X-ray non-resonant and resonant magnetic scattering Laurent C. Chapon, Diamond Light Source

3 GeV, 300 mA

Lienard-Wiechert potentials

n.b: Use S.I units throughout.

r : position of the observer

$$\phi(\vec{r},t) = \frac{q}{4\pi\epsilon_0} \int \frac{\delta(\vec{r'} - \vec{r_q}(t_r))}{|\vec{r} - \vec{r_q}(t_r)|} d^3r'$$

$$\vec{A}(\vec{r},t) = \frac{\mu_0 qc}{4\pi} \int \frac{\delta(\vec{r'} - \vec{r_q}(t_r))\vec{\beta}(t_r)}{|\vec{r} - \vec{r_q}(t_r)|} d^3r'$$

The retarded time tr: $t_r = t - \frac{|\vec{r} - \vec{r_q}(t_r)|}{2}$

L. C. Chapon

Lienard-Wiechert potentials

By changing variable: $ec{r}^* = ec{r} - ec{r_q}(tr)$ and considering the Jacobian, one finds:

$$\begin{split} \phi(\vec{r},t) &= \frac{q}{4\pi\epsilon_0} \begin{bmatrix} 1\\ \overline{R(1-\vec{\beta}.\vec{n})} \end{bmatrix}_{ret} & \text{with} \\ \vec{R} &= \vec{r} - \vec{r_q}(t_r) \\ \vec{R} &= |\vec{r} - \vec{r_q}(t_r)| \\ \vec{R} &= |\vec{r} - \vec{r_q}(t_r)| \\ \vec{R} &= |\vec{r} - \vec{r_q}(t_r)| \\ \vec{R} &= \frac{\vec{R}}{R} \end{split}$$

$$\vec{E} = -\vec{\nabla}\Phi - \frac{\partial \vec{A}}{\partial t}$$
$$\vec{B} = \vec{\nabla} \times \vec{A}$$

European School on Magnetism L. C. Chapon

The difficulty is in evaluating the vector fields at time t. This involves derivatives with a lot of chain rules.

$$-\vec{\nabla}\Phi = \frac{q}{4\pi\epsilon_0(1-\vec{\beta}.\vec{n})^3} \left[\frac{1}{R^2} \left(\vec{n}(1-\beta^2) - \vec{\beta}(1-\vec{\beta}.\vec{n}) \right) + \frac{1}{R} \frac{(\vec{\beta}.\vec{n})}{c} \vec{n} \right] -\frac{\partial \vec{A}}{\partial t} = -\frac{q}{4\pi\epsilon_0(1-\vec{\beta}.\vec{n})^3} \left[\frac{(\vec{\beta}.\vec{n}-\beta^2)\vec{\beta}}{R^2} + \frac{(1-\vec{\beta}.\vec{n})\frac{\vec{\beta}}{c} + (\vec{\beta}.\vec{n})\frac{\vec{\beta}}{c}}{R} \right]$$

The far-field part of the electric field is:

E-field from accelerated charge
$$\vec{E} = \frac{q}{4\pi\epsilon_0 c(1-\vec{\beta}.\vec{n})^3} \frac{\vec{n} \times (\vec{n}-\vec{\beta}) \times \dot{\vec{\beta}}}{R}$$

Dne can also prove that:
$$ec{B}=rac{ec{n}}{c} imesec{E}$$

These expressions are evaluated at the retarted time t_r.

Dipole radiation and forward emitting cone with relativistic e-

Poynting vector:

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$
$$\vec{S} = \epsilon_0 c E^2 \vec{n}$$

Brilliance and polarisation

Very small angular opening of the forward emittance cone (fraction of a mrad)

E-field from accelerated charge

$$\vec{E} = \frac{q}{4\pi\epsilon_0 c(1-\vec{\beta}.\vec{n})^3} \frac{\vec{n} \times (\vec{n}-\vec{\beta}) \times \vec{\beta}}{R} \quad \longrightarrow \quad \text{Highly polarised radiation} \\ \text{in the synchrotron orbit plane}$$

European School on Magnetism

diamond

Synchrotron brilliance versus transistor/inch²

Conventions : Vertical geometry

Conventions: Horizontal geometry

 $|\psi\rangle_L = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1\\ i\\ 0 \end{array} \right)$

$$|i\rangle = |a; k_i \epsilon_i\rangle$$
 $E_i = E_a + \hbar \omega_i$

$$|f\rangle = |b; k_f \epsilon_f\rangle \quad E_f = E_b + \hbar \omega_f$$

Maxwell's equations

Maxwell's equations

 $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla} \times \vec{B} = \mu_0 (\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t})$ $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

