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Outline

● Will discuss exclusively the magnetically ordered state

● Different type of magnetic structures and how to describe them 

● Magnetic symmetry, representation analysis, and magnetic 

space groups.

● Landau theory of phase transitions

● Symmetry breaking and types of domains
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Position of atom j in unit-cell l 
is given by:

Rlj=Rl+rj where Rl is a pure 
lattice translation

Rl

rj

mlj

Direct lattice

Description of magnetic structures
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For simplicity, in particular for wave-vector inside the BZ, 
one usually describe magnetic structures with Fourier components:

Since m
lj
 is a real vector, 

one must imposes the condition S
-kj

*=S
kj

Here S
kj
 is a complex vector !

Formalism of propagation vector
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Reciprocal lattice Reciprocal lattice (magnetic
superlattices)

+k-k

Formalism of propagation vector
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 
 

2k k
k

m S kR Slj j l jexp i  
 The magnetic structure may be described within the 
crystallographic unit cell
 Magnetic symmetry: conventional crystallography plus

   time reversal operator: crystallographic magnetic groups 

k=0
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 
 

  )(2 ln
jljlj -1iexp k

k
k SkRSm   

 REAL Fourier coefficients = magnetic moments
 The magnetic symmetry may also be described using

crystallographic magnetic space groups  

K=1/2 r.l.v
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“Longitudinal”1
2

2k kS uj j j jm exp( i )  

- k interior of the Brillouin zone (pair k, -k)

- Real Sk, or imaginary component in the same direction 
as the real one

km u kRlj j j l jm cos 2 ( )  

K is inside the Brillouin Zone, amplitude modulation



9
European School on Magnetism 

Helix

Cycloid

1
2

2k kS u vj uj j vj j jm im exp( i )     
k km u kR v kRlj uj j l j vj j l jm cos 2 ( ) m sin 2 ( )      

K is inside the Brillouin Zone, cycloids and spirals
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Conical

Multi-k structure with:

● Helical modulation

● Ferromagnetic component 

Multi-k structures : Conical structures
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Multi-k structures : Bunched modulations

k=(d,0,0)

+ k=(3d,0,0) + … + k=((2n+1)d,0,0)
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k=(1,0,0) or (0,1,0) !!!!!

Beware when working with non-primitive
unit-cells. 

If in doubt always think in the primitive
setup

C

Wave-vector formalism and centered cells
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Example of a 4-k structure: the skyrmion lattice

k
1

k
2

k
3

● k
1
+k

2
+k

3
=0, same chirality for k

1, 
k

2
, k

3 

●
 
Ferromagnetic component

Multi-k structures
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“Skyrmion”-type lattice stabilized by 
energy terms of the type: 

F=...+S 1e ik 1+ϕ1 . S 2 e ik 2+ϕ2 . S 3 e ik 3+ϕ3 . M

Multi-k structures
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Crystal symmetries
So far, we have only considered translation symmetry to describe the different types of 
magnetic structures.

In addition we will need to take into account all the crystallographic symmetries and
time-reversal symmetry.  

Example: Pyrochlore Fd-3m 
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Use the Seitz notation |t
 rotational part (proper or improper)

 ttranslational part

t+t}

 Space group: infinite number of symmetry  operations

Space groups/notations
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Isnversion symmetry on vectors and pseudo-vector

+

-

-

+

Axial or 'pseudo' vector
 Parity even, time-odd

Polar vector
 Parity odd, time even



18
European School on Magnetism 

Mirror symmetry on vectors

m

m+

-

+

-

+
-

- -+
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Mirror symmetry on pseudo-vectors

m

m
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Magnetic crystallographic symmetry

+

-

-

+

Axial or 'pseudo' vector
 Parity even, time-odd

Polar vector
 Parity odd, time even

We need to take into account all the “usual” crystallographic symmetries + the time-reversal 
symmetry (as a linear “classical” operator)

Prime symmetry operator, i.e. the combination of a conventional 

crystallographic symmetry + time reversal will be noted  ’  (primed)
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Note about time-reversal operator

In QM, one needs to introduce the time reversal operator Q 
as defined by Wigner,sometimes noted T*. 
This operator comes about in QM, from the time-dependent Schrodinger
equation: 

« Whenever the Hamiltonian of the problem is real, the complex conjugate of any 
eigenfunction is also an eigenfunction with the same energy ». 

The operator Q is the combimation of T (t -> -t) and complex conjugation (K).  

In the rest of the lecture, I will use time-reversal as a unitary linear operator, also called the 
“prime” operator. 
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Why symmetry is important ? 

