# **Domains and domain walls**

# Andrés Cano

ICMCB-CNRS, University of Bordeaux, France Department of Materials, ETH Zürich, Switzerland





#### **References**

On the theory of the dispersion of magnetic permeability in ferromagnetic bodies L.D. Landau and E. Lifshitz Phys. Z. Sowjet. 8, 153 (1935); Collected papers of L.D. Landau, pp.101-114

Physical theory of ferromagnetic domains C. Kittel Rev. Mod. Phys. 21, 541 (1949)

Magnetic domains: the analysis of magnetic microstrctures A. Hubert and R. Schafer (Springer, Berlin, 1998)

Microscopic approach to current-driven domain wall dynamics G. Tatara. H. Kohno, J. Shibata Physics Reports 468, 213 (2008)

# **Outline**

1. History & motivation

**2.** Observation techniques

3. The origin of domains

4. Domain walls

**5. Domain wall motion** 





# The concept of **domain**:

# Postulated by Pierre Weiss in 1907 to explain why ferromagnetic bodies can appear non-magnetic.

110 aniversary!

$$F = a(T - T_c)M^2 + bM^4$$



Two possible states below  $T_c$ 





The distinct response of ferromagnets is inherently related to domains (and domain walls)



# **Outline**

1. History & motivation

# 2. Observation techniques

3. The origin of domains

**4. Domain walls** 

5. Domain wall motion

Magneto-optical Kerr effect (MOKE)



weak (but detectable) dependence on the magnetization of the optical constants



Transmission Electron Microscopy (TEM)

$$\mathbf{F}_{\text{Lorentz}} = q(\mathbf{v} \times \mathbf{B})$$

# electrons are deflected by the Lorentz force



Image plane intensity

# Transmission Electron Microscopy (TEM)





longitudinal variations of M are a source of magnetic field (stray field)

# Magnetic force microscopy (MFM)

 $\mathbf{F} = \mu_0 (\mathbf{m}_{\rm tip} \cdot \nabla) \mathbf{H}_{\rm stray}$ 



Spin-polarized scanning-tunneling microscopy (SP-STM)



Spin-polarized scanning-tunneling microscopy (SP-STM)





| Method of<br>domain<br>observation | Sensitivity<br>to small<br>variations in<br>magnetization | Evaluation<br>of the<br>magnetization<br>vector | Allowed<br>magnetic field<br>range | Sample<br>preparation<br>quality<br>requirements | Necessary<br>capital<br>investment |
|------------------------------------|-----------------------------------------------------------|-------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------|
| Bitter                             | very good                                                 | indirect                                        | 100 A/cm                           | moderate-low                                     | low                                |
| Magneto-optic                      | fair                                                      | direct                                          | any                                | high                                             | moderate                           |
| Digital MO                         | good                                                      | quantitative                                    | any                                | moderate                                         | high                               |
| Defocused TEM                      | very good                                                 | indirect                                        | 3000 A/cm                          | high                                             | high                               |
| Differential TEM                   | good                                                      | quantitative                                    | 1000 A/cm                          | high                                             | very high                          |
| Holograph. TEM                     | good                                                      | quantitative                                    | 100 A/cm                           | very high                                        | very high                          |
| Secondary SEM                      | poor                                                      | indirect                                        | 100 A/cm                           | low                                              | high                               |
| Backscatt. SEM                     | poor                                                      | rather direct                                   | 300 A/cm                           | moderate-low                                     | high                               |
| Pol. SEM                           | good                                                      | quantitative                                    | 100 A/cm                           | very high                                        | very high                          |
| X-Ray topography                   | poor                                                      | indirect                                        | any                                | moderate                                         | extremely high                     |
| Neutron                            | poor                                                      | indirect                                        | any                                | low                                              | extremely high                     |
| MFM                                | good                                                      | indirect                                        | 3000 A/cm                          | low                                              | moderate                           |

# **Outline**

1. History & motivation

**2. Observation techniques** 

# 3. The origin of domains

4. Domain walls

5. Domain wall motion

# The origin of domains



On the theory of the dispersion of magnetic permeability in ferromagnetic bodies Landau & Lifshitz, Phys. Z. Sowjet. 8, 153 (1935)

# The origin of domains

$$\nabla \cdot \mathbf{H} = -\nabla \cdot \mathbf{M} \longrightarrow E_{\text{magnetostatic}} = \frac{\mu_0}{2} \int H_d^2(\mathbf{M}) dV$$



domains form to minimize the magnetic energy

 $\nabla \cdot \mathbf{M} = 0$  $\hat{\mathbf{n}} \cdot \mathbf{M} \big|_{\text{surface}} = 0$ 