In the absences of charges and currents (free space), the solutions are plane-waves:

$$\nabla^2 \vec{E} - \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \quad \Longrightarrow \begin{cases} \vec{E} = \vec{E_0} e^{i(\vec{k} \cdot \vec{R} - \omega t)} \\ \omega = kc \end{cases}$$

Quantizing the free electromagnetic field

$$\vec{E} = -\vec{\nabla}\phi - \frac{\partial \vec{A}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{E} = 0$$

$$\nabla^2 \phi + \frac{\partial}{\partial t} \left(\vec{\nabla} \cdot \vec{A} \right) = 0$$

$$\vec{\nabla} \times \vec{B} = \vec{\nabla} \times \vec{\nabla} \times \vec{A} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$
$$\vec{\nabla} \left(\vec{\nabla} \cdot \vec{A} \right) - \nabla^2 \vec{A} = \frac{1}{c^2} \frac{\partial}{\partial t} \left(-\vec{\nabla} \phi - \frac{\partial \vec{A}}{\partial t} \right)$$

It is convenient to work in the Coulomb (radiation) Gauge, by setting: $\phi=0, ec{
abla}\cdotec{A}=0$

Free EMF
$$\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = 0$$

European School on Magnetism L. C. Chapon

Quantizing the free electromagnetic field

$$\vec{A}(\vec{r},t) = \sum_{k,\alpha=-1,1} a_k^{\alpha} \vec{\varepsilon_k^{\alpha}} e^{i(\vec{k}\cdot\vec{r}-\omega_k t)} + c.c = \vec{A^+}(\vec{r},t) + \vec{A^-}(\vec{r},t)$$

he Gauge condition implies: $\vec{k}.\vec{\varepsilon_k^{\alpha}} = 0$ transverse waves with two orthogonal polarization states.

$$\vec{E}(\vec{r},t) = i \sum_{k,\alpha} \omega_k \left(a_k^{\alpha} \varepsilon_k^{\vec{\alpha}} e^{i(\vec{k}\cdot\vec{r}-\omega_k t)} - c.c \right)$$
$$\vec{B}(\vec{r},t) = i \sum_{k,\alpha} \vec{k} \times \left(a_k^{\alpha} \varepsilon_k^{\vec{\alpha}} e^{i(\vec{k}\cdot\vec{r}-\omega_k t)} - c.c \right)$$

Electromagnetic energy:

Т

Electromagnetic energy $H = \frac{1}{2}\epsilon_0 \int \left(E^2 + c^2 B^2\right) d^3 x = 2\epsilon_0 V \sum_{k,\alpha} \omega_k^2 |a_k^{\alpha}|^2$

European School on Magnetism L. C. Chapon

Quantizing the free electromagnetic field

$$\hat{A} = \sum_{\boldsymbol{k},\boldsymbol{\varepsilon}} \mathcal{N}_{\boldsymbol{k}} \left(\boldsymbol{\varepsilon} a_{\boldsymbol{k},\boldsymbol{\varepsilon}} e^{i\boldsymbol{k}\cdot\boldsymbol{r}} + \boldsymbol{\varepsilon}^* a_{\boldsymbol{k},\boldsymbol{\varepsilon}}^{\dagger} e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} \right)$$

$$\mathcal{N}_k = \sqrt{\frac{\hbar}{2V\epsilon_0\omega_k}}$$

$$egin{aligned} a^{\dagger}_{m{k},m{arepsilon}} \left| 0
ight
angle &= \left| m{k},m{arepsilon}
ight
angle \ a_{m{k},m{arepsilon}} \left| m{k},m{arepsilon}
ight
angle &= \left| 0
ight
angle \end{aligned}$$