[Neumann, F. E. (1885), Vorlesungen über die Theorie der Elastizität der festen 
Körper und des Lichtäthers, edited by O. E. Meyer. Leipzig, B. G. Teubner-Verlag]

●  Neumann’s principle: If a crystal is invariant under a symmetry operation, its physical 
properties must also be invariant under the same symmetry operation 
(and generally under all the symmetry operations of the point group)

● Symmetry dictates what is allowed and what is forbidden/constrained

● Unless there is a “phase transition”,  what is forbidden/restricted by symmetry is 
“protected”, i.e. it will remain forbidden unless the symmetry changes. 
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Why symmetry is important ? Example 1 DM interaction

1

2
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Why symmetry is important ? Example 2 Linear ME effect

Which of these two AFM structures support a linear magnetoelectric effect? 
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Ordered magnetic state

Jij

 S Sij ij i jE J  

0Si 

J

ij

0Si 

 In some crystals, some of the atoms/ions 
have unpaired electrons (transition metals,
rare-earths). 
 The intra-atomic electron correlation, Hund's rule, 

favors a state with maximum S/J,
the ions posses a localized magnetic moment

Exchange interactions (direct, superexchange, 
double exchange, RKKY,dipolar ….) often 
stabilizes a long range magnetic order.

Time-reversal symmetry is a valid symmetry operator
of the paramagnetic phase, but is broken in the 
ordered phase. 

core

Ni2+
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Paramagnetic group 
Example: Monoclinic SG P2/m1’
Magnetic atom in general position x,y,z

Paramagnetic group is what is called a grey group P2/m1’
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Transitions to magnetically ordered phases with k=0

Perez-Mato, JM; Gallego, SV; Elcoro, L; Tasci, E and Aroyo, MI
J. of Phys.: Condens Matter (2016), 28:28601

Example: Monoclinic SG P2/m1’
Magnetic atom in general position x,y,z
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Symmetry descent Pnma1’

Perez-Mato, JM; Gallego, SV; Elcoro, L; Tasci, E and Aroyo, MI
J. of Phys.: Condens Matter (2016), 28:28601
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Representation theory

Group properties:

Closure 
Associative
Identity
Inverse

Every group element is 
represented by a nxn matrix

and group composition 
rule is mapped into 
matrix multiplication

Mapping

Group G Group GLn(V)

Vector space V that contains all the possible degrees of freedom of my system.  
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Representation theory

g1 g2 g3 ... gn

nxn matrices Similarity transformation
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Group of pure translations

{1∣000 }{1∣100 }{1∣010 }{1∣t }{1∣200 }. . . . . . . .

K        ………………………….....…...

…
…

e-ikt

● Infinite abelian group

● Infinite number of irreducible representations, 
and consists of the complex root of unity.

● Basis are Bloch functions.
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Consider a symmetry element g={h|t} and a Bloch-function ’: 

 

Space group

F’ is a Block-function with index (hk)
k=(kx,0,0)
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• By applying the rotational part of the symmetry elements of the paramagnetic group, 
one founds a set of k vectors, known as the “star of k”
 

• Two vectors k1 and k2 are equivalent if they equal or related by a reciprocal lattice 
vector.

• In the general case, all vectors k1, k2,……ki in the star are not equivalent

• The group generated from the point group operations that leave k invariant elements 
+ translations is called the group of the propagation vector k  or little group and 
noted Gk..

Little group GK
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Despite the infinite number of atomic positions in a crystal
symmetry elements in a space group

…a representation theory of space groups is feasible using Bloch 
functions associated to k points of the reciprocal space. This means 
that the group properties can be given by matrices of finite 
dimensions for the:
 
- Reducible (physical) representations can be constructed on the 
space of the components of a set of generated points in the zero 
cell.

- Irreducible representations of the Group of vector k are 
constructed from a finite set of elements of the zero-block.

Representation of (infinite) space groups 
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Representation theory, example
Example: Monoclinic SG P2/m
Magnetic atom in general position x,y,z

m1x

m1z

m1y

m2x

m2z

m2y

m3x

m3z

m3y

m4x

m4z

m4y
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Representation theory

 

-----------------------------------------------------------------------------------------------------------------------------
                Symmetry operators ->
                    1                                   2 0,y,0                    -1 0,0,0                     m x,0,z                   

                 {1|000}                   {2_0y0|000}               {-1|000}                  {m_x0z|000}    
    -----------------------------------------------------------------------------------------------------------------------------

          1                         1                         1                         1

            1                         1                        -1                        -1

           1                        -1                         1                        -1

           1                        -1                        -1                         1
 
 

P2/m

P2/m’

P2’/m’

P2’/m

G1

G2

G3

G4

G=3G1+3G2+3G3+3G4
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Representation theory

 

-----------------------------------------------------------------------------------------------------------------------------
                Symmetry operators ->
                    1                                   2 0,y,0                    -1 0,0,0                     m x,0,z                   

                 {1|000}                   {2_0y0|000}               {-1|000}                  {m_x0z|000}    
    -----------------------------------------------------------------------------------------------------------------------------

          1                         1                        -1                         -1

           
 

P2/m’G1

G=3G1+3G2+3G3+3G4

Representation theory
Magnetic space group

If irreducible representation is one-dimensional, there is a 1 to 1 
correspondence between representation theory and magnetic space groups !



