's quantization of the monopole field:

$$\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r}) + \sum_{j} g_{j} \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}} \qquad g_{j} = \pm \frac{1}{2}$$

$$\frac{1}{2\pi} \int_{V} d\mathbf{r} \, \nabla \cdot \mathbf{B}(\mathbf{r}) \; = \; \frac{1}{2\pi} \int_{\partial V} d\sigma \, \mathbf{n} \cdot \mathbf{B}(\mathbf{r}) \; = \; C \quad C \in \mathbf{Z}$$

P.A.M. Dirac, Phys. Rev. 1948

#### Berry curvature monopoles



Monopole field:  $\Omega_{\pm}({\bf k})=\pm\frac{1}{2}\frac{{\bf k}-{\bf k_0}}{|{\bf k}-{\bf k_0}|^3}$ 

Dirac's quantization of the monopole field:

$$\mathbf{\Omega}(\mathbf{k}) = \nabla \times \mathbf{A}(\mathbf{k}) + \sum_{j} g_{j} \frac{\mathbf{k} - \mathbf{k}_{j}}{|\mathbf{k} - \mathbf{k}_{j}|^{3}} \qquad g_{j} = \pm \frac{1}{2}$$

$$\frac{1}{2\pi} \int_{V} d\mathbf{k} \, \nabla \cdot \mathbf{\Omega}(\mathbf{k}) = \frac{1}{2\pi} \int_{\partial V} d\sigma \, \mathbf{n} \cdot \mathbf{\Omega}(\mathbf{k}) = C \quad C \in \mathbf{Z}$$

P.A.M. Dirac, Phys. Rev. 1948



#### **Topological states**

## Börge Göbel

## Tomáš Rauch

# Alexander Mook

Jürgen Henk

#### Intrinsic spin Hall conductivity





#### Spin Hall effect of an insulator and Chern number





#### Chern number





#### Band inversion without TRS







#### Band inversion with TRS





#### **Z2 TI**:

gap in 2d and 3d Kramers degeneracy

#### **DIRAC** semimetal: no gap in 3d + crystal symmetry

Cargèse

#### Topological surface state of a Z2 TI



Е



B. A. Bernevig, T. L. Hughes, S. C. Zhang, Science 314, 1757 (2006)

#### Topological surface state in $Bi_2Te_3$



#### The quantum Hall trio





#### The conductance is quantized!

S Oh Science 2013;340:153-154

#### **Topological Hall effect**

B. Göbel, A. Mook, J. Henk, and I. M., Phys. Rev. B **95**, 094413 (2017) B. Göbel, A. Mook, J. Henk, and I. M., New Journ. Phys., accepted (2017)

#### Experiment to measure the THE





#### Skyrmions





M. Nagao et al., Experimental observation of multiple-q states for the magnetic skyrmion lattice and skyrmion excitations under a zero magnetic field. Phys. Rev. B 92, 140415 (2015)



#### **Skyrmion lattice**





B. Göbel, A. Mook, J. Henk, and I.M., Phys. Rev. B 95, 094413 (2017)

#### Skyrmion – background spin texture





#### Electron bandstructure in background spin texture







14.10.2017

#### Electrons in the skyrmion field and THE





14.10.2017

#### THE from Berry curvature of the electrons



$$\sigma_{xy}^{\pm} = \frac{e^2}{h} \frac{1}{2\pi} \sum_{n} \int_{BZ} d^2 k f_n(\mathbf{k}) \Omega_z^n(\mathbf{k})$$



Börge Göbel, Alexander Mook, Jürgen Henk and Ingrid Mertig, Phys. Rev. B 95, 094413 (2017)

#### From THE to QHE

Spin texture, skyrmion number and emergent field



Börge Göbel, Alexander Mook, Jürgen Henk and Ingrid Mertig, Phys. Rev. B **95**, 094413 (2017) Keita Hamamoto, Motohiko Ezawa, and Naoto Nagaosa, Phys. Rev. B **92**, 115417 (2015)
## Free electrons in a triangular lattice





Börge Göbel, Alexander Mook, Jürgen Henk and Ingrid Mertig, Phys. Rev. B 95, 094413 (2017)

## Comparison of THE and QHE



Cargèse







## The conductance is quantized!

S. Oh, Science **340**,153-154 (2013)

## Summary



- Chern number topological invariant
- Berry curvature acts like a magnetic field and causes anomalous veolcity!
- Anomalous velocity is the origin of the transversal transport coefficients: spin and anomalous Hall effect and quantum spin and anomalous Hall effect, as well as the topological Hall and quantum topological Hall effect!