Electromagnetic field potential for a charge

Lorentz force is not conservative (depends on speed)

$$\begin{split} \vec{F} &= -\vec{\nabla}U + \frac{d}{dt}\frac{dU}{d\vec{v}} \\ \vec{F} &= q\left(\vec{E} + \vec{v} \times \vec{B}\right) \\ &= q\left(-\vec{\nabla}\phi - \partial_t \vec{A} + \vec{v} \times \vec{\nabla} \times \vec{A}\right) \\ &= q\left(-\vec{\nabla}\phi - \partial_t \vec{A} + \vec{\nabla}\left(\vec{v} \cdot \vec{A}\right) - \left(\vec{v} \cdot \vec{\nabla}\right) \vec{A}\right) \\ \\ \text{Using:} \quad \frac{d\vec{A}}{dt} &= \frac{\partial \vec{A}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{A} \\ \vec{F} &= q\left(-\vec{\nabla}\left(\phi - \vec{v} \cdot \vec{A}\right)\right) + \frac{d\vec{A}}{dt} \end{split} \qquad \begin{aligned} \text{EMF potential} \\ &U &= q\left(\phi - \vec{v} \cdot \vec{A}\right) \\ \end{bmatrix}$$

European School on Magnetism

UIUII

$$\begin{aligned} \mathcal{L} &= T - U = \frac{1}{2}mv^2 - q\phi + q\vec{A}\cdot\vec{v} \\ \end{aligned}$$
 Generalized momentum: $\vec{p} = \frac{\partial\mathcal{L}}{\partial\vec{v}} = m\vec{v} + q\vec{A} \end{aligned}$

Zeeman & Spin-orbit coupling terms

$$\mu_e = -g\mu_B \frac{\vec{s}}{\hbar} = -\frac{e\hbar}{2m}.\vec{\sigma}$$

Zeeman $V_Z = \frac{e\hbar}{2m} \vec{\sigma} \cdot \vec{\nabla} \times \vec{A}$

$$\vec{B} = -\frac{\vec{v} \times \vec{E}}{2c^2} = -\frac{\left(\vec{p} + e\vec{A}\right) \times \vec{E}}{2mc^2}$$
$$V_{SO} = -\vec{\mu_e} \cdot \vec{B} = \frac{e\hbar}{2m}\vec{\sigma} \cdot \vec{B}$$

See Thomas factor for example in Jackson "Classical Electromagnetism"

Spin-orbit

$$V_{SO} = -\frac{e\hbar}{2(2mc)^2} \sigma \cdot (\partial_t \mathbf{A} \times (\mathbf{p} + e\mathbf{A}) - (\mathbf{p} + e\mathbf{A}) \times \partial_t \mathbf{A})$$

Full Hamiltonian charge in an EMF

$$\begin{aligned} \mathcal{H} &= \sum_{j} \frac{(\boldsymbol{p}_{j} + e\boldsymbol{A}(\boldsymbol{r}_{j}))^{2}}{2m} \end{aligned} \quad \text{Kinetic} \\ &+ \frac{e\hbar}{2m} \boldsymbol{\sigma}_{j} \cdot \vec{\nabla} \times \boldsymbol{A}(\boldsymbol{r}_{j}) \Biggr] \end{aligned} \quad \text{Zeeman} \\ &+ \frac{e\hbar}{2(2mc)^{2}} \boldsymbol{\sigma}_{j} \cdot [(\boldsymbol{p}_{j} + e\boldsymbol{A}(\boldsymbol{r}_{j})) \times \partial_{t} \mathbf{A}_{j} - \partial_{t} \mathbf{A}_{j} \times (\boldsymbol{p}_{j} + e\boldsymbol{A}(\boldsymbol{r}_{j}))] \Biggr] \end{aligned} \quad \text{S0 coupling} \\ &+ \sum_{n} V_{jn} \Biggr] \qquad \text{Coulomb} \\ &+ \sum_{k,\epsilon} \hbar \omega_{k} \left(a_{k,\epsilon}^{\dagger} a_{k,\epsilon} + \frac{1}{2} \right) \Biggr] \qquad \text{EMF self-energy} \end{aligned}$$

- Terms square in **A** contribute to the first order scattering term
- Terms linear in A contribute to the second order scattering term

$$w_{i\to f} = \frac{2\pi}{\hbar} \left| \langle f | \mathcal{H}'_1 + \mathcal{H}'_4 | i \rangle + \sum_g \frac{\langle f | \mathcal{H}'_2 + \mathcal{H}'_3 | g \rangle \langle g | \mathcal{H}'_2 + \mathcal{H}'_3 | i \rangle}{E_i - E_g} \right|^2 \delta(E_a - E_b + \hbar\omega_i - \hbar\omega_f)$$

$$\langle f | \mathbf{H}'_1 | i \rangle = \mathcal{N}^2 \frac{e^2}{m} \langle b | \sum_j e^{i \mathbf{Q} \cdot \mathbf{r}_j} | a \rangle \, \boldsymbol{\epsilon}_i \cdot \boldsymbol{\epsilon}_f$$

