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The Diamond synchrotron

3 GeV, 300 mA
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Lienard-Wiechert potentials

r : position of the observer

rq : position of the charge

The retarded time tr: 

n.b: Use S.I units throughout.
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Lienard-Wiechert potentials

By changing variable: and considering the Jacobian, one finds: 

with

The difficulty is in evaluating the vector fields at time t.
 This involves derivatives with a lot of chain rules.
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Fields

The far-field part of the electric field is: 

One can also prove that:  

These expressions are evaluated at the 
retarted time tr. 
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Dipole radiation and forward emitting cone with relativistic e-

Poynting vector: 
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Brilliance and polarisation

Bending
Magnet

Insertion
Device

Very small angular opening of the forward emittance cone (fraction of a mrad)

Highly polarised radiation
in the synchrotron orbit plane
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Synchrotron brilliance versus transistor/inch2 



L. C. Chapon 9
European School on Magnetism 

Conventions : Vertical geometry

s

s’
pp’

k
k’

2q

Q s and p refer to linear polarisation 
of light perpendicular and parallel to 
the scattering plane 
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Conventions: Horizontal geometry

s
s’ p

p’ kk’
2q Q

s and p refer to linear polarisation 
of light perpendicular and parallel to 
the scattering plane 
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Circular polarisation

k
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Scattering X-ray

Transition rate, second order perturbation theory: 
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Maxwell's equations

In the absences of charges and currents (free space), the solutions are plane-waves:  
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Quantizing the free electromagnetic field

It is convenient to work in the Coulomb (radiation) Gauge, by setting: 
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Quantizing the free electromagnetic field

The Gauge condition implies: transverse waves with two orthogonal polarization
states.

Electromagnetic energy: 
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Quantizing the free electromagnetic field
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Electromagnetic field potential for a charge

Lorentz force is not conservative (depends on speed)

Using :
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Hamiltonian of a charged particle in an EMF (no spin)

Generalized momentum: 
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Zeeman & Spin-orbit coupling terms

See Thomas factor for example
in Jackson “Classical Electromagnetism” 
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Full Hamiltonian charge in an EMF

Zeeman

SO coupling

Kinetic

Coulomb

EMF self-energy
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Perturbing Hamiltonian

Refers to Blume, 1985

● Terms square in A contribute to the first order scattering term 
● Terms linear in A contribute to the second order scattering term
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First and second order terms

Annihilate
photon first  

Create
photon first  
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Non-resonant contribution of second-order terms

Using

Need to evaluate 4 commutators, with the help of :  
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Magnetic contribution

Here, lj and sj are given in units of   
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Separation of L and S 

ss’
pp’

2q
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Summary non-resonant magnetic X-ray scattering

● Rest mass of the electron =511 keV
● At 1 keV, scattering cross section 3.8 10-6 smaller than Thomson scattering. 
● Only a few unpaired electrons contribute to the magnetic scattering vs. all electrons 

in the Thomson scattering.   
● However, the flux available largely compensate for 

the weak scattering cross section. 
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Non-resonant magnetic scattering Cu3Nb2O8
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P(c)

�1=( δ , δ ,0) 

 
 

BiFeO3 : Non resonant micro-focused magnetic diffraction
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50 mm resolution

BiFeO3 : Non resonant micro-focused magnetic diffraction
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Experiment off resonance, 5.8 KeV

R. D. Johnson,et al., Phys. Rev. Lett. 110, 217206 (2013)

BiFeO3 : Non resonant micro-focused magnetic diffraction
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BiFeO3 : “Homochiral” domains
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● Tune the energy of the X-ray beam 
to an absorption edge

● Photon is absorbed and the system
re-emit a photon with the same 
energy

● Element specific information
● Combine the element specific 

information from spectroscopy 
techniques with Bragg scattering 

● Polarization dependence effects
● Possibility to probe magnetic order

but also other E/M-multipoles 

Resonant X-ray magnetic scattering
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Resonant X-ray magnetic scattering

We need to evaluate the matrix elements: 

The power expansion is justified by the fact that the spatial extend of the core electron 
is relatively small (~0.1 A)

We also use the following commutator, to switch to 
position representation 

E1 E2
E3

M1 M2
M3
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Resonant X-ray magnetic scattering : E1-E1

[1] J. P. Hill and D. F. McMorrow, “X-ray resonant exchange scattering: 
polarization dependence and correlation functions,” Acta Crystallogr., vol. A52, pp. 236–244, 1996.
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Incommensurate
q=(1/2+d,0,0.2)q=(1/2,0,0)

N. Lee, Phys. Rev. Lett. 110, 137203 (2013)

Resonant X-ray magnetic scattering GdMn2O5



European School on Magnetism 

L
III
 Gd

Off-resonance

N. Lee, Phys. Rev. Lett. 110, 137203 (2013)

a

b

Pb

Pb

Resonant X-ray magnetic scattering GdMn2O5

E1-E1
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Probing different multipolar orders

[1] S. Di Matteo, “Resonant x-ray diffraction: multipole interpretation,” 
J. Phys. D. Appl. Phys., vol. 45, no. 16, p. 163001, 2012.
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Note on link between cross section and absorption spectroscopy

Optical theorem 

XMCD

XMLD
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Magnetic X-ray holography

Thomas A. Duckworth, Feodor Ogrin, Sarnjeet S. Dhesi, 
Sean Langridge, Amy Whiteside, Thomas Moore, Guillaume Beutier, and Gerrit van der Laan, 
"Magnetic imaging by x-ray holography using extended references," Opt. Express 19, 16223-16228 (2011)
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Ptychography

[1] C. Donnelly et al., “Three-dimensional magnetization structures revealed with 
X-ray vector nanotomography,” Nature, vol. 547, no. 7663, pp. 328–331, 2017.
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● Born approximation valid
● Magnetic ~ nuclear scattering amplitude 
● Very little beam heating  low T→

● Large penetration depth, bulky sample 
environments (magnets, dilution….) 

● Manipulate polarization and analysis 
but costly (flux)

● Large divergence, relatively poor Q-resolution

● Lack of spatial resolution 

● Flux typically up to 1010 n.cm-2.s-1

(scattering volume)

● No direct L/S separation (only by fitting form 
factor)

Neutrons and X-ray for magnetic scattering

Neutron X-ray

● Off resonance can get quantitative M but 
scaling to charge scattering not always easy
(use of attenuators for charge scattering...) 

● Magnetic Xs much smaller but compensated 
by flux. 

● Beam heating can be a problem
not straightforward to go to dilution T 

● Not easy to do k=0 work

● Manipulate polarization and analysis 

● Highly collimated, excellent Q-resolution

● Spatial resolution down to 20nm 

● High brilliance and flux
● Direct L/S separation
● Resonant  element specific →
● Resonant  probe tensor beyond →

magnetic dipole
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