# Size of domains (d)

$$E(d,L) \Longrightarrow \left. \frac{\partial E(d,L)}{\partial d} \right|_{d_0} = 0$$

**strategy**: compute the total magnetic energy of the system and determine *d* from the principle of minimum energy





# Size of domains (d)





$$E_{\text{flux clousure}}(d, L) = \underbrace{\frac{K}{2}M^2d}_{\text{anisotropy}} + \underbrace{\varepsilon_{\text{dw}}(L/d)}_{\text{domain wall}}$$



 $d_0 \sim L^{1/2}$  Kittel's law

To know the actual size of the domains we need to determine the **energy of the domain walls** 

# **Outline**

1. History & motivation

2. Observation techniques

3. The origin of domains

# **4. Domain walls**

5. Domain wall motion

# **Domain walls**

Micromagnetic formalism

$$\begin{array}{ccc} \overbrace{\mathbf{S}_{i}=\mathbf{S}(\mathbf{r}_{i})}^{\text{discrete}} & \longrightarrow & \overbrace{\mathbf{S}(\mathbf{r})=\mathbf{M}(\mathbf{r})/M_{s}}^{\text{continuous}} \\ \\ \mathbf{S}(\mathbf{r}_{i})\cdot\mathbf{S}(\mathbf{r}_{i}+\Delta\mathbf{r}_{i}) & \longrightarrow & 1-\frac{1}{2}(\Delta\mathbf{r}_{i}\cdot\nabla\mathbf{S}|_{\mathbf{r}=\mathbf{r}_{i}})^{2} \\ \\ H_{\text{ex}}=-\sum_{ij}J_{ij}\mathbf{S}_{i}\cdot\mathbf{S}_{j} & \longrightarrow & \int A\left[\nabla\left(\frac{\mathbf{M}(\mathbf{r})}{M_{s}}\right)\right]^{2}dv \quad (A \sim J/a) \end{array}$$

# **Domain walls**

Uniaxial ferromagnet ( $m = M/M_{s}$ )  $E = \int \left\{ \underbrace{A(\nabla \mathbf{m})^2}_{} + \underbrace{K(m_x^2 + m_y^2)}_{} - \frac{\mu_0}{2} \mathbf{M} \cdot \mathbf{H}_d(\mathbf{M}) \right\}$ dvexchange anisotropy stray field  $\mathbf{m} = (0, \sin \theta(x), \cos \theta(x))$ **Bloch wall**  $(\nabla \cdot \mathbf{M} = 0)$  $\varepsilon_{dw} = \int_{-\infty}^{\infty} (A\theta'^2 + K\sin^2\theta) dx$  $A\theta'' - K\sin\theta\cos\theta = 0$ *x* - $\frac{d}{dx} \left[ A(\frac{d\theta}{dx})^2 + K \cos^2 \theta \right] = 0$  $\ddot{\theta} - \frac{g}{l}\sin\theta\cos\theta = 0 \frac{\frac{A}{K}(\frac{d\theta}{dx})^2 + \cos^2\theta}{\pm\sqrt{\frac{A}{K}\frac{d\theta}{dx}} = \sqrt{1 - \cos^2\theta} = \sin\theta}$ 

$$\frac{d\theta}{\sin\theta} = \pm \sqrt{\frac{K}{A}} dx \quad \rightarrow \quad \ln \tan \frac{\theta}{2} = \sqrt{\frac{K}{A}} (x - X)$$

# **Domain walls**





$$E_{dw}^{d=d_0} \sim E_{\text{magnetostatic}}^{d=d_0} \ll E_{\text{magnetostatic}}^{d \to \infty}$$

$$d_0 \sim (wL)^{1/2} \quad \longrightarrow \,\, {
m single-domain \, state \, if} \,\,\, L \lesssim w$$

# **Domain walls in thin films**

#### **Bloch wall**



 $\nabla \cdot \mathbf{M} = 0$ 

#### top view









# **Domain walls in thin films**



- Multi-dimensional description due to the stray fields
- Additional length scales
- Analytical -> numerical calculations & ansatzs + variational procedures

# **Domain walls in thin films**



cross-tie wall



#### **Bloch walls**



# two (equivalent) rotation senses



#### **Bloch lines & Bloch points**



#### **Bloch walls**



# two (equivalent) rotation senses



#### **Bloch lines & Bloch points**



# **Outline**

1. History & motivation

2. Observation techniques

3. The origin of domains

**4. Domain walls** 

**5. Domain wall motion** 

$$\dot{\mathbf{M}} = -\gamma \underbrace{\mathbf{M} \times \mathbf{H}_{\text{eff}}}_{\text{torque}} \qquad \gamma = \frac{\mu_0 g e}{2m_e} \text{ (gyromagnetic ratio)}$$