$$\langle f | \mathbf{H}'_{4} | i \rangle = -\mathcal{N}^{2} \frac{e^{2}}{m} \frac{i\hbar\omega}{mc^{2}} \langle b | \frac{1}{2} \sum_{j} \boldsymbol{\sigma}_{j} e^{i\boldsymbol{Q}\cdot\boldsymbol{r}_{j}} | a \rangle \boldsymbol{\epsilon}_{\boldsymbol{f}}^{*} \times \boldsymbol{\epsilon}_{\boldsymbol{i}}$$

$$\sum_{g} \frac{\langle f | \mathcal{H}'_{2} + \mathcal{H}'_{3} | g \rangle \langle g | \mathcal{H}'_{2} + \mathcal{H}'_{3} | i \rangle}{E_{i} - E_{g}} = \frac{Annihilate}{photon first}$$

$$\mathcal{N}^{2} \frac{e^{2}}{m^{2}} \sum_{g} \sum_{j,k} \frac{\langle f | e^{-i\mathbf{k}_{f} \cdot \mathbf{r}_{k}} \left[\mathbf{p}_{k} \cdot \boldsymbol{\epsilon}_{f}^{*} - i\frac{\hbar}{2} \boldsymbol{\sigma}_{k}(\mathbf{k}_{f} \times \boldsymbol{\epsilon}_{f}^{*}) \right] |g \rangle \langle g | e^{i\mathbf{k}_{i} \cdot \mathbf{r}_{j}} \left[\mathbf{p}_{j} \cdot \boldsymbol{\epsilon}_{i} + i\frac{\hbar}{2} \boldsymbol{\sigma}_{j}(\mathbf{k}_{i} \times \boldsymbol{\epsilon}_{i}) \right] |a \rangle}{E_{a} + \hbar\omega_{i} - E_{g} + i\Gamma}$$

$$+ \frac{\langle f | e^{i\mathbf{k}_{i} \cdot \mathbf{r}_{k}} \left[\mathbf{p}_{k} \cdot \boldsymbol{\epsilon}_{i} + i\frac{\hbar}{2} \boldsymbol{\sigma}_{k}(\mathbf{k}_{i} \times \boldsymbol{\epsilon}_{i}) \right] |g \rangle \langle g | e^{-i\mathbf{k}_{f} \cdot \mathbf{r}_{j}} \left[\mathbf{p}_{j} \cdot \boldsymbol{\epsilon}_{f}^{*} - i\frac{\hbar}{2} \boldsymbol{\sigma}_{j}(\mathbf{k}_{f} \times \boldsymbol{\epsilon}_{f}^{*}) \right] |a \rangle}{E_{a} - E_{g} - \hbar\omega_{f}} \int Create photon first$$

Non-resonant contribution of second-order terms

Using
$$\hbar\omega_{f} \sim \hbar\omega_{i} \gg E_{i} - E_{g}$$

$$\sum_{g} \frac{\langle f | \mathcal{H}_{2}' + \mathcal{H}_{3}' | g \rangle \langle g | \mathcal{H}_{2}' + \mathcal{H}_{3}' | i \rangle}{E_{i} - E_{g}}$$

$$\sim \mathcal{N}^{2} \frac{e^{2}}{\hbar\omega m^{2}} \sum_{j,k} \langle f | \left[e^{-i\mathbf{k_{f}} \cdot \mathbf{r_{k}}} \left(\mathbf{p_{k}} \cdot \boldsymbol{\epsilon_{f}^{*}} - i\frac{\hbar}{2}\boldsymbol{\sigma_{k}}(\mathbf{k_{f}} \times \boldsymbol{\epsilon_{f}^{*}}) \right), e^{i\mathbf{k_{i}} \cdot \mathbf{r_{j}}} \left(\mathbf{p_{j}} \cdot \boldsymbol{\epsilon_{i}} + i\frac{\hbar}{2}\boldsymbol{\sigma_{j}}(\mathbf{k_{i}} \times \boldsymbol{\epsilon_{i}}) \right) \right] | i \rangle$$