38
European School on Magnetism 

Representation theory, irreducible representation dim > 1 

Pyrochlore 
Space group Fd-3m
Setting 2, inversion at origin
Magnetic atom in position 16c (0,0,0)
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Representation theory, irreducible representation dim > 1

G=G3+G6+G8+2G10

Fd-3m’

For irreducible representations of dimension 2 or 3 , the magnetic space group 
(and full symmetry) depends on the direction of the order parameter 
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Irreducible representation dim >1
http://stokes.byu.edu/iso/isotropy.php

In this case, there can be more symmetry constraints (by choosing special 
direction of the order parameter) than simply mixing all basis vectors of the irrep. 
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Magnetic point group

For any symmetry operator g={R|t} of 
the paramagnetic group:

     R S if and only if g.m =  m

  

Determine the point group S in the magnetically ordered phase.
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The 122 magnetic point groups
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Let's consider an inversion centre in the zeroth cell, marked by a red point. 
in the case of a single-k magnetic structure with k inside the BZ.
If one considers an amplitude modulation of the form:  
 
=U
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eik.t0

{1|000 }
 '= iV
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Mixture of two modes

 ' '=U iV
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Operator 1'

Note about the linear time-reversal operator, the 'prime' operator.

1' is present in this case with a single k vector and no harmonics
In the previous example, application of 1', flip all the spins, irrespective of the 

components of the modulations, i.e is equivalent to a simultaneous phase shift
of p.k.  

p.k
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Magnetic point group (k inside BZ)

In the cases where the magnetic wavevector is inside the 
BZ, to which all incommensurate structure belongs:

For any symmetry operator g={R|t} of 
the paramagnetic group:

  

If we note=Skj . e
−2 ik .RL

R∈S⇔

g[ ]=±e
−2 ik .R0[ ]

g[ ]=±e−2 ik .R0 '[ * ]
g [ ]=±e−2  i k .R 0[ ]

Kg[ ]=±e2 i k .R0 ' [ ]

Essentially, R belongs to S, if and only if psi is an eigenvector
of the operator g or Kg. 
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The 122 magnetic point groups
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Landau's theory of phase transitions

Lev Landau, Nobel Prize 1962
"for his pioneering theories for condensed matter, especially liquid helium"

 Idea : to explain second order (continuous) 
phase transitions, i.e. transitions for which 
thermodynamic variables varies smoothly 
but characterized by an 'abrupt' breaking of 
symmetry

  Close to the transition, the free energy is 
analytic and can be expanded in powers of 
order parameter(s) 

 The free energy obeys the symmetry of the 
Hamiltonian

 Magnetic transitions, ferroelectric(elastic), 
superfluids, superconductors
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L. Landau, Eine mogliche Erklarung der Feldabhangigkeit der 
Suszeptibilitat bei niedrigen
Temperaturen, Phys. Z. Sowjet. 4, 675 (1933)

Lev. LANDAU 

Landau theory of phase transitions
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Landau theory of phase transitions

“Phase transitions of the second kind and critical phenomena”, Chapter 14
Course of theoretical physics, Volume 5, Statistical Physics 
L. D. Landau and E.M. Lifshitz 

● Phase transitions of the second kind, where the state of the body changes continuously.
● Very important general property: the symmetry of one phase is higher than that of the other
● Whilst the change is continuous, the symmetry change is not 
● Thermodynamic functions vary continuously. 

F=F 0+α .ρ2
+β .ρ4

α=α0(T −T c) ,α0>0

β>0
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Landau theory

 Free energy is expanded in powers of the order parameter(s), polarization, strain...

 Allowed terms must be invariant by all operations of the high-symmetry group

 Once F is constructed, one can calculate the variation of physical quantities, 
relation between domains... 

In a second order phase transition, 
a single symmetry mode is involved (single irreducible
representation).

P

T
h1

h2
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Formalism of propagation vector

( )k
kS Sjs n n

n

C jsn n
l l

l

= å
The coefficients         are the free 
parameters of the magnetic structure (order 
parameters of the phase transition in the 
Landau theory)

nCn
l

k : reference to the propagation vector
 : reference to the irreducible representation
n : index running from 1 up to n  
 : index running from 1 up to 

Mag nn n
nÅ

G = Gå
nG

dim ( )nG
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Domains

 Because the symmetry of the ordered magnetic state is lower than that of the
 paramagnetic state (loss of certain symmetry elements)

 If the order of the paramagnetic group G0 is g and the order of the ordered 
group G1 is h, there will be g/h domains. 