H<sub>eff</sub>

Μ

$$E = \int [A(\nabla \mathbf{M})^2 - KM_z^2 - \mathbf{M} \cdot \mathbf{H}_{\text{tot}}] dv \qquad \mathbf{H}_{\text{tot}} = \mathbf{H}_{\text{ext}} + \mathbf{H}_{\text{d}}$$

$$\delta E = \int [\underbrace{(A\nabla^2 \mathbf{M} + KM_z \hat{\mathbf{e}}_z + \mathbf{H}_{\text{tot}})}_{\mathbf{H}_{\text{eff}}} \cdot \delta \mathbf{M}] dv$$

Landau-Lifshitz-Gilbert equation:  
$$\dot{\mathbf{M}} = -\gamma \underbrace{\mathbf{M} \times \mathbf{H}_{eff}}_{torque} - \underbrace{\alpha \mathbf{M} \times \dot{\mathbf{M}}}_{damping}$$

$$\dot{\mathbf{m}} = -\gamma \ \mathbf{m} \times \mathbf{H}_{\text{eff}} - \alpha \mathbf{m} \times \dot{\mathbf{m}}$$

$$E = \int [A(\nabla \mathbf{m})^2 - Km_z^2 + \underbrace{K_d m_y^2}_{K_d = \frac{\mu_0}{2}M_s^2} - \mathbf{M} \cdot \mathbf{H}_{\text{ext}}] d^3x$$

$$m_y = 0 \rightarrow \text{stray-field-free wall}$$

 $\mathbf{m} = -\gamma(\sin\theta\cos\phi,\,\sin\theta\sin\phi,\,\cos\theta)$ 

$$\dot{\theta} - \alpha \dot{\phi} \sin \theta = \frac{2\gamma}{M_s} \left[ -\frac{A}{\sin \theta} \nabla \cdot (\sin^2 \theta \nabla \phi) + \frac{K_d}{2} \sin \theta \sin 2\phi \right]$$
$$\dot{\phi} \sin \theta + \alpha \dot{\theta} = \frac{2\gamma}{M_s} \left\{ A \left[ \nabla^2 \theta - \frac{1}{2} \sin 2\theta (\nabla \phi)^2 \right] - \frac{K + K_d \sin^2 \phi}{2} \sin 2\theta \right\} + \gamma H \sin \theta$$

$$\dot{\mathbf{m}} = -\gamma \ \mathbf{m} \times \mathbf{H}_{\text{eff}} - \alpha \mathbf{m} \times \dot{\mathbf{m}}$$

$$E = \int [A(\nabla \mathbf{m})^2 - Km_z^2 + \underbrace{K_d m_y^2}_{K_d = \frac{\mu_0}{2}M_s^2} - \mathbf{M} \cdot \mathbf{H}_{\text{ext}}] d^3x$$

$$m_y = 0 \rightarrow \text{stray-field-free wall}$$

 $\mathbf{m} = -\gamma(\sin\theta\cos\phi,\,\sin\theta\sin\phi,\,\cos\theta)$ 

$$\dot{\theta} - \alpha \dot{\phi} \sin \theta = \frac{2\gamma}{M_s} \left[ -\frac{A}{\sin \theta} \nabla \dot{\phi} \sin^2 \theta \nabla \phi \right] + \frac{K_d}{2} \sin \theta \sin 2\phi$$

$$\dot{\phi} \sin \theta + \alpha \dot{\theta} = \frac{2\gamma}{M_s} \left\{ A \left[ \nabla^2 \theta - \frac{1}{2} \sin 2\theta (\nabla \phi)^2 \right] - \frac{K + K_d \sin^2 \phi}{2} \sin 2\theta \right\} + \gamma H \sin \theta$$