Need to evaluate 4 commutators, with the help of : $[\sigma_a, \sigma_b] = 2i\epsilon_{abc}\sigma_c$ $[p_a, f(r)] = -i\hbar \frac{\partial f}{\partial_a}$ $(a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c) = (a \times b)(c \times d)$ $\mathbf{k} = \frac{\omega}{c}\hat{\mathbf{k}}$

$$\begin{split} & \left[e^{-i\mathbf{k}_{f}\cdot\mathbf{r}_{j}}(\mathbf{p}_{j}\cdot\boldsymbol{\epsilon}_{f}^{*}), e^{i\mathbf{k}_{i}\cdot\mathbf{r}_{j}}(\mathbf{p}_{j}\cdot\boldsymbol{\epsilon}_{i})\right] = \hbar(\mathbf{Q}\times\mathbf{p}_{j})(\boldsymbol{\epsilon}_{f}^{*}\times\boldsymbol{\epsilon}_{i}) \\ & \left[\sigma_{j}(\mathbf{k}_{f}\times\boldsymbol{\epsilon}_{f}^{*}), \sigma_{j}(\mathbf{k}_{i}\times\boldsymbol{\epsilon}_{i})\right] = 2i\frac{\omega^{2}}{c^{2}}\sigma_{j}(\hat{\mathbf{k}}_{f}\times\boldsymbol{\epsilon}_{f}^{*})\times(\hat{\mathbf{k}}_{i}\times\boldsymbol{\epsilon}_{i}) \\ & \left[e^{-i\mathbf{k}_{f}\cdot\mathbf{r}_{j}}\mathbf{p}_{j}\cdot\boldsymbol{\epsilon}_{f}^{*}, \sigma_{j}\cdot(\mathbf{k}_{i}\times\boldsymbol{\epsilon}_{i})e^{i\mathbf{k}_{i}\cdot\mathbf{r}_{j}}\right] = \hbar\frac{\omega^{2}}{c^{2}}\sigma_{j}e^{i\mathbf{Q}\cdot\mathbf{r}_{j}}(\hat{\mathbf{k}}_{i}\cdot\boldsymbol{\epsilon}_{f}^{*})(\hat{\mathbf{k}}_{i}\times\boldsymbol{\epsilon}_{i}) \\ & \left[e^{i\mathbf{k}_{i}\cdot\mathbf{r}_{j}}\mathbf{p}_{j}\cdot\boldsymbol{\epsilon}_{i}, \sigma_{j}\cdot(\mathbf{k}_{f}\times\boldsymbol{\epsilon}_{f}^{*})e^{-i\mathbf{k}_{f}\cdot\mathbf{r}_{j}}\right] = -\hbar\frac{\omega^{2}}{c^{2}}\sigma_{j}e^{i\mathbf{Q}\cdot\mathbf{r}_{j}}(\hat{\mathbf{k}}_{f}\cdot\boldsymbol{\epsilon}_{i})(\hat{\mathbf{k}}_{f}\times\boldsymbol{\epsilon}_{f}^{*}) \end{split}$$

$$\begin{split} \langle f | \mathbf{H}'_{4} | i \rangle + \sum_{g} \frac{\langle f | \mathbf{H}'_{2} + \mathbf{H}'_{3} | g \rangle \langle g | \mathbf{H}'_{2} + \mathbf{H}'_{3} | i \rangle}{E_{i} - E_{g}} \\ \sim -\mathcal{N}^{2} \frac{e^{2}}{m} \frac{i\hbar\omega}{mc^{2}} \left[\langle 0 | \sum_{j} \frac{i\mathbf{Q} \times \mathbf{p}_{j}}{\hbar k^{2}} e^{i\mathbf{Q}\cdot\mathbf{r}_{j}} | 0 \rangle \cdot \mathbf{A} + \langle 0 | \frac{1}{2} \sum_{j} \boldsymbol{\sigma}_{j} e^{i\mathbf{Q}\cdot\mathbf{r}_{j}} | 0 \rangle \cdot \mathbf{B} \right] \\ = -\mathcal{N}^{2} \frac{e^{2}}{m} \frac{i\hbar\omega}{mc^{2}} \left[4sin^{2}(\theta) \left(\frac{1}{2} \hat{\mathbf{q}} \times \sum_{j} \mathbf{l}_{j} e^{i\mathbf{Q}\cdot\mathbf{r}_{j}} \times \hat{\mathbf{q}} \right) \cdot \mathbf{A} + \left(\sum_{j} s_{j} e^{i\hat{\mathbf{Q}}\cdot\mathbf{r}_{j}} \right) \cdot \mathbf{B} \right] \end{split}$$