 The different types of domains: 

configuration domains (k-domains) : loss of translational symmetry

orientation domains (S-domains): loss of rotational symmetry 

180 degrees domains (time-reversed domains): loss of time-reversal symmetry

chiral domains: loss of inversion symmetry
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k-domains

k1k2

Example : tetragonal system
k1=(1/2,0,0), k2=(0,1/2,0)

 The symmetry operations of the paramagnetic
group (their rotational parts) transforms the 

wave-vector k either :

- in an equivalent vector (related to k by a r.l.v)
- in a new vector

The set of independent k vectors generated 
by the symmetry operators of the paramagnetic 

group is named the star of k and noted {k}

If the magnetic configuration is single-k, then 
there will be as many domains as arms in {k}
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180 degrees (time-reversed)-domains
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Time-reversed domains in pyrochlores

[1] S. Tardif et al., “All-In–All-Out Magnetic Domains: 
X-Ray Diffraction Imaging and Magnetic Field Control,” 
Phys. Rev. Lett., vol. 114, no. 14, p. 147205, 2015.
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R. Johnson et al., PRL 2012

K-domains in BiFeO3 single crystals
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WISH I16

δ 

THEORYI16 I06

Neutron and X-Ray Diffraction results all 
pointed towards a monoclinic distortion 
generating magnetic domains less than 1mm 
in size for the BiFeO3 thin films.

PhotoEmission Electron Microscopy (PEEM) 
eventually uncovered the elusive  magnetic 
domain structure in the strained BiFeO3 films.

K-domains in BiFeO3 thin films
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a) b)

c) d)

S-domains

BaCo2Ge2O7

Space group P -4 21 m

k=0

In this case, there is no 
loss of translational 
symmetry but a loss 

of rotational invariance
(4-fold axis since the 

moments are in-plane) 
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Chiral-domains

 Loss of inversion symmetry 
generates two domains of 

opposite handedness

 Note however that this is not 
the case if the paramagnetic 

group is a chiral group, in which 
case a single handedness is 

stabilized (no energy 
degeneracy)  
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1945:Shubnikovre-introduces the time reversal group {1,1’} first 
described by Heesch in 1929, Z. Krist. 71, 95.

1951:Shubnikovdescribes the bi-colourpoint groups

1955:Belov, Neronova& Smirnova provide for the first time the full list 
of 1651 Shubnikov space groups. Sov. Phys. Crystallogr. 1, 487-488

1957:Zamorzaevderives, using group theory, the Shubnikov groups. 
Kristallografiya2, 15 (Sov. Phys. Cryst., 3, 401)

1965:Opechowski and Guccione derive and enumerate the full list of 
magnetic space groups (Shubnikov groups)

1968: Describing 3-dimensional Periodic Magnetic Structures by 
Shubnikov Groups Koptsik, V.A.
Soviet Physics Crystallography, 12(5) , 723 (1968)

2001:Daniel B. Litvin provides for the first time the full description of all 
Shubnikov (Magnetic Space) Groups. Acta Cryst. A57, 729-730

2010: Magnetic Space Groups on computer programs
Compiled by Harold T. Stokes and BrantonJ. Campbell
Brigham Young University, Provo, Utah, USA June 2010

The use of symmetry
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'Felix Bertaut is a mathematician who
does crystallography'. Andre Guinier

Representation analysis of 
magnetic structures

F. Bertaut, Acta Cryst. (1968). 
A24, 217-231  

Key work
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1-, 2- and 3-Dimensional Magnetic Subperiodic Groups and Magnetic Space Groups

https://www.iucr.org/publ/978-0-9553602-2-0
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Software for magnetic symmetry
http://www.cryst.ehu.es/
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Software for magnetic symmetry

http://stokes.byu.edu/iso/isotropy.php

The Isodistort applet is extremely
useful for commensurate/incom.

structures
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A more complex example: Ca3CoMnO6
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Space group: R-3c
Charge ordered: 
Mn4+ position (0,0,0)
Co2+  position (0,0,1/4)
Magnetic propagation vector k=0

Ca3CoMnO6
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Ca3CoMnO6

It is obvious that the 3-fold symmetry
axis is preserved. 
However, for example the inversion 
center is lost. 
It can not be simultaneously 
-      (Mn moments red)

-       (Co moments blue)

1

1 '

The magnetic modes belongs to:
- Irep(1) for Mn
- Irep(4) for Co (see next slide)
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Point group 3m (C3v)           Electric P allowed along c.

Pz Pz Pz -Pz -Pz -Pz -Pz -Pz -Pz Pz Pz Pz

r1

r2

Ca3CoMnO6
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F=F01 1
2
1 1

4
2 2

2
 2 2

4
 1 2 P z

P z
2

 zz

∂ F
∂ P z

=0Stability condition : 

P z=− 12 zz

Ca3CoMnO6
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