 $\theta = \theta(x, t)$  and  $\phi = \text{conts.}$ 

$$\dot{\mathbf{m}} = -\gamma \ \mathbf{m} \times \mathbf{H}_{\text{eff}} - \alpha \mathbf{m} \times \dot{\mathbf{m}}$$

$$E = \int [A(\nabla \mathbf{m})^2 - Km_z^2 + \underbrace{K_d m_y^2}_{K_d = \frac{\mu_0}{2}M_s^2} - \mathbf{M} \cdot \mathbf{H}_{\text{ext}}] d^3x$$

$$m_y = 0 \rightarrow \text{stray-field-free wall}$$

 $\mathbf{m} = -\gamma(\sin\theta\cos\phi,\,\sin\theta\sin\phi,\,\cos\theta)$ 

$$\dot{\theta} - \alpha \dot{\phi} = \frac{2\gamma}{M_s} \left[ -\frac{A}{\sin \theta} \nabla \dot{\phi} \right]^2 \theta \nabla \phi + \frac{K_d}{2} \sin \theta \sin 2\phi$$

$$\dot{\phi} = \frac{2\gamma}{M_s} \left\{ A \left[ \nabla^2 \theta - \frac{1}{2} \sin 2\theta (\nabla \phi)^2 \right] - \frac{K + K_d \sin^2 \phi}{2} \sin 2\theta \right\} + \gamma H \sin \theta$$

 $\theta = \theta(x, t)$  and  $\phi = \text{conts.}$ 

$$\gamma \underbrace{\left(\frac{\alpha K_d}{M_s} \sin 2\phi - H\right)}_{=0} \sin \theta = \frac{2\gamma}{M_s} \underbrace{\left(A \partial_x^2 \theta - \frac{K + K_d \sin^2 \phi}{2} \sin 2\theta\right)}_{=0}_{=0}$$

Walker's solution  

$$\theta(x,t) = 2 \arctan\{\exp[\pm(x\pm vt)/w_*]\}, \quad \sin 2\phi = H/H_c$$

$$w_* = \sqrt{A/(K+K_d \sin^2 \phi)}, \quad H_c = \frac{\alpha}{2}M_s, \quad v = \frac{\gamma}{\alpha}w_*H$$

$$\mathbf{m} = \left(\frac{\cos\phi}{\cosh[(x-vt)/w_*]}, \frac{\sin\phi}{\cosh[(x-vt)/w_*]}, \pm \tanh[(x-vt)/w_*]\right)$$

The wall moves at a constant speed ( $\sim H$  for low fields).

If the speed increases the angle increases -> stray field & wall narrowing.

There is a maximum velocity.

There is a critical field above which this solution is not valid.

Walker's solution  $\theta(x,t) = 2 \arctan\{\exp[\pm(x\pm vt)/w_*]\}, \quad \sin 2\phi = H/H_c$   $w_* = \sqrt{A/(K+K_d \sin^2 \phi)}, \quad H_c = \frac{\alpha}{2}M_s, \quad v = \frac{\gamma}{\alpha}w_*H$   $\mathbf{m} = \left(\frac{\cos \phi}{\cosh[(x-vt)/w_*]}, \frac{\sin \phi}{\cosh[(x-vt)/w_*]}, \pm \tanh[(x-vt)/w_*]\right)$ 

Longitudinal susceptibility

#### **\*\***\*\*\*\*\*\*\*\*\*\*\*\*\*\*

$$v = \frac{\gamma}{\alpha} w_* H_\omega e^{i\omega t} \to \Delta x = \int_0^t v dt = \frac{\frac{\gamma}{\alpha} w_*}{i\omega} H_\omega e^{i\omega t} \to \Delta M_\omega = \frac{\frac{\gamma}{\alpha} w_*}{i\omega} H_\omega e^{i\omega t} \frac{L_z}{d} \times \text{Surface}$$

$$\chi_l(\omega) \equiv \frac{1}{V} \frac{\Delta M_\omega}{H_\omega e^{i\omega t}} = \frac{\gamma w_*}{i\omega \, \alpha d} \quad \text{(relaxation behavior with no resonance)}$$

Walker's solution  $\theta(x,t) = 2 \arctan\{\exp[\pm(x\pm vt)/w_*]\}, \quad \sin 2\phi = H/H_c$   $w_* = \sqrt{A/(K+K_d \sin^2 \phi)}, \quad H_c = \frac{\alpha}{2}M_s, \quad v = \frac{\gamma}{\alpha}w_*H$   $\mathbf{m} = \left(\frac{\cos \phi}{\cosh[(x-vt)/w_*]}, \frac{\sin \phi}{\cosh[(x-vt)/w_*]}, \pm \tanh[(x-vt)/w_*]\right)$ 