Here, I, and s, are given in units of \hbar

$$\begin{split} \boldsymbol{A} &= \boldsymbol{\epsilon}_{\boldsymbol{f}}^* \times \boldsymbol{\epsilon}_{\boldsymbol{i}} \\ \boldsymbol{B} &= \boldsymbol{\epsilon}_{\boldsymbol{f}}^* \times \boldsymbol{\epsilon}_{\boldsymbol{i}} - (\hat{\boldsymbol{k}_{\boldsymbol{f}}} \times \boldsymbol{\epsilon}_{\boldsymbol{f}}^*) \times (\hat{\boldsymbol{k}_{\boldsymbol{i}}} \times \boldsymbol{\epsilon}_{\boldsymbol{i}}) - (\hat{\boldsymbol{k}_{\boldsymbol{i}}} \times \boldsymbol{\epsilon}_{\boldsymbol{i}})(\hat{\boldsymbol{k}_{\boldsymbol{i}}} \cdot \boldsymbol{\epsilon}_{\boldsymbol{f}}^*) + (\hat{\boldsymbol{k}_{\boldsymbol{f}}} \times \boldsymbol{\epsilon}_{\boldsymbol{f}}^*)(\hat{\boldsymbol{k}_{\boldsymbol{f}}} \cdot \boldsymbol{\epsilon}_{\boldsymbol{i}}) \end{split}$$

Separation of L and S

$$\langle M \rangle = \frac{1}{2} \mathbf{L}(\mathbf{Q}) \cdot \mathbf{A} + \mathbf{S}(\mathbf{Q}) \cdot \mathbf{B}$$

$$B = \begin{pmatrix} \hat{\mathbf{k}}_{\mathbf{i}} \times \hat{\mathbf{k}}_{\mathbf{f}} & -\hat{\mathbf{k}}_{\mathbf{f}}(1 - \hat{\mathbf{k}}_{\mathbf{i}} \cdot \hat{\mathbf{k}}_{\mathbf{f}}) \\ -\hat{\mathbf{k}}_{\mathbf{i}}(1 - \hat{\mathbf{k}}_{\mathbf{i}} \cdot \hat{\mathbf{k}}_{\mathbf{f}}) & -\hat{\mathbf{k}}_{\mathbf{f}}(1 - \hat{\mathbf{k}}_{\mathbf{i}} \cdot \hat{\mathbf{k}}_{\mathbf{f}}) \end{pmatrix} \xrightarrow{\sigma} \pi$$

$$A = \frac{Q^{2}}{2k^{2}} \begin{pmatrix} 0 & -(\hat{\mathbf{k}}_{\mathbf{i}} + \hat{\mathbf{k}}_{\mathbf{f}}) \\ (\hat{\mathbf{k}}_{\mathbf{i}} + \hat{\mathbf{k}}_{\mathbf{f}}) & 2\hat{\mathbf{k}}_{\mathbf{i}} \times \hat{\mathbf{k}}_{\mathbf{f}} \end{pmatrix}$$

$$\langle f | \mathbf{H}'_1 | i \rangle = \mathcal{N}^2 \frac{e^2}{m} \langle b | \sum_j e^{i \mathbf{Q} \cdot \mathbf{r}_j} | a \rangle \, \boldsymbol{\epsilon}_i \cdot \boldsymbol{\epsilon}_f$$

$$-\mathcal{N}^2 \frac{e^2}{m} \frac{i\hbar\omega}{mc^2} \left[4sin^2(\theta) \left(\frac{1}{2} \hat{\boldsymbol{q}} \times \sum_j \boldsymbol{l_j} e^{i\boldsymbol{Q}\cdot\boldsymbol{r_j}} \times \hat{\boldsymbol{q}} \right) \cdot \boldsymbol{A} + \left(\sum_j \boldsymbol{s_j} e^{i\hat{\boldsymbol{Q}}\cdot\boldsymbol{r_j}} \right) \cdot \boldsymbol{B} \right]$$

- Rest mass of the electron =511 keV
- At 1 keV, scattering cross section 3.8 10⁻⁶ smaller than Thomson scattering.
- Only a few unpaired electrons contribute to the magnetic scattering vs. all electrons in the Thomson scattering.
- However, the flux available largely compensate for the weak scattering cross section.

Non-resonant magnetic scattering Cu₃Nb₂O₈

European School on Magnetism

R. Johnson, Phys. Rev. Lett. (2011)

BiFeO₃: Non resonant micro-focused magnetic diffraction

BiFeO₃: Non resonant micro-focused magnetic diffraction

European School

BiFeO₃: Non resonant micro-focused magnetic diffraction

Experiment off resonance, 5.8 KeV

R. D. Johnson, et al., Phys. Rev. Lett. 110, 217206 (2013)

BiFeO₃: "Homochiral" domains

- Tune the energy of the X-ray beam to an absorption edge
- Photon is absorbed and the system re-emit a photon with the same energy
- Element specific information
- Combine the element specific information from spectroscopy techniques with Bragg scattering
- Polarization dependence effects
- Possibility to probe magnetic order but also other E/M-multipoles

$$f_{Resonant} \sim \frac{\langle f | e^{-i\boldsymbol{k_f} \cdot \boldsymbol{r_k}} \left[\boldsymbol{p_j} \cdot \boldsymbol{\epsilon_f^*} - i\frac{\hbar}{2}\boldsymbol{\sigma_j}(\boldsymbol{k_f} \times \boldsymbol{\epsilon_f^*}) \right] |g\rangle \langle g | e^{i\boldsymbol{k_i} \cdot \boldsymbol{r_j}} \left[\boldsymbol{p_j} \cdot \boldsymbol{\epsilon_i} + i\frac{\hbar}{2}\boldsymbol{\sigma_j}(\boldsymbol{k_i} \times \boldsymbol{\epsilon_i}) \right] |a\rangle}{E_a + \hbar\omega_i - E_g + i\Gamma}$$

We need to evaluate the matrix elements:

$$\begin{split} \mathbf{O}_2 &= \langle g | \, \mathcal{H}'_2 \, | i \rangle = \langle g | \, \boldsymbol{p} \cdot \boldsymbol{\epsilon} (1 + i \boldsymbol{k} \cdot \boldsymbol{r} - \frac{1}{2} (\boldsymbol{k} \cdot \boldsymbol{r})^2 + \dots) \, | i \rangle \\ & \mathbf{E_1} \quad \mathbf{E_2} \quad \mathbf{E_3} \\ \mathbf{O}_3 &= \langle g | \, \mathcal{H}'_2 \, | i \rangle = \langle g | \, \boldsymbol{\sigma} \cdot (\boldsymbol{k} \times \boldsymbol{\epsilon}) (1 + i \boldsymbol{k} \cdot \boldsymbol{r} - \frac{1}{2} (\boldsymbol{k} \cdot \boldsymbol{r})^2 + \dots) \, | i \rangle \\ & \mathbf{M_1} \quad \mathbf{M_2} \quad \mathbf{M_3} \end{split}$$

The power expansion is justified by the fact that the spatial extend of the core electron is relatively small (\sim 0.1 A)

We also use the following commutator, to switch to position representation

$$\left[\frac{p^2}{2m}, r\right] = \frac{\hbar}{im}p$$

Resonant X-ray magnetic scattering : E1-E1

$$F_{LM}^{(e)}(\omega) = \sum_{\alpha, n} [P_{\alpha}P_{\alpha}(\eta)\Gamma_{x}(\alpha M\eta; \operatorname{EL})/\Gamma(\eta)]/[x(\alpha, \eta) - i].$$

[1] J. P. Hill and D. F. McMorrow, "X-ray resonant exchange scattering: polarization dependence and correlation functions," Acta Crystallogr., vol. A52, pp. 236–244, 1996.