Field- vs. current-induced motion

$$\dot{\mathbf{S}} = -\gamma \, \mathbf{S} \times (\mathbf{H}_{\text{eff}} + \mathbf{H}_{0}) - \frac{\alpha}{S} \mathbf{S} \times \dot{\mathbf{S}} - \underbrace{\frac{a^{3}}{2eS}(\mathbf{j}_{s} \cdot \nabla)\mathbf{S}}_{\text{spin-transfer torque}} - \underbrace{\frac{a^{3}\beta}{2eS^{2}}[\mathbf{S} \times (\mathbf{j}_{s} \cdot \nabla)\mathbf{S}]}_{\text{field-like torque}}$$



the angular moment lost by the electrons is transferred to the domain wall

Field- vs. current-induced motion

$$\dot{\mathbf{S}} = -\gamma \, \mathbf{S} \times (\mathbf{H}_{\text{eff}} + \mathbf{H}_{0}) - \frac{\alpha}{S} \mathbf{S} \times \dot{\mathbf{S}} - \underbrace{\frac{a^{3}}{2eS} (\mathbf{j}_{s} \cdot \nabla) \mathbf{S}}_{\text{spin-transfer torque}} - \underbrace{\frac{a^{3}\beta}{2eS^{2}} [\mathbf{S} \times (\mathbf{j}_{s} \cdot \nabla) \mathbf{S}]}_{\text{field-like torque}}$$





Walker's solution

$$\theta = 2 \arctan\left[\exp\left(\pm \frac{x \pm X(t)}{w_*}\right)\right]$$
  
$$\phi_0 = \text{constant}$$

X(t) can be understood as the position of the wall

#### What is the conjugate momentum?

Landau-Lifshitz-Gilbert equation ↔ Euler-Lagrange equations

$$\frac{d}{dt}\frac{\partial L_S}{\partial \dot{q}} + \nabla \cdot \frac{\partial L_S}{\partial \nabla q} - \frac{\partial L_S}{\partial q} = -\frac{\partial W_S}{\partial \dot{q}} \qquad q = (\theta, \phi)$$

Spin Lagrangian

$$L_S = L_B - H_S \quad \left(\mathbf{M} = -\gamma \frac{\hbar S}{a^3} \mathbf{n}\right)$$

 $L_B = \int \frac{d^3x}{a^3} \hbar S \dot{\phi}(\cos\theta - 1)$ 

 $L_{\!B}\,$  is a spin Berry phase

$$H_S = \frac{S^2}{2} \int \frac{d^3x}{a^3} [J(\nabla \mathbf{n})^2 - Kn_z^2 + K_\perp n_y^2 + \frac{2\gamma\hbar}{S}\mathbf{n}\cdot\mathbf{H}]$$



**Dissipation function** 

$$W_S = \frac{\alpha \hbar S}{2} \int \frac{d^3 x}{a^3} \dot{\mathbf{n}} = \frac{\alpha \hbar S}{2} \int \frac{d^3 x}{a^3} (\dot{\theta}^2 + \dot{\phi}^2 \sin \theta)$$

Walker's solution

 $\theta = 2 \arctan\left[\exp\left(\pm \frac{x \pm X(t)}{w_*}\right)\right]$  $\phi_0 = \text{constant}$  X(t) can be understood as the position of the wall

What is the conjugate momentum?

Spin Lagrangian & dissipation function

$$L_S = -\frac{\hbar NS}{w_*} \left( \dot{\phi}_0 X + \frac{K_\perp Sw}{2\hbar} \sin^2 \phi_0 - \gamma XH \right)$$
$$W_S = \frac{\hbar NS}{w_*} \frac{\alpha w_*}{2} \left[ \left(\frac{\dot{X}}{w_*}\right)^2 + \dot{\phi}_0^2 \right]$$

X and  $\phi_0$  are conjugate variables

non-linear relation due to internal  $\phi_0$  degree of freedom (even if the wall is rigid)

Spin Lagrangian & dissipation function

$$L_S = -\frac{\hbar NS}{w_*} \left( \dot{\phi}_0 X + \frac{K_\perp Sw}{2\hbar} \sin^2 \phi_0 - \gamma XH \right)$$
$$W_S = \frac{\hbar NS}{w_*} \frac{\alpha w_*}{2} \left[ \left(\frac{\dot{X}}{w_*}\right)^2 + \dot{\phi}_0^2 \right]$$

Equations of motion for the rigid wall

$$\frac{1}{w_*}\dot{X} - \alpha\dot{\phi}_0 = \kappa_\perp \sin 2\phi_0$$
$$\dot{\phi}_0 + \frac{\alpha}{w_*}\dot{X} = \gamma H$$

#### **Transient behavior**



Pinning

**Equations of motion** 

$$\frac{1}{w_*}\dot{X} - \alpha\dot{\phi}_0 = \kappa_\perp \sin 2\phi_0$$
$$\dot{\phi}_0 + \frac{\alpha}{w_*}\dot{X} = \gamma H - \underbrace{\nu_{\text{pin}}\frac{X}{w_*}\Theta(w - |X|)}_{F_{\text{pinning}}}$$