European School on Magnetism L. C. Chapon

Resonant X-ray magnetic scattering GdMn₂O₅

European School on Magnetism

N. Lee, Phys. Rev. Lett. 110, 137203 (2013)

Resonant X-ray magnetic scattering GdMn₂O₅

European School on Magnetism

N. Lee, Phys. Rev. Lett. 110, 137203 (2013)

Probing different multipolar orders

$A = \sum_{\alpha,\beta} \epsilon_{\alpha}^{o*} \epsilon_{\beta}^{i} D_{\alpha\beta} + \frac{1}{2} \sum_{\alpha,\beta,\gamma} \epsilon_{\alpha}^{o*} \epsilon_{\beta}^{i} \left(k_{\gamma}^{i} I_{\alpha} + \frac{1}{4} \sum_{\alpha,\beta,\gamma,\delta} \epsilon_{\alpha}^{o*} \epsilon_{\beta}^{i} k_{\gamma}^{o} k_{\delta}^{i} Q_{\alpha\beta\gamma\delta} + \frac{1}{2m\omega_{n}} k_{\alpha}^{o*} k_{\beta}^{i} Q_{\alpha\beta\gamma\delta} + \frac{1}{2m\omega_{n}} k_{\alpha}^{i} Q_{\alpha\beta\gamma\delta} + \frac{1}{2m\omega_{n}} k$	$k_{\gamma}^{a} - k_{\gamma}^{o}$	$I^*_{\alpha\beta\gamma})$		
$ \times \sum_{\alpha,\beta} \left(\epsilon_{\alpha}^{o*} (\vec{\epsilon}^{i} \times \vec{k}^{i})_{\beta} R_{\alpha\beta} + (\vec{\epsilon}^{o*} \times \vec{k}^{o}) + \frac{i}{2m\omega_{ng}} \sum_{\alpha,\beta,\gamma} (\epsilon_{\alpha}^{o*} (\vec{\epsilon}^{i} \times \vec{k}^{i})_{\beta} k_{\gamma}^{i} P_{\alpha\beta\gamma} - (\vec{\epsilon}^{o*} \times \vec{k}^{o})_{\beta} k_{\gamma}^{o} \epsilon_{\alpha}^{i} P_{\alpha\beta\gamma}^{*}). \right) $	$(\vec{k}^{o})_{\beta}\epsilon^{i}_{\alpha}R^{i}_{\alpha}$	$\left(\frac{*}{\alpha\beta} \right) $ E1–E1	E1-E2	E2-E2
	, 0 1	Electric charge (++) Magnetic dipole (+-)	******************** Electric dipole (-+) Polar toroidal dipole ()	Electric charge (++) Magnetic dipole (+-)
	2 3	Electric quadr. (++) ***********************************	Axial toroidal quadr. (-+) Magnetic quadrupole () Electric octupole (-+) Polar toroidal octup. () *********	Electric quadr. (++) Magnetic octupole (+-) Electr. heyadecap. (++)
ℓ E1–M1	E1-M2			Electr. nexadecap. (++)
0 Axial toroidal monopole (-+) 'Magnetic monopole' ()Electric charge (++) Polar toroidal monopole (+-)1 Electric dipole (-+) Polar toroidal dipole (-+)Axial toroidal dipole (++) Magnetic dipole (+-)2 Axial toroidal quadrupole () Magnetic quadrupole ()Magnetic quadrupole (++) Polar toroidal quadrupole (++) Polar toroidal quadrupole (++) Magnetic octupole (++)3 **********Axial toroidal octupole (++) Magnetic octupole (++)				

[1] S. Di Matteo, "Resonant x-ray diffraction: multipole interpretation," J. Phys. D. Appl. Phys., vol. 45, no. 16, p. 163001, 2012.

Note on link between cross section and absorption spectroscopy

Magnetic X-ray holography

Sean Langridge, Amy Whiteside, Thomas Moore, Guillaume Beutier, and Gerrit van der Laan, "Magnetic imaging by x-ray holography using extended references," Opt. Express 19, 16223-16228 (2011)

" 🛟 diamond

Ptychography

[1] C. Donnelly et al., "Three-dimensional magnetization structures revealed with X-ray vector nanotomography," Nature, vol. 547, no. 7663, pp. 328–331, 2017.

Neutrons and X-ray for magnetic scattering

Neutron

- Born approximation valid
- Magnetic ~ nuclear scattering amplitude
- Very little beam heating \rightarrow low T
- Large penetration depth, bulky sample environments (magnets, dilution....)
- Manipulate polarization and analysis but costly (flux)
- Large divergence, relatively poor Q-resolution
- Lack of spatial resolution
- Flux typically up to 10¹⁰ n.cm⁻².s⁻¹ (scattering volume)
- No direct L/S separation (only by fitting form factor)
- European School on Magnetism

- Off resonance can get quantitative M but scaling to charge scattering not always easy (use of attenuators for charge scattering...)
- Magnetic Xs much smaller but compensated by flux.
- Beam heating can be a problem not straightforward to go to dilution T
- Not easy to do k=0 work
- Manipulate polarization and analysis
- Highly collimated, excellent Q-resolution
- Spatial resolution down to 20nm
- High brilliance and flux
- Direct L/S separation
- Resonant \rightarrow element specific
- Resonant → probe tensor beyond magnetic dipole

